Translational Therapeutics

Differential therapeutic effects of PARP and ATR inhibition combined with radiotherapy in the treatment of subcutaneous versus orthotopic lung tumour models

Abstract

Background

Subcutaneous mouse tumour models are widely used for the screening of novel antitumour treatments, although these models are poor surrogate models of human cancers.

Methods

We compared the antitumour efficacy of the combination of ionising radiation (IR) with two DNA damage response inhibitors, the PARP inhibitor olaparib and the ATR inhibitor AZD6738 (ceralasertib), in subcutaneous versus orthotopic cancer models.

Results

Olaparib delayed the growth of irradiated Lewis lung carcinoma (LL2) subcutaneous tumours, in agreement with previous reports in human cell lines. However, the olaparib plus IR combination showed a very narrow therapeutic window against LL2 lung orthotopic tumours, with nearly no additional antitumour effect compared with that of IR alone, and tolerability issues emerged at high doses. The addition of AZD6738 greatly enhanced the efficacy of the olaparib plus IR combination treatment against subcutaneous but not orthotopic LL2 tumours. Moreover, olaparib plus AZD6738 administration concomitant with IR even worsened the response to radiation of head and neck orthotopic tumours and induced mucositis.

Conclusions

These major differences in the responses to treatments between subcutaneous and orthotopic models highlight the importance of using more pathologically relevant models, such as syngeneic orthotopic models, to determine the most appropriate therapeutic approaches for translation to the clinic.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The PARP inhibitor olaparib increases the efficacy of ionising radiation against subcutaneous murine syngeneic Lewis lung LL2-luc tumours.
Fig. 2: Limited efficacy of the olaparib plus irradiation combination treatment against lung LL2-luc orthotopic tumours.
Fig. 3: At a lower dose of irradiation (4*2 Gy), the olaparib and irradiation combination treatment is effective against subcutaneous tumours but not against orthotopic tumours.
Fig. 4: ATR inhibition eradicates the olaparib-induced activation of ATR/Chk1 signalling, and sensitises tumour cells to olaparib and/or IR.
Fig. 5: The AZD6738 ATR inhibitor enhances the antitumour efficacy of the olaparib plus IR combination treatment in subcutaneous grafts, but not in lung or head and neck orthotopic tumours.

References

  1. 1.

    Chargari, C., Magne, N., Guy, J. B., Rancoule, C., Levy, A., Goodman, K. A. et al. Optimize and refine therapeutic index in radiation therapy: overview of a century. Cancer Treat. Rev. 45, 58–67 (2016).

    PubMed  Article  Google Scholar 

  2. 2.

    Hirata, E. & Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med. 7, a026781 (2017).

  3. 3.

    Mondini, M., Loyher, P. L., Hamon, P., Gerbe de Thore, M., Laviron, M., Berthelot, K. et al. CCR2-dependent recruitment of Tregs and monocytes following radiotherapy is associated with TNFalpha-mediated resistance. Cancer Immunol. Res. 7, 376–387 (2019).

  4. 4.

    Vatner, R. E., Cooper, B. T., Vanpouille-Box, C., Demaria, S. & Formenti, S. C. Combinations of immunotherapy and radiation in cancer therapy. Front. Oncol. 4, 325 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    O’Connor, M. J. Targeting the DNA damage response in cancer. Mol. Cell. 60, 547–560 (2015).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Caldecott, K. W. Protein ADP-ribosylation and the cellular response to DNA strand breaks. DNA Repair 19, 108–113 (2014).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Murai, J., Huang, S. Y., Das, B. B., Renaud, A., Zhang, Y., Doroshow, J. H. et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72, 5588–5599 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    McCabe, N., Turner, N. C., Lord, C. J., Kluzek, K., Bialkowska, A., Swift, S. et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66, 8109–8115 (2006).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Haynes, B., Murai, J. & Lee, J. M. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Cancer Treat. Rev. 71, 1–7 (2018).

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Yazinski, S. A., Comaills, V., Buisson, R., Genois, M. M., Nguyen, H. D., Ho, C. K. et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 31, 318–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Huehls, A. M., Wagner, J. M., Huntoon, C. J. & Karnitz, L. M. Identification of DNA repair pathways that affect the survival of ovarian cancer cells treated with a poly(ADP-ribose) polymerase inhibitor in a novel drug combination. Mol. Pharmacol. 82, 767–776 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Kim, H., George, E., Ragland, R., Rafial, S., Zhang, R., Krepler, C. et al. Targeting the ATR/CHK1 axis with PARP inhibition results in tumor regression in BRCA-mutant ovarian cancer models. Clin. Cancer Res. 23, 3097–3108 (2017).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Mohni, K. N., Thompson, P. S., Luzwick, J. W., Glick, G. G., Pendleton, C. S., Lehmann, B. D. et al. A synthetic lethal screen identifies DNA repair pathways that sensitize cancer cells to combined ATR inhibition and cisplatin treatments. PLoS ONE 10, e0125482 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Albert, J. M., Cao, C., Kim, K. W., Willey, C. D., Geng, L., Xiao, D. et al. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin. Cancer Res. 13, 3033–3042 (2007).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Barreto-Andrade, J. C., Efimova, E. V., Mauceri, H. J., Beckett, M. A., Sutton, H. G., Darga, T. E. et al. Response of human prostate cancer cells and tumors to combining PARP inhibition with ionizing radiation. Mol. Cancer Ther. 10, 1185–1193 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Calabrese, C. R., Almassy, R., Barton, S., Batey, M. A., Calvert, A. H., Canan-Koch, S. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96, 56–67 (2004).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Dillon, M. T., Barker, H. E., Pedersen, M., Hafsi, H., Bhide, S. A., Newbold, K. L. et al. Radiosensitization by the ATR inhibitor AZD6738 through generation of acentric micronuclei. Mol. Cancer Ther. 16, 25–34 (2017).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Donawho, C. K., Luo, Y., Luo, Y., Penning, T. D., Bauch, J. L., Bouska, J. J. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Fokas, E., Prevo, R., Pollard, J. R., Reaper, P. M., Charlton, P. A., Cornelissen, B. et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 3, e441 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Jiang, Y., Verbiest, T., Devery, A. M., Bokobza, S. M., Weber, A. M., Leszczynska, K. B. et al. Hypoxia potentiates the radiation-sensitizing effect of olaparib in human non-small cell lung cancer xenografts by contextual synthetic lethality. Int. J. Radiat. Oncol. Biol. Phys. 95, 772–781 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Karnak, D., Engelke, C. G., Parsels, L. A., Kausar, T., Wei, D., Robertson, J. R. et al. Combined inhibition of Wee1 and PARP1/2 for radiosensitization in pancreatic cancer. Clin. Cancer Res. 20, 5085–5096 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Laird, J. H., Lok, B. H., Ma, J., Bell, A., de Stanchina, E., Poirier, J. T. et al. Talazoparib is a potent radiosensitizer in small cell lung cancer cell lines and xenografts. Clin. Cancer Res. 24, 5143–5152 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lee, H. J., Yoon, C., Schmidt, B., Park, D. J., Zhang, A. Y., Erkizan, H. V. et al. Combining PARP-1 inhibition and radiation in Ewing sarcoma results in lethal DNA damage. Mol. Cancer Ther. 12, 2591–2600 (2013).

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Leszczynska, K. B., Dobrynin, G., Leslie, R. E., Ient, J., Boumelha, A. J., Senra, J. M. et al. Preclinical testing of an Atr inhibitor demonstrates improved response to standard therapies for esophageal cancer. Radiother. Oncol. 121, 232–238 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Parsels, L. A., Karnak, D., Parsels, J. D., Zhang, Q., Velez-Padilla, J., Reichert, Z. R. et al. PARP1 trapping and DNA replication stress enhance radiosensitization with combined WEE1 and PARP inhibitors. Mol. Cancer Res. 16, 222–232 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Pires, I. M., Olcina, M. M., Anbalagan, S., Pollard, J. R., Reaper, P. M., Charlton, P. A. et al. Targeting radiation-resistant hypoxic tumour cells through ATR inhibition. Br. J. Cancer 107, 291–299 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Prevo, R., Fokas, E., Reaper, P. M., Charlton, P. A., Pollard, J. R., McKenna, W. G. et al. The novel ATR inhibitor VE-821 increases sensitivity of pancreatic cancer cells to radiation and chemotherapy. Cancer Biol. Ther. 13, 1072–1081 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Senra, J. M., Telfer, B. A., Cherry, K. E., McCrudden, C. M., Hirst, D. G., O’Connor, M. J. et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft. Mol. Cancer Ther. 10, 1949–1958 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Tu, X., Kahila, M. M., Zhou, Q., Yu, J., Kalari, K. R., Wang, L. et al. ATR inhibition is a promising radiosensitizing strategy for triple-negative breast cancer. Mol. Cancer Ther. 17, 2462–2472 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Tuli, R., Surmak, A. J., Reyes, J., Armour, M., Hacker-Prietz, A., Wong, J. et al. Radiosensitization of pancreatic cancer cells in vitro and in vivo through poly (ADP-ribose) polymerase inhibition with ABT-888. Transl. Oncol. 7, 439–445 (2014).

  31. 31.

    Zhan, L., Qin, Q., Lu, J., Liu, J., Zhu, H., Yang, X. et al. Novel poly (ADP-ribose) polymerase inhibitor, AZD2281, enhances radiosensitivity of both normoxic and hypoxic esophageal squamous cancer cells. Dis. Esophagus 29, 215–223 (2016).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Clemenson, C., Chargari, C., Liu, W., Mondini, M., Ferte, C., Burbridge, M. F. et al. The MET/AXL/FGFR inhibitor S49076 impairs Aurora B activity and improves the antitumor efficacy of radiotherapy. Mol. Cancer Ther. 16, 2107–2119 (2017).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Mondini, M., Nizard, M., Tran, T., Mauge, L., Loi, M., Clemenson, C. et al. Synergy of radiotherapy and a cancer vaccine for the treatment of HPV-associated head and neck cancer. Mol. Cancer Ther. 14, 1336–1345 (2015).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Verhagen, C. V., de Haan, R., Hageman, F., Oostendorp, T. P., Carli, A. L., O’Connor, M. J. et al. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother. Oncol. 116, 358–365 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Brill, E., Yokoyama, T., Nair, J., Yu, M., Ahn, Y. R. & Lee, J. M. Prexasertib, a cell cycle checkpoint kinases 1 and 2 inhibitor, increases in vitro toxicity of PARP inhibition by preventing Rad51 foci formation in BRCA wild type high-grade serous ovarian cancer. Oncotarget 8, 111026–111040 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Jelinic, P. & Levine, D. A. New insights into PARP inhibitors’ effect on cell cycle and homology-directed DNA damage repair. Mol. Cancer Ther. 13, 1645–1654 (2014).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Mangoni, M., Yue, X., Morin, C., Violot, D., Frascogna, V., Tao, Y. et al. Differential effect triggered by a heparan mimetic of the RGTA family preventing oral mucositis without tumor protection. Int. J. Radiat. Oncol. Biol. Phys. 74, 1242–1250 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    Parkins, C. S., Fowler, J. F. & Yu, S. A murine model of lip epidermal/mucosal reactions to X-irradiation. Radiother. Oncol. 1, 159–165 (1983).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Lourenco, L. M., Jiang, Y., Drobnitzky, N., Green, M., Cahill, F., Patel, A. et al. PARP inhibition combined with thoracic irradiation exacerbates esophageal and skin toxicity in C57BL6 mice. Int. J. Radiat. Oncol. Biol. Phys. 100, 767–775 (2018).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Jagsi, R., Griffith, K. A., Bellon, J. R., Woodward, W. A., Horton, J. K., Ho, A. et al. Concurrent veliparib with chest wall and nodal radiotherapy in patients with inflammatory or locoregionally recurrent breast cancer: The TBCRC 024 Phase I Multicenter Study. J. Clin. Oncol. 36, 1317–1322 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Bibby, M. C. Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur. J. Cancer 40, 852–857 (2004).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Graves, E. E., Vilalta, M., Cecic, I. K., Erler, J. T., Tran, P. T., Felsher, D. et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin. Cancer Res. 16, 4843–4852 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Zhang, Y., Zhang, G. L., Sun, X., Cao, K. X., Ma, C., Nan, N. et al. Establishment of a murine breast tumor model by subcutaneous or orthotopic implantation. Oncol. Lett. 15, 6233–6240 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kuo, T. H., Kubota, T., Watanabe, M., Furukawa, T., Kase, S., Tanino, H. et al. Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice: the importance of orthotopic models to obtain relevant drug evaluation data. Anticancer Res. 13, 627–630 (1993).

    CAS  PubMed  Google Scholar 

  45. 45.

    Fidler, I. J., Wilmanns, C., Staroselsky, A., Radinsky, R., Dong, Z. & Fan, D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209–222 (1994).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Li, H. Y., McSharry, M., Bullock, B., Nguyen, T. T., Kwak, J., Poczobutt, J. M. et al. The tumor microenvironment regulates sensitivity of murine lung tumors to PD-1/PD-L1 antibody blockade. Cancer Immunol. Res. 5, 767–777 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Westwood, J. A., Darcy, P. K. & Kershaw, M. H. The potential impact of mouse model selection in preclinical evaluation of cancer immunotherapy. Oncoimmunology 3, e946361 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Zhao, X., Li, L., Starr, T. K. & Subramanian, S. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget 8, 54775–54787 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Cesaire, M., Thariat, J., Candeias, S. M., Stefan, D., Saintigny, Y. & Chevalier, F. Combining PARP inhibition, radiation, and immunotherapy: a possible strategy to improve the treatment of cancer? Int. J. Mol. Sci. 19, 3793 (2018).

  50. 50.

    Stewart, R. A., Pilie, P. G. & Yap, T. A. Development of PARP and immune-checkpoint inhibitor combinations. Cancer Res. 78, 6717–6725 (2018).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Vendetti, F. P., Karukonda, P., Clump, D. A., Teo, T., Lalonde, R., Nugent, K. et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J. Clin. Invest. 128, 3926–3940 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Rouffiac, the Imaging and Cytometry Platform UMS 23/3655 and the PFEP animal facility (Gustave Roussy Cancer Campus). We thank M. Dos Santos and F. Milliat (IRSN, Fontenay-aux-Roses, France) for CT imaging.

Author information

Affiliations

Authors

Contributions

C.C., V.T.C., W.L., M.G.T. and M.M. conducted all the experiments and analysed the data. C.C. wrote the paper. L.M., M.M. and M.J.O. helped write the paper. C.C. and E.D. conceived and supervised the project.

Corresponding authors

Correspondence to Eric Deutsch or Céline Clémenson.

Ethics declarations

Ethics approval and consent to participate

Animal procedures were performed according to protocols approved by the Ethics Committee CEEA26 (project no. 2015‐016‐613, EU directive 2010/63/EU). Female C57BL/6 mice were housed in the Gustave Roussy animal facility (animal care licence no. D94-076-11).

Consent to publish

Not applicable.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Competing interests

Mark J. O’Connor is an employee and shareholder of AstraZeneca.

Funding information

This study was supported by a research grant from AstraZeneca to E. Deutsch.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran Chau, V., Liu, W., Gerbé de Thoré, M. et al. Differential therapeutic effects of PARP and ATR inhibition combined with radiotherapy in the treatment of subcutaneous versus orthotopic lung tumour models. Br J Cancer (2020). https://doi.org/10.1038/s41416-020-0931-6

Download citation