Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Translational Therapeutics

Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner



The anticancer potential of ibuprofen has created a broad interest to explore the clinical benefits of ibuprofen in cancer therapy. However, the current understanding of the molecular mechanisms involved in the anticancer potential of ibuprofen remains limited.


Cancer stemness assays to validate ibuprofen function in vitro and in vivo. Histone modification assays to check the effect of ibuprofen on histone acetylation/methylation, as well as the activity of HDAC and KDM6A/B. Inhibitors’ in vivo assays to evaluate therapeutic effects of various inhibitors’ combination manners.


In our in vitro studies, we report that ibuprofen diminishes cancer cell stemness properties that include reducing the ALDH + subpopulation, side population and sphere formation in three cancer types. In our in vivo studies, we report that ibuprofen decreases tumour growth, metastasis and prolongs survival. In addition, our results showed that ibuprofen inhibits inflammation-related stemness gene expression (especially ICAM3) identified by a high-throughput siRNA platform. In regard to the underlying molecular mechanism of action, we report that ibuprofen reduces HDACs and histone demethylase (KDM6A/B) expression that mediates histone acetylation and methylation, and suppresses gene expression via a COX2-dependent way. In regard to therapeutic strategies, we report that ibuprofen combined HDAC/HDM inhibitors prevents cancer progression in vivo.


The aforementioned findings suggest a molecular model that explains how ibuprofen diminishes cancer cell stemness properties. These may provide novel targets for therapeutic strategies involving ibuprofen in the prevention of cancer progression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Ibuprofen restrains cancer cell stemness properties in vitro.
Fig. 2: Ibuprofen suppresses cancer cell metastasis and stemness in vivo.
Fig. 3: Ibuprofen inhibits the expression of inflammation-related stemness genes in vitro and in vivo.
Fig. 4: Ibuprofen mediates histone 3 methylation and acetylation to affect target genes’ expression in vitro and in vivo.
Fig. 5: Ibuprofen mediates H3 methylation and acetylation to regulate ICAM3 expression in vitro.
Fig. 6: Ibuprofen combined HDAC/HDM (KDM6A/B) inhibitors that restrained cancer progression in vivo.


  1. 1.

    Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Prewitz, M. C., Seib, F. P., von Bonin, M., Friedrichs, J., Stissel, A., Niehage, C. et al. Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nat. Methods 10, 788–794 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    Visvader, J. E. & Lindeman, G. J. Cancer stem cells: current status and evolving complexities. Cell. Stem Cell. 10, 717–728 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    van der Zee, M., Sacchetti, A., Cansoy, M., Joosten, R., Teeuwssen, M., Heijmans-Antonissen, C. et al. IL6/JAK1/STAT3 signaling blockade in endometrial cancer affects the ALDHhi/CD126+ stem-like component and reduces tumor burden. Cancer Res. 75, 3608–3622 (2015).

    Article  Google Scholar 

  5. 5.

    Yang, J., Liao, D., Chen, C., Liu, Y., Chuang, T. H., Xiang, R. et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 31, 248–258 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Shen, W., Xie, J., Zhao, S., Du, R., Luo, X., He, H. et al. ICAM3 mediates inflammatory signaling to promote cancer cell stemness. Cancer Lett. 422, 29–43 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Schack A., Fransgaard T., Klein M. F. & Gogenur I. Perioperative use of nonsteroidal anti-inflammatory drugs decreases the risk of recurrence of cancer after colorectal resection: a cohort study based on prospective data. Ann. Surg Oncol. 26, 3826–3837 (2019).

  8. 8.

    Kehm, R. D., Hopper, J. L., John, E. M., Phillips, K. A., MacInnis, R. J., Dite, G. S. et al. Regular use of aspirin and other non-steroidal anti-inflammatory drugs and breast cancer risk for women at familial or genetic risk: a cohort study. Breast Cancer Res. 21, 52 (2019).

    Article  Google Scholar 

  9. 9.

    Pennock, N. D., Martinson, H. A., Guo, Q., Betts, C. B., Jindal, S., Tsujikawa, T. et al. Ibuprofen supports macrophage differentiation, T cell recruitment, and tumor suppression in a model of postpartum breast cancer. J. Immunother. Cancer 6, 98 (2018).

    Article  Google Scholar 

  10. 10.

    Liu, X., Wang, X., Zhao, W., Wei, L., Zhang, P. & Han, F. A prospective, randomized, double-blind, placebo-controlled trial of acute postoperative pain treatment using opioid analgesics with intravenous ibuprofen after radical cervical cancer surgery. Sci. Rep. 8, 10161 (2018).

    Article  Google Scholar 

  11. 11.

    Akrami, H., Moradi, B., Borzabadi Farahani, D. & Mehdizadeh, K. Ibuprofen reduces cell proliferation through inhibiting Wnt/beta catenin signaling pathway in gastric cancer stem cells. Cell Biol. Int. 42, 949–958 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Stabile, L. P., Farooqui, M., Kanterewicz, B., Abberbock, S., Kurland, B. F., Diergaarde, B. et al. Preclinical evidence for combined use of aromatase inhibitors and NSAIDs as preventive agents of tobacco-induced lung cancer. J. Thorac. Oncol. 13, 399–412 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Ait Ouakrim, D., Dashti, S. G., Chau, R., Buchanan, D. D., Clendenning, M., Rosty, C. et al. Aspirin, ibuprofen, and the risk of colorectal cancer in lynch syndrome. J. Natl Cancer Inst. 107, 9 (2015).

    Article  Google Scholar 

  14. 14.

    Becker, C., Wilson, J. C., Jick, S. S. & Meier, C. R. Non-steroidal anti-inflammatory drugs and the risk of head and neck cancer: a case-control analysis. Int. J. Cancer 137, 2424–2431 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Khan, M. N. & Lee, Y. S. Cyclooxygenase inhibitors: scope of their use and development in cancer chemotherapy. Med. Res. Rev. 31, 161–201 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Qadri, S. S., Wang, J. H., Redmond, K. C., AF, O. D., Aherne, T. & Redmond, H. P. The role of COX-2 inhibitors in lung cancer. Ann. Thorac. Surg. 74, 1648–1652 (2002).

    Article  Google Scholar 

  17. 17.

    Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Zou, C. & Mallampalli, R. K. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. Biochim Biophys. Acta 1843, 694–702 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Kondo, Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med. J. 50, 455–463 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    Greer, E. L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Guo, Y., Liu, Y., Zhang, C., Su, Z. Y., Li, W., Huang, M. T. et al. The epigenetic effects of aspirin: the modification of histone H3 lysine 27 acetylation in the prevention of colon carcinogenesis in azoxymethane- and dextran sulfate sodium-treated CF-1 mice. Carcinogenesis 37, 616–624 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Son, D. S., Wilson, A. J., Parl, A. K. & Khabele, D. The effects of the histone deacetylase inhibitor romidepsin (FK228) are enhanced by aspirin (ASA) in COX-1 positive ovarian cancer cells through augmentation of p21. Cancer Biol. Ther. 9, 928–935 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    Chen, Z., Li, W., Qiu, F., Huang, Q., Jiang, Z., Ye, J. et al. Aspirin cooperates with p300 to activate the acetylation of H3K9 and promote FasL-mediated apoptosis of cancer stem-like cells in colorectal cancer. Theranostics 8, 4447–4461 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Zhao, S., Shen, W., Yu, J. & Wang, L. TBX21 predicts prognosis of patients and drives cancer stem cell maintenance via the TBX21-IL-4 pathway in lung adenocarcinoma. Stem Cell Res. Ther. 9, 89 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Shen, W., Zhang, X., Du, R., Fan, Y., Luo, D., Bao, Y. et al. ICAM3 mediates tumor metastasis via a LFA-1-ICAM3-ERM dependent manner. Biochim Biophys. Acta 1864, 2566–2578 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Shen, W., Chang, A., Wang, J., Zhou, W., Gao, R., Li, J. et al. TIFA, an inflammatory signaling adaptor, is tumor suppressive for liver cancer. Oncogenesis 4, e173 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Shen, W., Du, R., Li, J., Luo, X., Zhao, S., Chang, A. et al. TIFA suppresses hepatocellular carcinoma progression via MALT1-dependent and -independent signaling pathways. Signal Transduct. Target Ther. 1, 16013 (2016).

    Article  Google Scholar 

  28. 28.

    Luo, D. H., Zhang, X. Y., Du, R. L., Gao, W. J., Luo, N., Zhao, S. T. et al. Low dosage of arsenic trioxide (As2O3) inhibits angiogenesis in epithelial ovarian cancer without cell apoptosis. J. Biol. Inorg. Chem. 23, 939–947 (2018).

    CAS  Article  Google Scholar 

  29. 29.

    Moon, H. J., Kim, H. B., Lee, S. H., Jeun, S. E., Kang, C. D. & Kim, S. H. Sensitization of multidrug-resistant cancer cells to Hsp90 inhibitors by NSAIDs-induced apoptotic and autophagic cell death. Oncotarget 9, 11303–11321 (2018).

    Article  Google Scholar 

  30. 30.

    Dandah, O., Najafzadeh, M., Isreb, M., Linforth, R., Tait, C., Baumgartner, A. et al. Aspirin and ibuprofen, in bulk and nanoforms: Effects on DNA damage in peripheral lymphocytes from breast cancer patients and healthy individuals. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 826, 41–46 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Shi, J., Leng, W., Zhao, L., Xu, C., Wang, J., Chen, X. et al. Nonsteroidal anti-inflammatory drugs using and risk of head and neck cancer: a dose-response meta analysis of prospective cohort studies. Oncotarget 8, 99066–99074 (2017).

    Article  Google Scholar 

  32. 32.

    Tran, B. N., Nguyen, H. T., Kim, J. O., Yong, C. S. & Nguyen, C. N. Combination of a chemopreventive agent and paclitaxel in CD44-targeted hybrid nanoparticles for breast cancer treatment. Arch. Pharm. Res. 40, 1420–1432 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Lima, R. A., Candido, E. B., de Melo, F. P., Piedade, J. B., Vidigal, P. V., Silva, L. M. et al. Gene expression profile of ABC transporters and cytotoxic effect of ibuprofen and acetaminophen in an epithelial ovarian cancer cell line in vitro. Rev. Bras. Ginecol. Obstet. 37, 283–290 (2015).

    Article  Google Scholar 

  34. 34.

    Simmons, D. L., Botting, R. M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharm. Rev. 56, 387–437 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Mandal, P., Kundu, B. K., Vyas, K., Sabu, V., Helen, A., Dhankhar, S. S. et al. Ruthenium(ii) arene NSAID complexes: inhibition of cyclooxygenase and antiproliferative activity against cancer cell lines. Dalton Trans. 47, 517–527 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Afzal, M., Kazmi, I., Khan, R., Rana, P., Kumar, V., Al-Abbasi, F. A. et al. Thiamine potentiates chemoprotective effects of ibuprofen in DEN induced hepatic cancer via alteration of oxidative stress and inflammatory mechanism. Arch. Biochem. Biophys. 623–624, 58–63 (2017).

    Article  Google Scholar 

  37. 37.

    Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell. 21, 283–296 (2012).

    CAS  Article  Google Scholar 

  38. 38.

    Nassar, D. & Blanpain, C. Cancer stem cells: basic concepts and therapeutic implications. Annu. Rev. Pathol. 11, 47–76 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  Article  Google Scholar 

Download references

Author information




S.W.Z., Z.X.Y. and D.R.L. designed and performed the experiments. Z.X.Y., D.R.L., G.W.J. and W.J. analysed the data. Y.W.C. and B.Y.H. provided the materials or methods for the experiment, and helped S.W.Z. to prepare the papers. L.N. and L.J.J. helped to group the figures and repaired the papers.

Corresponding authors

Correspondence to Wenzhi Shen or Na Luo or Jianjun Li.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were performed in accordance with Nankai University and Jining Medical University Animal Welfare Guidelines.

Consent to publish

Not applicable.

Data availability

The data are available for all study authors. The data sets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by the National Natural Science Foundation of China (No. 81802466 to Wenzhi Shen), Faculty Start-up Funds of Jining Medical University (No. 600640001 to Wenzhi Shen), Shandong Medical Science and Technology Program (No. 2017WS144 to Wenzhi Shen) and Shandong Provincial Natural Science Foundation (No. ZR2019BH003 to Wenzhi Shen).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhang, X., Du, R. et al. Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br J Cancer 123, 730–741 (2020).

Download citation

Further reading


Quick links