Translational Therapeutics

miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells



It is important to establish cancer stem cell (CSC)-targeted therapies to eradicate cancer. As it is a CSC marker, we focused on Kruppel-like factor 5 (KLF5) in this study.


We searched for candidate microRNAs (miRNAs) that inhibited KLF5 expression by in silico analyses and screened them in colon cancer cell lines.


We identified one promising miRNA, miR-4711-5p, that downregulated KLF5 expression by direct binding. This miRNA suppressed cell proliferation, migration and invasion ability, as well as stemness, including decreased stem cell marker expression, reactive oxygen species activity and sphere formation ability. MiR-4711-5p inhibited the growth of DLD-1 xenografts in nude mice with no adverse effects. We found that miR-4711-5p provoked G1 arrest, which could be attributed to direct binding of miR-4711-5p to TFDP1 (a heterodimeric partner of the E2F family). Our findings also suggested that direct binding of miR-4711-5p to MDM2 could upregulate wild-type p53, leading to strong induction of apoptosis. Finally, we found that miR-4711-5p had a potent tumour-suppressive effect compared with a putative anti-oncomiR, miR-34a, in tumour cell cultures derived from five patients with colorectal cancer.


Our data suggest that miR-4711-5p could be a promising target for CSC therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Identification of the KLF5-targeting miRNA miR-4711-5p.
Fig. 2: In CRC cell lines, miR-4711-5p exerted various anti-tumour effects.
Fig. 3: MiR-4711-5p suppressed the stemness of DLD-1 and HCT116 cells.
Fig. 4: MiR-4711-5p inhibited the G1-to-S phase transition in the cell cycle.
Fig. 5: Anti-tumour effects and safety in vivo. Systemic administration of formulated sCA-miR-4711-5p inhibited tumour growth.
Fig. 6: Anti-tumour effects in CRC cell lines and patient-derived tumor cells.


  1. 1.

    Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J. & Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

  2. 2.

    Colvin, H., Mizushima, T., Eguchi, H., Takiguchi, S., Doki, Y. & Mori, M. Gastroenterological surgery in Japan: the past, the present and the future. Ann. Gastroenterol. Surg. 1, 5–10 (2017).

  3. 3.

    Brenner, H., Kloor, M. & Pox, C. P. Colorectal cancer. Lancet 383, 1490–1502 (2014).

  4. 4.

    Lobo, N. A., Shimono, Y., Qian, D. & Clarke, M. F. The biology of cancer stem cells. Annu Rev. Cell Dev. Biol. 23, 675–699 (2007).

  5. 5.

    Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H., Jones, D. L. et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

  6. 6.

    Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

  7. 7.

    Sakaguchi, M., Hisamori, S., Oshima, N., Sato, F., Shimono, Y. & Sakai, Y. miR-137 regulates the tumourigenicity of colon cancer stem cells through the inhibition of DCLK1. Mol. Cancer Res. 14, 354–362 (2016).

  8. 8.

    McConnell, B. B. & Yang, V. W. Mammalian Krüppel-like factors in health and diseases. Physiol. Rev. 90, 1337–1381 (2010).

  9. 9.

    R. Nagai, S. L. Friedman, M. Kasuga (eds). The biology of Krüppel-like factors, 1st edn. (Springer Japan, Tokyo, 2009).

  10. 10.

    Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

  11. 11.

    Ema, M., Mori, D., Niwa, H., Hasegawa, Y., Yamanaka, Y., Hitoshi, S. et al. Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3, 555–567 (2008).

  12. 12.

    McConnell, B. B., Ghaleb, A. M., Nandan, M. O. & Yang, V. W. The diverse functions of Krüppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29, 549–557 (2007).

  13. 13.

    Nakaya, T., Ogawa, S., Manabe, I., Tanaka, M., Sanada, M., Sato, T. et al. KLF5 regulates the integrity and oncogenicity of intestinal stem cells. Cancer Res. 74, 2882–2891 (2014).

  14. 14.

    Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

  15. 15.

    Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

  16. 16.

    Esquela, K. A. & Slack, F. J. Oncomirs - microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

  17. 17.

    Hamabe, A., Konno, M., Tanuma, N., Shima, H., Tsunekuni, K., Kawamoto, K. et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc. Natl Acad. Sci. USA 111, 15526–15531 (2014).

  18. 18.

    Fukata, T., Mizushima, T., Nishimura, J., Okuzaki, D., Wu, X., Hirose, H. et al. The supercarbonate apatite-microRNA complex inhibits dextran sodium sulfate-induced colitis. Mol. Ther. Nucleic Acids 12, 658–671 (2018).

  19. 19.

    Hiraki, M., Nishimura, J., Takahashi, H., Wu, X., Takahashi, Y., Miyo, M. et al. Concurrent targeting of KRAS and AKT by miR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol. Ther. Nucleic Acids 4, e231 (2015).

  20. 20.

    Inoue, A., Mizushima, T., Wu, X., Okuzaki, D., Kambara, N., Ishikawa, S. et al. miR-29b byproduct sequence exhibits potent tumour-suppressive activities via inhibition of NF-κB signaling in KRAS-mutant colon cancer cells. Mol. Cancer Ther. 17, 977–987 (2018).

  21. 21.

    Wu, X., Yamamoto, H., Nakanishi, H., Yamamoto, Y., Inoue, A., Tei, M. et al. Innovative delivery of siRNA to solid tumours by super carbonate apatite. PLoS ONE 10, e0116022 (2015).

  22. 22.

    Takeyama, H., Yamamoto, H., Yamashita, S., Wu, X., Takahashi, H., Nishimura, J. et al. Decreased miR–340 expression in bone marrow is associated with liver metastasis of colorectal cancer. Mol. Cancer Ther. 13, 976–985 (2014).

  23. 23.

    Sato, T., Stange, D. E., Ferrante, M., Vries, R. G., Van Es, J. H., Van den Brink, S. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

  24. 24.

    Tazawa, H., Tsuchiya, N., Izumiya, M. & Nakagama, H. Tumour-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl Acad. Sci. USA 104, 15472–15477 (2007).

  25. 25.

    Schetter, A. J., Leung, S. Y., Sohn, J. J., Zanetti, K. A., Bowman, E. D., Yanaihara, N. et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425–436 (2008).

  26. 26.

    Li, C., Yan, H., Yin, J., Ma, J., Liao, A., Yang, S. et al. MicroRNA-21 promotes proliferation in acute myeloid leukemia by targeting Krüppel-like factor 5. Oncol. Lett. 18, 3367–3372 (2019).

  27. 27.

    Zhang, H., Lu, Y., Wang, S., Sheng, X., Zhang, S. et al. MicroRNA-152 acts as a tumor suppressor microRNA by inhibiting Krüppel-like factor 5 in human cervical cancer. Oncol. Res. 27, 335–340 (2019).

  28. 28.

    Ouyang, Y., Yuan, W., Qiu, S. et al. MicroRNA-153 functions as a tumor suppressor in gastric cancer via targeting Kruppel-like factor 5. Exp. Ther. Med. 16, 473–482 (2018).

  29. 29.

    Zhang, J. Z., Chen, D., Lv, L. Q., Xu, Z., Li, Y. M., Wang, J. Y. et al. miR-448-3p controls intracranial aneurysm by regulating KLF5 expression. Biochem. Biophys. Res. Commun. 505, 1211–1215 (2018).

  30. 30.

    Barker, N., van Oudenaarden, A. & Clevers, H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11, 452–460 (2012).

  31. 31.

    Sato, T., van Es, J. H., Snippert, H. J., Stange, D. E., Vries, R. G., van den Born, M. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

  32. 32.

    Durand, A., Donahue, B., Peignon, G., Letourneur, F., Cagnard, N., Slomianny, C. et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc. Natl Acad. Sci. USA 109, 8965–8970 (2012).

  33. 33.

    McConnell, B. B., Bialkowska, A. B., Nandan, M. O., Ghaleb, A. M., Gordon, F. J. & Yang, V. W. Haploinsufficiency of Krüppel-like factor 5 rescues the tumour-initiating effect of the Apc(Min) mutation in the intestine. Cancer Res. 69, 4125–4133 (2009).

  34. 34.

    McConnell, B. B., Kim, S. S., Yu, K., Ghaleb, A. M., Takeda, N., Manabe, I. et al. Krüppel-like factor 5 is important for maintenance of crypt architecture and barrier function in mouse intestine. Gastroenterology 141, 1302–1313 (2011).

  35. 35.

    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

  36. 36.

    Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210 (2019).

  37. 37.

    Eischen, C. M. & Lozano, G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum. Mutat. 35, 728–737 (2014).

  38. 38.

    Moll, U. M. & Petrenko, O. The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001–1008 (2003).

  39. 39.

    Prives, C. & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 (1999).

  40. 40.

    Zhu, N., Gu, L., Findley, H. W., Chen, C., Dong, J. T., Yang, L. et al. KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J. Biol. Chem. 281, 14711–14718 (2006).

  41. 41.

    Komori, H., Goto, Y., Kurayoshi, K., Ozono, E., Iwanaga, R., Bradford, A. P. et al. Differential requirement for dimerisation partner DP between E2F-dependent activation of tumoursuppressor and growth-related genes. Sci. Rep. 8, 8438 (2018).

  42. 42.

    Huber, H. E., Edwards, G., Goodhart, P. J., Patrick, D. R., Huang, P. S., Ivey-Hoyle, M. et al. Transcription factor E2F binds DNA as a heterodimer. Proc. Natl Acad. Sci. USA 90, 3525–3529 (1993).

  43. 43.

    Yoshida, K. & Inoue, I. Regulation of Geminin and Cdt1 expression by E2F transcription factors. Oncogene 23, 3802–3812 (2004).

  44. 44.

    Riera, A., Barbon, M., Noguchi, Y., Reuter, L. M., Schneider, S. & Speck, C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 31, 1073–1088 (2017).

  45. 45.

    Chu, I. M., Hengst, L. & Slingerland, J. M. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat. Rev. Cancer 8, 253–267 (2008).

  46. 46.

    Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

  47. 47.

    Satoh, T. & Kaida, D. Upregulation of p27 cyclin-dependent kinase inhibitor and a C-terminus truncated form of p27contributes to G1 phase arrest. Sci. Rep. 6, 27829 (2016).

  48. 48.

    Rupaimoole, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Disco. 16, 203–222 (2017).

  49. 49.

    Bader, A. G. miR-34—a microRNA replacement therapy is headed to the clinic. Front. Genet. 3, 120 (2012).

  50. 50.

    Takahashi, R. U., Prieto-Vila, M., Kohama, I. & Ochiya, T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci. 110, 1140–1147 (2019).

  51. 51.

    Li, Z. & Rana, T. M. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Disco. 13, 622–638 (2014).

  52. 52.

    Rupaimoole, R., Han, H. D., Lopez-Berestein, G. & Sood, A. K. MicroRNA therapeutics: principles, expectations, and challenges. Chin. J. Cancer 30, 368–370 (2011).

  53. 53.

    Yamamoto, H., Wu, X., Nakanishi, H., Yamamoto, Y., Uemura, M., Hata, T. et al. A glucose carbonate apatite complex exhibits in vitro and in vivo anti-tumour effects. Sci. Rep. 5, 7742 (2015).

  54. 54.

    Takahashi, H., Misato, K., Aoshi, T., Yamamoto, Y., Kubota, Y., Wu, X. et al. Carbonate apatite nanoparticles act as potent vaccine adjuvant delivery vehicles by enhancing cytokine production induced by encapsulated cytosine-phosphate-guanine oligodeoxynucleotides. Front. Immunol. 9, 783 (2018).

  55. 55.

    Ogawa, H., Wu, X., Kawamoto, K., Nishida, N., Konno, M., Koseki, J. et al. MicroRNAs induce epigenetic reprogramming and suppress malignant phenotypes of human colon cancer cells. PLoS ONE 10, e0127119 (2015).

  56. 56.

    Tamai, K., Mizushima, T., Wu, X., Inoue, A., Ota, M., Yokoyama, Y. et al. Photodynamic therapy using indocyanine green loaded on super carbonate apatite as minimally invasive cancer treatment. Mol. Cancer Ther. 17, 1613–1622 (2018).

  57. 57.

    Jana, M., Regina, D. & Ondrej, S. MicroRNA-based therapy in animal models of selected gastrointestinal cancers. Front. Pharm. 7, 329 (2016).

Download references


We acknowledge the core NGS facility of the Genome Information Research Centre of Osaka University for their support in IPA and data analysis.

Author information




Conception and design: Y.M., M.M., Y.D., H.Y. Development of methodology: Y.M., T.M., X.W., H.Y. Acquisition of data: A.I., T.M., X.W., Y.Y., T.H., H.H., Y.Q., J.W., N.M., H.T., N.H., C.M., H.Y. Analysis and interpretation of data (e.g. statistical analysis, biostatistics and computational analysis): Y.M., D.O., M.M., Y.D., H.Y. Writing, review and/or revision of the manuscript: Y.M., T.M., Y.Y., H.H., H.T., H.Y. Administrative, technical or material support: Y.M., T.M., C.M., M.M., Y.D., H.Y. Study supervision: Y.M., T.M., M.M., Y.D., H.Y.

Corresponding author

Correspondence to Hirofumi Yamamoto.

Ethics declarations

Ethics approval and consent to participate

All animal experiments were performed in accordance with currently prescribed guidelines and followed a protocol approved by Osaka University. This study was performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from all patients, and the study was approved by the Ethics Board of Osaka University Hospital.

Consent to publish

Informed consent was obtained from all patients for publication of this article.

Data availability

The expression levels of miR-4711-5p and other miRNAs referred to in this study (Supplementary Fig. S6) are available on the Tissue Atlas website ( The expression levels of KLF5 referred to in this study (Supplementary Fig. S1) are available on the Human Protein Atlas website ( All the other data of the study can be found with the corresponding author.

Competing interests

The authors declare no competing interests.

Funding information

This work was supported by a grant from Kagoshima Shinsangyo Sousei Investment Limited Partnership (its general partner is Kagoshima Development Co., Ltd).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morimoto, Y., Mizushima, T., Wu, X. et al. miR-4711-5p regulates cancer stemness and cell cycle progression via KLF5, MDM2 and TFDP1 in colon cancer cells. Br J Cancer 122, 1037–1049 (2020).

Download citation