Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular and Molecular Biology

Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion



Indoleamine 2,3-dioxygenase (IDO), the first step in the kynurenine pathway (KP), is upregulated in some cancers and represents an attractive therapeutic target given its role in tumour immune evasion. However, the recent failure of an IDO inhibitor in a late phase trial raises questions about this strategy.


Matched renal cell carcinoma (RCC) and normal kidney tissues were subject to proteomic profiling. Tissue immunohistochemistry and gene expression data were used to validate findings. Phenotypic effects of loss/gain of expression were examined in vitro.


Quinolate phosphoribosyltransferase (QPRT), the final and rate-limiting enzyme in the KP, was identified as being downregulated in RCC. Loss of QPRT expression led to increased potential for anchorage-independent growth. Gene expression, mass spectrometry (clear cell and chromophobe RCC) and tissue immunohistochemistry (clear cell, papillary and chromophobe), confirmed loss or decreased expression of QPRT and showed downregulation of other KP enzymes, including kynurenine 3-monoxygenase (KMO) and 3-hydroxyanthranilate-3,4-dioxygenase (HAAO), with a concomitant maintenance or upregulation of nicotinamide phosphoribosyltransferase (NAMPT), the key enzyme in the NAD+ salvage pathway.


Widespread dysregulation of the KP is common in RCC and is likely to contribute to tumour immune evasion, carrying implications for effective therapeutic targeting of this critical pathway

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: QPRT expression is lost in clear cell RCC (ccRCC).
Fig. 2: Loss of QPRT expression increases anchorage-independent growth.
Fig. 3: Multiple proteins in the kynurenine pathway are dysregulated in RCC.
Fig. 4: Gene expression of QPRT, KMO, HAAO and NAMPT is similarly dysregulated in clear cell RCC.
Fig. 5: Alterations to the kynurenine pathway in RCC.
Fig. 6: Immunohistochemical analysis of kynurenine pathway enzymes.


  1. 1.

    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Smittenaar, C. R., Petersen, K. A., Stewart, K. & Moitt, N. Cancer incidence and mortality projections in the UK until 2035. Br. J. Cancer 115, 1147–1155 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ricketts, C. J., De Cubas, A. A., Fan, H., Smith, C. C., Lang, M., Reznik, E. et al. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep. 23, 3698 (2018).

    CAS  PubMed  Google Scholar 

  4. 4.

    Motzer, R. J., Escudier, B., McDermott, D. F., George, S., Hammers, H. J., Srinivas, S. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Stewart, G. D., De Santis, M., Escudier, B., Powles, T. & Sonpavde, G. Immunotherapy for renal cancer: sequencing and combinations. Eur. Urol. Focus 2, 582–588 (2016).

    PubMed  Google Scholar 

  6. 6.

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  7. 7.

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    CAS  PubMed  Google Scholar 

  8. 8.

    Unwin, R. D., Craven, R. A., Harnden, P., Hanrahan, S., Totty, N., Knowles, M. et al. Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3, 1620–1632 (2003).

    CAS  PubMed  Google Scholar 

  9. 9.

    Srinivasan, R., Ricketts, C. J., Sourbier, C. & Linehan, W. M. New strategies in renal cell carcinoma: targeting the genetic and metabolic basis of disease. Clin. Cancer Res. 21, 10–17 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Badawy, A. A. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res. 10, 1178646917691938 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Munn, D. H., Zhou, M., Attwood, J. T., Bondarev, I., Conway, S. J., Marshall, B. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    CAS  PubMed  Google Scholar 

  12. 12.

    Prendergast, G. C. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27, 3889–3900 (2008).

    CAS  PubMed  Google Scholar 

  13. 13.

    Platten, M., Wick, W. & Van den Eynde, B. J. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 72, 5435–5440 (2012).

    CAS  PubMed  Google Scholar 

  14. 14.

    Long, G. V., Dummer, R., Hamid, O., Gajewski, T. F., Caglevic, C., Dalle, S. et al. Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol. 20, 1083–1097 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Jung, K. H., LoRusso, P., Burris, H., Gordon, M., Bang, Y. J., Hellmann, M. D. et al. Phase I Study of the indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor navoximod (GDC-0919) administered with PD-L1 inhibitor (Atezolizumab) in advanced solid tumors. Clin. Cancer Res. 25, 3220–3228 (2019).

    PubMed  Google Scholar 

  16. 16.

    Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G. Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nat. Med. 1, 822–826 (1995).

    CAS  PubMed  Google Scholar 

  17. 17.

    Zatyka, M., Morrissey, C., Kuzmin, I., Lerman, M. I., Latif, F., Richards, F. M. et al. Genetic and functional analysis of the von Hippel-Lindau (VHL) tumour suppressor gene promoter. J. Med. Genet. 39, 463–472 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Clifford, S. C., Cockman, M. E., Smallwood, A. C., Mole, D. R., Woodward, E. R., Maxwell, P. H. et al. Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    CAS  PubMed  Google Scholar 

  19. 19.

    Craven, R. A., Hanrahan, S., Totty, N., Harnden, P., Stanley, A. J., Maher, E. R. et al. Proteomic identification of a role for the von Hippel Lindau tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics 6, 3880–3893 (2006).

    CAS  PubMed  Google Scholar 

  20. 20.

    Craven, R. A., Totty, N., Harnden, P., Selby, P. J. & Banks, R. E. Laser capture microdissection and two-dimensional polyacrylamide gel electrophoresis: evaluation of tissue preparation and sample limitations. Am. J. Pathol. 160, 815–822 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Yan, J. X., Wait, R., Berkelman, T., Harry, R. A., Westbrook, J. A., Wheeler, C. H. et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666–3672 (2000).

    CAS  PubMed  Google Scholar 

  22. 22.

    Craven, R. A., Stanley, A. J., Hanrahan, S., Dods, J., Unwin, R., Totty, N. et al. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics 6, 2853–2864 (2006).

    CAS  PubMed  Google Scholar 

  23. 23.

    Okuno, E. & Schwarcz, R. Purification of quinolinic acid phosphoribosyltransferase from rat liver and brain. Biochim. Biophys. Acta 841, 112–119 (1985).

    CAS  PubMed  Google Scholar 

  24. 24.

    Aggelis, V., Craven, R. A., Peng, J., Harnden, P., Cairns, D. A., Maher, E. R. et al. Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labelling of a von Hippel-Lindau transfectant cell line model. Proteomics 9, 2118–2130 (2009).

    CAS  PubMed  Google Scholar 

  25. 25.

    Ferguson, R. E., Carroll, H. P., Harris, A., Maher, E. R., Selby, P. J. & Banks, R. E. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).

    CAS  PubMed  Google Scholar 

  26. 26.

    Guidetti, P., Luthi-Carter, R. E., Augood, S. J. & Schwarcz, R. Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol. Dis. 17, 455–461 (2004).

    CAS  PubMed  Google Scholar 

  27. 27.

    Ross, R. L., Askham, J. M. & Knowles, M. A. PIK3CA mutation spectrum in urothelial carcinoma reflects cell context-dependent signaling and phenotypic outputs. Oncogene 32, 768–776 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Zougman, A., Selby, P. J. & Banks, R. E. Suspension trapping (STrap) sample preparation method for bottom-up proteomics analysis. Proteomics 14, 1006–1000 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Zougman, A. & Banks, R. E. C-STrap sample preparation method—in-situ cysteinyl peptide capture for bottom-up proteomics analysis in the STrap format. PLoS ONE 10, e0138775 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Scelo, G., Riazalhosseini, Y., Greger, L., Letourneau, L., Gonzalez-Porta, M., Wozniak, M. B. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 5, 5135 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    TCGA Research Network.

  32. 32.

    Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269–1274 (2003).

    CAS  PubMed  Google Scholar 

  33. 33.

    Riesenberg, R., Weiler, C., Spring, O., Eder, M., Buchner, A., Popp, T. et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin. Cancer Res. 13, 6993–7002 (2007).

    CAS  PubMed  Google Scholar 

  34. 34.

    Lucarelli, G., Rutigliano, M., Ferro, M., Giglio, A., Intini, A., Triggiano, F. et al. Activation of the kynurenine pathway predicts poor outcome in patients with clear cell renal cell carcinoma. Urol. Oncol. 35, 461.e15–461.e27 (2017).

    CAS  Google Scholar 

  35. 35.

    Theate, I., van Baren, N., Pilotte, L., Moulin, P., Larrieu, P., Renauld, J. C. et al. Extensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissues. Cancer Immunol. Res. 3, 161–172 (2015).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kim, K., Taylor, S. L., Ganti, S., Guo, L., Osier, M. V. & Weiss, R. H. Urine metabolomic analysis identifies potential biomarkers and pathogenic pathways in kidney cancer. OMICS 15, 293–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Wettersten, H. I., Hakimi, A. A., Morin, D., Bianchi, C., Johnstone, M. E., Donohoe, D. R. et al. Grade-dependent metabolic reprogramming in kidney cancer revealed by combined proteomics and metabolomics analysis. Cancer Res. 75, 2541–2552 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Thaker, A. I., Rao, M. S., Bishnupuri, K. S., Kerr, T. A., Foster, L., Marinshaw, J. M. et al. IDO1 metabolites activate beta-catenin signaling to promote cancer cell proliferation and colon tumorigenesis in mice. Gastroenterology 145, 416.e4–425.e4 (2013).

    Google Scholar 

  39. 39.

    Trott, J. F., Kim, J., Abu Aboud, O., Wettersten, H., Stewart, B., Berryhill, G. et al. Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer. Oncotarget 7, 66540–66557 (2016).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Heyes, M. P., Saito, K., Crowley, J. S., Davis, L. E., Demitrack, M. A., Der, M. et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115(Pt 5), 1249–1273 (1992).

    PubMed  Google Scholar 

  41. 41.

    Hogan-Cann, A. D. & Anderson, C. M. Physiological roles of non-neuronal NMDA receptors. Trends Pharmacol. Sci. 37, 750–767 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Fallarino, F., Grohmann, U., Vacca, C., Orabona, C., Spreca, A., Fioretti, M. C. et al. T cell apoptosis by kynurenines. Adv. Exp. Med. Biol. 527, 183–190 (2003).

    CAS  PubMed  Google Scholar 

  43. 43.

    Frumento, G., Rotondo, R., Tonetti, M., Damonte, G., Benatti, U. & Ferrara, G. B. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Sahm, F., Oezen, I., Opitz, C. A., Radlwimmer, B., von Deimling, A., Ahrendt, T. et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 73, 3225–3234 (2013).

    CAS  PubMed  Google Scholar 

  45. 45.

    Guo, J., Lam, L. T., Longenecker, K. L., Bui, M. H., Idler, K. B., Glaser, K. B. et al. Identification of novel resistance mechanisms to NAMPT inhibition via the de novo NAD(+) biosynthesis pathway and NAMPT mutation. Biochem. Biophys. Res. Commun. 491, 681–686 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Jin, H., Zhang, Y., You, H., Tao, X., Wang, C., Jin, G. et al. Prognostic significance of kynurenine 3-monooxygenase and effects on proliferation, migration, and invasion of human hepatocellular carcinoma. Sci. Rep. 5, 10466 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ganti, S., Taylor, S. L., Abu Aboud, O., Yang, J., Evans, C., Osier, M. V. et al. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis. Cancer Res. 72, 3471–3479 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Schaeffeler, E., Buttner, F., Reustle, A., Klumpp, V., Winter, S., Rausch, S. et al. Metabolic and lipidomic reprogramming in renal cell carcinoma subtypes reflects regions of tumor origin. Eur. Urol. Focus 5, 608–618 (2019).

  49. 49.

    Opitz, C. A., Litzenburger, U. M., Sahm, F., Ott, M., Tritschler, I., Trump, S. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Chiarugi, A., Dolle, C., Felici, R. & Ziegler, M. The NAD metabolome-a key determinant of cancer cell biology. Nat. Rev. Cancer 12, 741–752 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Kennedy, B. E., Sharif, T., Martell, E., Dai, C., Kim, Y., Lee, P. W. et al. NAD(+) salvage pathway in cancer metabolism and therapy. Pharmacol. Res. 114, 274–283 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Shackelford, R. E., Abdulsattar, J., Wei, E. X., Cotelingam, J., Coppola, D. & Herrera, G. A. Increased nicotinamide phosphoribosyltransferase and cystathionine-beta-synthase in renal oncocytomas, renal urothelial carcinoma, and renal clear cell carcinoma. Anticancer Res. 37, 3423–3427 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Abu Aboud, O., Chen, C. H., Senapedis, W., Baloglu, E., Argueta, C. & Weiss, R. H. Dual and specific inhibition of NAMPT and PAK4 By KPT-9274 decreases kidney cancer growth. Mol. Cancer Ther. 15, 2119–2129 (2016).

    CAS  PubMed  Google Scholar 

Download references


We are grateful to the patients for donating samples and the staff of the Leeds Biobanking and Sample Processing Lab and Leeds Multidisciplinary RTB for samples and Anke Bruning-Richardson for technical support with the TMA. We thank the staff of the oncology and urology departments of Leeds Teaching Hospitals NHS Trust who assisted in patient recruitment, Professor W Kaelin for the 786-VHL cell lines, Robert Schwarz for providing antibody to QPRT, Darren Tomlinson for providing the parental QPRT vector, Anthea Stanley for laboratory support and Nick Totty and Sarah Hanrahan for the sequencing of the 2D-PAGE proteins.

Author information




R.E.B., P.S.J. and N.S.V. supervised the study with A.H. and E.R.M. also contributing to study design; R.A.C. and R.E.B. conducted the initial 2D-PAGE work; J. Brown facilitated access to tissue specimens and clinical data; K.R.D., S.T., R.S. and A.Z. conducted the mass spectrometric studies; K.R.D., M.K. and J. Burns conducted and oversaw phenotypic studies; T.F. performed the assay for tissue QUIN concentrations; M.S. and H.S. performed the IHC; S.B. and M.M. provided expert pathological review; L.F., A.B., Y.R., M.L. and G.S. provided transcriptomic data sets; N.H. analysed the data and, together with R.A.C., N.S.V. and R.E.B., drafted the manuscript; all authors provided comments on the manuscript and had final approval of the submitted version.

Corresponding author

Correspondence to Naveen S. Vasudev.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Leeds East Research Ethics Committee (ethical approval 15/YH/0080) and performed in accordance with the Declaration of Helsinki. All samples were obtained with the patients’ informed consent.

Consent for publication

No individually identifiable data are presented.

Data availability

RNA-seq data, generated through our ICGC CAGEKID study, has been deposited in a public repository as described elsewhere: Scelo et al.30 Proteomic data sets are available on request.

Competing interests

A.H. is Editor-in-Chief of British Journal of Cancer. R.S.’s current role is Publishing Editor for British Journal of Cancer.

Funding information

This work was supported by funding from the University of Leeds and Cancer Research UK. E.R.M. is funded by the European Research Council (Advanced Researcher Award), NIHR (Senior Investigator Award and Cambridge NIHR Biomedical Research Centre) and Cancer Research UK Cambridge Cancer Centre. The views expressed are those of the authors and not necessarily those of the NHS or Department of Health. The University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hornigold, N., Dunn, K.R., Craven, R.A. et al. Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion. Br J Cancer 123, 137–147 (2020).

Download citation

Further reading


Quick links