Cellular and Molecular Biology

Differential prognostic impact of CD8+ T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer



The aim of the study was to determine the human leucocyte antigen class-I (HLA-I), programmed death-ligand 1 (PD-L1) expression and tumour-infiltrating lymphocytes (TILs) of microsatellite instability-high gastric cancer.


The HLA-I expression type was determined by immunohistochemistry of HLA-A, HLA-B, HLA-C and β2-microglobulin in the centre of the tumour (CT) and in the invasive margin (IM) of samples from 293 patients (total loss vs. preserved type). PD-L1 expression and TIL density was examined immunohistochemically. HLA-I genotyping was also performed.


The expression loss of the HLA-I molecules was significantly associated with low TIL density. According to survival analyses, the HLA-I expression type and PD-L1 positivity were not independent prognostic factors. The TIL density had no prognostic implication when survival analysis was performed for the whole patient group; however, high CD8+ TIL infiltration was significantly associated with good prognosis in only HLA-I-preserved-type/PD-L1-positive group (p = 0.034). The homozygosity of the HLA-I allele was more frequently observed in the total loss type group.


We confirmed differential prognostic implication of CD8+ TILs according to the HLA-I and PD-L1 expression. Determination of the HLA-I expression could be helpful to select patients who would benefit from anti-PD-1/PD-L1 therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Immunohistochemistry results of a representative case.
Fig. 2: Assessment of HLA-I expression type.
Fig. 3: Differentiated tumour-infiltrating lymphocytes (TILs) densities according to HLA-I expression type and PD-L1 CPS status.
Fig. 4: Differential prognostic implication of CD8+ TIL according to HLA-I expression type and PD-L1 CPS status.
Fig. 5: HLA-I genotyping results for 34 patients using matched blood sample.


  1. 1.

    Crumley, S., Kurnit, K., Hudgens, C., Fellman, B., Tetzlaff, M. T. & Broaddus R. Identification of a subset of microsatellite-stable endometrial carcinoma with high PD-L1 and CD8+ lymphocytes. Mod. Pathol. https://doi.org/10.1038/s41379-018-0148-x (2018).

  2. 2.

    Hou, Y., Nitta, H., Wei, L., Banks, P. M., Lustberg, M., Wesolowski, R. et al. PD-L1 expression and CD8-positive T cells are associated with favorable survival in HER2-positive invasive breast cancer. Breast J. https://doi.org/10.1111/tbj.13112 (2018).

  3. 3.

    Seo, A. N., Lee, H. J., Kim, E. J., Kim, H. J., Jang, M. H., Lee, H. E. et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br. J. cancer 109, 2705–2713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Houghton, A. N. & Guevara-Patino, J. A. Immune recognition of self in immunity against cancer. J. Clin. Invest. 114, 468–471 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Parham, P. & Ohta, T. Population biology of antigen presentation by MHC class I molecules. Science (New York, N.Y.) 272, 67–74 (1996).

    CAS  Google Scholar 

  6. 6.

    Garrido, F. & Algarra, I. MHC antigens and tumor escape from immune surveillance. Adv. Cancer Res. 83, 117–158 (2001).

    CAS  PubMed  Google Scholar 

  7. 7.

    Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science (New York, N.Y.) 331, 1565–1570 (2011).

    CAS  Google Scholar 

  8. 8.

    Seliger, B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 88, 213–220 (2016).

    CAS  PubMed  Google Scholar 

  9. 9.

    Lee, M., Song, I. H., Heo, S. H., Kim, Y. A., Park, I. A., Bang, W. S. et al. Expression of immunoproteasome subunit LMP7 in breast cancer and its association with immune-related markers. Cancer Res. Treat. 51, 80–89 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    del Campo, A. B., Kyte, J. A., Carretero, J., Zinchencko, S., Mendez, R., Gonzalez-Aseguinolaza, G. et al. Immune escape of cancer cells with beta2-microglobulin loss over the course of metastatic melanoma. Int. J. Cancer 134, 102–113 (2014).

    PubMed  Google Scholar 

  11. 11.

    Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J., Robert, L. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515, 568–571 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zaretsky, J. M., Garcia-Diaz, A., Shin, D. S., Escuin-Ordinas, H., Hugo, W., Hu-Lieskovan, S. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375, 819–829 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Chowell, D., Morris, L. G. T., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science (New York, N.Y.) 359, 582–587 (2018).

    CAS  Google Scholar 

  15. 15.

    Network CGAR. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Google Scholar 

  16. 16.

    Lee, H. S., Kim, W. H., Kwak, Y., Koh, J., Bae, J. M., Kim, K. M. et al. Molecular testing for gastrointestinal cancer. J. Pathol. Transl. Med. 51, 103–121 (2017).

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Verdegaal, E. M., de Miranda, N. F., Visser, M., Harryvan, T., van Buuren, M. M., Andersen, R. S. et al. Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature 536, 91–95 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Liu, Y., Sethi, N. S., Hinoue, T., Schneider, B. G., Cherniack, A. D., Sanchez-Vega, F. et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33, 721–735 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Fuchs, C. S., Doi, T., Jang, R. W., Muro, K., Satoh, T., Machado, M. et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 4, e180013 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Fashoyin-Aje, L., Donoghue, M., Chen, H., He, K., Veeraraghavan, J., Goldberg, K. B. et al. FDA approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist 24, 103–109 (2019).

    CAS  PubMed  Google Scholar 

  21. 21.

    Oh, J. R., Kim, D. W., Lee, H. S., Lee, H. E., Lee, S. M., Jang, J. H. et al. Microsatellite instability testing in Korean patients with colorectal cancer. Fam. Cancer 11, 459–466 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Lee, H. S. & Kim, W. H. Tissue array methods for high-throughput clinicopathologic research. Cancer Res. Treat. 38, 1–6 (2006).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Cabrera, T., Lopez-Nevot, M. A., Gaforio, J. J., Ruiz-Cabello, F. & Garrido, F. Analysis of HLA expression in human tumor tissues. Cancer Immunol. Immunother. 52, 1–9 (2003).

    CAS  PubMed  Google Scholar 

  24. 24.

    Kloor, M., Becker, C., Benner, A., Woerner, S. M., Gebert, J., Ferrone, S. et al. Immunoselective pressure and human leukocyte antigen class I antigen machinery defects in microsatellite unstable colorectal cancers. Cancer Res. 65, 6418–6424 (2005).

    CAS  PubMed  Google Scholar 

  25. 25.

    Dierssen, J. W., de Miranda, N. F., Ferrone, S., van Puijenbroek, M., Cornelisse, C. J., Fleuren, G. J. et al. HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer 7, 33 (2007).

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Snahnicanova, Z., Kasubova, I., Kalman, M., Grendar, M., Mikolajcik, P., Gabonova E. et al. Genetic and epigenetic analysis of the beta-2-microglobulin gene in microsatellite instable colorectal cancer. Clin. Exp. Med. https://doi.org/10.1007/s10238-019-00601-7 (2019).

  27. 27.

    Ichinokawa, K., Nakanishi, Y., Hida, Y., Tsuchikawa, T., Kato, T., Itoh, T. et al. Downregulated expression of human leukocyte antigen class I heavy chain is associated with poor prognosis in non-small-cell lung cancer. Oncol. Lett. 18, 117–126 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kaneko, K., Ishigami, S., Kijima, Y., Funasako, Y., Hirata, M., Okumura, H. et al. Clinical implication of HLA class I expression in breast cancer. BMC Cancer 11, 454 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Tanaka, K., Tsuchikawa, T., Miyamoto, M., Maki, T., Ichinokawa, M., Kubota, K. C. et al. Down-regulation of human leukocyte antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. Int. J. Oncol. 40, 965–974 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Yuan, J., Liu, S., Yu, Q., Lin, Y., Bi, Y., Wang, Y. et al. Down-regulation of human leukocyte antigen class I (HLA-I) is associated with poor prognosis in patients with clear cell renal cell carcinoma. Acta Histochem. 115, 470–474 (2013).

    CAS  PubMed  Google Scholar 

  31. 31.

    Ishigami, S., Natsugoe, S., Nakajo, A., Arigami, T., Kitazono, M., Okumura, H. et al. HLA-class I expression in gastric cancer. J. Surg. Oncol. 97, 605–608 (2008).

    CAS  PubMed  Google Scholar 

  32. 32.

    Park, Y., Koh, J., Kwak, Y., Ahn, S. H., Park, D. J., Kim, H. H. et al. Clinicopathologic significance of human leukocyte antigen class I expression in patients with stage II and III gastric cancer. Cancer Immunol. Immunother. 68, 1779–1790 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Garrido, F., Ruiz-Cabello, F., Cabrera, T., Perez-Villar, J. J., Lopez-Botet, M., Duggan-Keen, M. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today 18, 89–95 (1997).

    CAS  PubMed  Google Scholar 

  34. 34.

    Perea, F., Bernal, M., Sanchez-Palencia, A., Carretero, J., Torres, C., Bayarri, C. et al. The absence of HLA class I expression in non-small cell lung cancer correlates with the tumor tissue structure and the pattern of T cell infiltration. Int. J. Cancer 140, 888–899 (2017).

    CAS  PubMed  Google Scholar 

  35. 35.

    Aust, S., Felix, S., Auer, K., Bachmayr-Heyda, A., Kenner, L., Dekan, S. et al. Absence of PD-L1 on tumor cells is associated with reduced MHC I expression and PD-L1 expression increases in recurrent serous ovarian cancer. Sci. Rep. 7, 42929 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chung, Y. R., Kim, H. J., Jang, M. H. & Park, S. Y. Prognostic value of tumor infiltrating lymphocyte subsets in breast cancer depends on hormone receptor status. Breast Cancer Res. Treat. 161, 409–420 (2017).

    CAS  PubMed  Google Scholar 

  37. 37.

    Park, C., Cho, J., Lee, J., Kang, S. Y., An, J. Y., Choi, M. G. et al. Host immune response index in gastric cancer identified by comprehensive analyses of tumor immunity. Oncoimmunology 6, e1356150 (2017).

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Kim, K. J., Lee, K. S., Cho, H. J., Kim, Y. H., Yang, H. K., Kim, W. H. et al. Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum. Pathol. 45, 285–293 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Taube, J. M., Young, G. D., McMiller, T. L., Chen, S., Salas, J. T., Pritchard, T. S. et al. Differential expression of immune-regulatory genes associated with PD-L1 display in melanoma: implications for PD-1 pathway blockade. Clin. Cancer Res. 21, 3969–3976 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ock, C. Y., Keam, B., Kim, S., Lee, J. S., Kim, M., Kim, T. M. et al. Pan-cancer immunogenomic perspective on the tumor microenvironment based on PD-L1 and CD8 T-cell infiltration. Clin. Cancer Res. 22, 2261–2270 (2016).

    CAS  PubMed  Google Scholar 

  42. 42.

    Koh, J., Ock, C. Y., Kim, J. W., Nam, S. K., Kwak, Y., Yun, S. et al. Clinicopathologic implications of immune classification by PD-L1 expression and CD8-positive tumor-infiltrating lymphocytes in stage II and III gastric cancer patients. Oncotarget 8, 26356–26367 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Gettinger, S., Choi, J., Hastings, K., Truini, A., Datar, I., Sowell, R. et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 7, 1420–1435 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information




Y.K. analysed overall data and wrote this paper. J.K. helped reading of IHC and the data analysis. Y.P. helped reading of IHC and the data analysis. Y.J.H. performed the HLA genotyping analysis and helped the data analysis. K.U.P. helped the HLA genotyping analysis and contributed data collection. H.-H.K. helped the collection of clinical data. D.J.P. collected the clinical data. S.-H.A. helped the collection of clinical data. W.H.K. contributed the experiment and data analysis. H.S.L. collected all clinicopathologic data and designed this study.

Corresponding author

Correspondence to Hye Seung Lee.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of Seoul National University Bundang Hospital (reference: B-1702/383-301) and was carried out in accordance with the recommendations of the Declaration of Helsinki for biomedical research involving human subjects. The Institutional Review Board waived the need for written informed consent under the condition of anonymisation and no additional intervention to the participants.

Consent to publish

Not applicable.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare no competing interests.

Funding information

This research was supported by a Basic Science Research Programme through the National Research Foundation (NRF) funded by the Ministry of Education, Republic of Korea (NRF-2016R1D1A1B03931744).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwak, Y., Koh, J., Park, Y. et al. Differential prognostic impact of CD8+ T cells based on human leucocyte antigen I and PD-L1 expression in microsatellite-unstable gastric cancer. Br J Cancer 122, 1399–1408 (2020). https://doi.org/10.1038/s41416-020-0793-y

Download citation