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Ibrutinib treatment inhibits breast cancer progression
and metastasis by inducing conversion of myeloid-derived
suppressor cells to dendritic cells
Sanjay Varikuti1, Bhawana Singh1, Greta Volpedo1,2, Dinesh K. Ahirwar1, Bijay K. Jha3, Noushin Saljoughian1, Agostinho G. Viana1,
Chaitenya Verma1, Omar Hamza1, Gregory Halsey1, Erin A. Holcomb1, Ritvik J. Maryala1, Steve Oghumu1, Ramesh K. Ganju1 and
Abhay R. Satoskar1,2

BACKGROUND: Ibrutinib is a Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible kinase (ITK) inhibitor used for treating
chronic lymphocytic leukaemia (CLL) and other cancers. Although ibrutinib is known to inhibit the growth of breast cancer cell
growth in vitro, its impact on the treatment and metastasis of breast cancer is unclear.
METHODS: Using an orthotopic mouse breast cancer model, we show that ibrutinib inhibits the progression and metastasis of
breast cancer.
RESULTS: Ibrutinib inhibited proliferation of cancer cells in vitro, and Ibrutinib-treated mice displayed significantly lower tumour
burdens and metastasis compared to controls. Furthermore, the spleens and tumours from Ibrutinib-treated mice contained more
mature DCs and lower numbers of myeloid-derived suppressor cells (MDSCs), which promote disease progression and are linked to
poor prognosis. We also confirmed that ex vivo treatment of MDSCs with ibrutinib switched their phenotype to mature DCs and
significantly enhanced MHCII expression. Further, ibrutinib treatment promoted T cell proliferation and effector functions leading to
the induction of antitumour TH1 and CTL immune responses.
CONCLUSIONS: Ibrutinib inhibits tumour development and metastasis in breast cancer by promoting the development of mature
DCs from MDSCs and hence could be a novel therapeutic agent for the treatment of breast cancer.
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BACKGROUND
Ibrutinib was primarily developed as a Bruton’s tyrosine kinase
(BTK) inhibitor but was discovered to also target the inducible
tyrosine kinase (ITK) and the epithelial growth factor receptor.1,2

Ibrutinib is highly effective in the treatment of chronic lympho-
cytic leukaemia (CLL), mantle cell lymphoma, and Waldenstrom’s
macroglobulinaemia.3 Beyond its role in B cell biology, BTK
functions have been explored in the maturation, trafficking, and
function of myeloid cells,4–6 T cells,1 and natural killer cells.7 It is
also shown that inhibition of ITK by ibrutinib impedes the
development of T helper type 2 (TH2) cells and promotes TH1
responses.1 Rapid binding and high selectivity of ibrutinib reduce
the risk of sustained systemic exposures, therefore making it the
drug of choice with a well-tolerated dosing regimen as compared
to current therapeutic options for the above diseases.
Dendritic cells (DCs) play a critical role in the induction of

antitumour immunity.8 Normally, DCs are in an immature state,
and upon exposure to external stimuli, they can undergo
maturation, leading to induction of immune response against
tumour antigens. Although tumour-derived factors can induce DC
precursors to migrate to the tumour microenvironment,9 their

presence does not necessarily induce antitumour responses.
Furthermore, cancer cell-induced immunosuppressive microenvir-
onment limits the activity of mature and functionally competent
DCs while triggering the accumulation of tumour-promoting
immature DC phenotypes.10 These immature DCs induce immune
tolerance by the expansion of suppressor T cell populations, which
regulate or suppress other immune T cells.11

Myeloid-derived suppressor cells (MDSCs) are a subset of
immature myeloid cells that possess immunosuppressive proper-
ties. These cells expand in response to tumours, contribute to
immunosuppression, and have been reported to play a role in
tumour progression.12,13 Together, immature DCs and MDSCs can
facilitate cancer progression by stimulating the development of
immunosuppressive TH2 cells and regulatory T cells and inhibiting
antitumour cytotoxic T lymphocytes (CTL) and TH1 cells.9,14

Previous studies have shown that DCs from BTK-deficient mice
present a more mature phenotype, characterised by the expres-
sion of higher levels of activation markers and enhanced T cell
stimulatory abilities in vitro and in vivo.15 Furthermore, our group
has demonstrated that ibrutinib promotes DC activation and
maturation, as well as T cell proliferation and augmented
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production of interferon (IFN)-γ.16,17 These findings suggest that
ibrutinib could be effective in DC-based cancer therapeutics. We
therefore hypothesised that ibrutinib could reprogram MDSCs to
mature DCs even in the presence of a tumour-suppressive
microenvironment resulting in inhibition of tumour growth and
metastasis.
Recent DC-based cancer immunotherapies have focused on

enhancing the proportions of mature DCs to trigger anticancer
CTL responses. Our present study is based on DC-mediated
anticancer therapy using the potent ITK/BTK inhibitor ibrutinib in a
murine model of breast cancer. Our results show that
ibrutinib decreases tumour growth and metastasis of breast
cancer. Our findings also show that ibrutinib is able to reprogram
MDSCs to mature DCs, which boosts antitumour TH1 and CTL
immune responses due to improved tumour-derived antigen
presentation to the T cells. Collectively, these findings indicate
that ibrutinib could be a novel drug for the treatment of breast
cancer.

METHODS
Mice and tumour injections
Eight-week-old female wild-type (WT) C57BL/6 mice were
purchased from Envigo (Indianapolis, IN). All experimental mice
were injected with 0.1 × 106 E0.2 (subclone of E0771 developed in
Dr. Ramesh Ganju’s laboratory) tumour cells in 50% Matrigel
(Corning, MA) into the right mammary fat pad.

Ibrutinib treatments
Once the tumours were palpable (approximately at day 7 of
tumour implantation), mice were randomised into 2 groups (n=
10–12 mice per group) and treated with 6 mg/Kg/day Ibrutinib
(provided by Pharmacyclics LLC, an AbbVie Company) dissolved in
0.5 % methylcellulose+1% sodium lauryl sulphate (vehicle) or only
vehicle from day 7 to day 30 by oral gavage.

Tumour volume and lung metastasis counts
Tumour size was measured once every 3–4 days using a calliper,
and tumour volume was calculated by using the formula:
Volume= 0.52 × length × width2. Mice were euthanised by CO2

asphyxiation procedure at day 30 in compliance with OSU-IACUC.
Tissues were harvested and lung metastasis was calculated by
counting visible nodules.

Cell viability and immunoblot assays
E0.2 cells were plated at 2500cells/well for overnight and treated
with ibrutinib at 1, 0.5, 0.1, and 0.05 µM concentrations for 24 h.
Cell viability was analysed by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5
diphenyl tetrazolium bromide) cell proliferation assay (Cayman
chemicals, Ann Arbor, MI). E0.2 cells were plated at 105cells/well
for overnight and treated with ibrutinib at 1, 0.5, 0.1, and 0.05 µM
concentrations for 24 h. Cells were lysed with Pierce RIPA buffer
(Thermo Scientific, Waltham, MA), and protein concentrations
were measured by Pierce BCA Protein Assay Kit (Thermo Scientific,
Waltham, MA). Proteins were probed for total BTK (Sigma Aldrich,
St Louis, MO) and glyceraldehyde 3-phosphate dehydrogenase
(Cell Signaling, Denvers, MA). Followed by the horseradish
peroxidase-conjugated secondary antibody (Cell Signaling, Den-
vers, MA). Luminol reagent was used to develop the blot by
chemiluminescence.

Flow cytometric analysis
Mice were euthanised at the end of the study; single-cell
suspensions were prepared from the spleens and tumours as
described in our previous study.18 Spleen cells and tumour cells
were stained with respective stain cocktails. Anti-mouse CD11b-PE
(phycoerythrin) (101208), Ly6C-APC (allophycocyanin) (128015),
Ly6G-FITC (fluorescein isothiocyanate) (127605), Gr1-PE/Cy7

(108416), CD11C-Pacific Blue (117321), major histocompatibility
complex II (MHCII)-AF700 (107622), CD3-PerCP/Cy5.5 (100217),
CD4-PE/Cy5.5 (100410), CD8-BV510 (100751), interleukin (IL)-2-PE
(503808), IFN-γ-APC (505809), tumour necrosis factor (TNF)-α-FITC
(506304), and Granzyme B-PE/Cy7 (372213) were purchased from
Bio Legend (San Diego, CA). Cells were acquired through BD LSRII
flow cytometer (BD Biosciences, San Jose, CA, USA). Flow
cytometric analysis was performed by using the Flow Jo software
(Tree Star Inc., Ashland, OR, USA). For co-cultures experiments,
cells were sorted by using BD FACS ARIA III (BD Biosciences, San
Jose, CA, USA).

MDSC to DC maturation studies
WT C57BL/6 mice were injected with 0.1 × 106 E0.2 (a subclone of
E0771 tumour cells) in 50% matrigel (Corning, MA) into the right
mammary fat pad. Once the mice developed tumours, the spleens
were harvested, and single-cell suspensions were prepared.
Cells were stained with CD11b, Gr1+, and total MDSCs
(CD11b+Gr1+) were isolated from the spleens of tumour-
bearing mice by fluorescence-activated cell sorter. MDSCs were
treated with 1 µM ibrutinib or dimethyl sulfoxide (DMSO) for 1 h
and then washed twice with RPMI media. Ibrutinib/DMSO treated
cells were stained with CD11C and MHCII and analysed for
matured DC populations as CD11C+MHCII+ cells.

Reverse transcription (RT)-PCR and gene expression analysis
Spleen and tumour samples were homogenised; total RNA was
extracted by TRIzol extraction method (purchased from Life
Technologies, Carlsbad, CA). iScript reverse transcriptase and IQ
SYBR green supermix and CFX 96 RT-PCR thermocycler were
used to prepare cDNA and perform RT-PCR reactions (purchased
from Bio-Rad, Hercules, CA, USA). All the primers were designed
according to the Harvard primer bank website (http://pga.mgh.
harvard.edu/primerbank), purchased from IDT Technologies
(Coralville, IA, USA). Data are represented as fold induction
over WT naive mouse and normalised by using the β-actin
housekeeping gene.

Enzyme-linked immunosorbent assay (ELISA) and T cell
proliferation
Cells isolated from the spleens were plated at 5 × 106/ml
concentration in 96-well plates and were stimulated with/without
2 µg/ml of LEAF purified anti-mouse CD3e (purchased from
Biolegend) for 72 h in the complete RPMI media. Supernatants
were collected and the levels of IFN-γ, TNF-α, IL-4, IL-13, IL-6, and
IL-17 were quantified by ELISA (all reagents purchased from
Biolegend). Cell proliferation was measured by Alamar Blue
reduction technique (Bio-Rad, AbD Serotec Inc., Raleigh, NC) as
described previously.18

Statistical analysis
All animal studies were conducted using 10–12 animals per group
for each experiment. The statistical significance was determined
by using Student’s t test. Data represented are one of the three
independent experiments.

RESULTS
Ibrutinib treatment reduces breast tumour progression and
tumour weight
After implantation of tumour cells into the mammary fat pad, mice
were monitored for the establishment of tumours. Once the
tumours were palpable, mice were randomised into two groups
and treated with vehicle or ibrutinib once a day through oral
gavage. Tumour measurements were obtained every 3–4 days
throughout the course of treatment. At day 30 posttreatment,
mice were euthanised and tumour weights were measured.
Ibrutinib-treated mice displayed a reduced tumour growth
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compared to controls starting from 2 weeks of posttreatment until
euthanasia (Fig. 1a). In addition, tumour weights in ibrutinib-
treated mice were significantly lower compared to the vehicle-
treated mice (Fig. 1b, c). Next, we examined whether the effect of
ibrutinib in reducing the breast tumour progression in vivo is due
to the direct effect of ibrutinib on E0.2 cells. Our data show that
ibrutinib treatment resulted in the viability of E0.2 tumour cells
and decreased the BTK expression in a dose-dependent manner
(Fig. 1d). These data indicate that ibrutinib treatment significantly
reduces breast tumour growth in the murine model of breast
cancer.

Ibrutinib-treated mice show a significant reduction in tumour
metastasis to the lungs
Since tumour metastasis is an important determinant for the
disease’s outcome and the survival of breast cancer patients, we
analysed the effect of ibrutinib treatment on tumour metastasis to
the lungs. We found that lungs from mice treated with ibrutinib
contained significantly fewer lung metastatic nodules (both large
and small) compared to the vehicle-treated group (Fig. 2a–c). In
addition, ibrutinib-treated mice displayed less splenomegaly
compared to the vehicle-treated mice (Fig. 2d). Next, we analysed
the expression of genes such as Vegf, Mmp9, and Cxcl1, which are
known to play an important role in tumour progression and
metastasis. We found that tumours of ibrutinib-treated mice
expressed significantly lower transcripts of Vegf (Fig. 2e), Mmp9
(Fig. 2f), and Cxcl1 (Fig. 2g) compared to tumours of the vehicle-
treated group. Taken together, our results demonstrate that
ibrutinib treatment reduces breast cancer metastasis and disease
progression and is associated with a reduction in expression of
tumour-promoting host factors.

Ibrutinib treatment reduces the accumulation of MDSCs in
tumour-bearing mice
Many recent studies have shown the key role of MDSCs in tumour
progression and in dampening antitumour immune responses.19,20

A recent study found that MDSCs express BTK, and treatment
with ibrutinib reduces MDSC migration and frequency in vivo
during experimental breast carcinogenesis.6 In this context, we
analysed the frequencies of MDSCs (CD11b+Gr1+) in the spleens
and tumours of vehicle- and ibrutinib-treated mice. Our data
revealed that ibrutinib-treated mice contained significantly fewer
MDSCs in the spleens and also a lower proportion of MDSCs in the
tumours (Fig. 3a, b) compared to their counterparts. To confirm
the identity of CD11b+Gr1+ cells as MDSCs, we performed an
in vitro MDSC–T cell co-culture proliferation assay. CD11b+Gr1+
cells were isolated from the spleens of vehicle- and ibrutinib-
treated tumour-bearing mice and plated with CFSE (carboxyfluor-
escein succinimidyl ester)-labelled T cells obtained from naive WT
BL/6 mice. After stimulation with anti-mouse CD3 for 72 h, we
analysed T cell proliferation through flow cytometry. Our results
show that T cells co-cultured with MDSCs from ibrutinib-treated
mice are able to proliferate significantly more compared to the
T cells co-cultured with MDSCs from the vehicle-treated group
(Fig. 3c). In addition to this, tumours of ibrutinib-treated mice
expressed significantly lower transcripts of Ccl2, which is a key
regulator of monocytes and MDSC recruitment to the tumour
site.20–22

MDSCs are known to be a heterogeneous cell population based
on the expression of CD11b, Ly6C, and Ly6G: Monocytic MDSCs
(Mo-MDSCs; CD11b+Ly6Chi Ly6G−) and granulocytic MDSCs
(G-MDSCs; CD11b+Ly6Clow Ly6G+).18,23,24 It has been shown
that Mo-MDSCs from metastatic breast cancer patients are
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immunosuppressive and the proportion of Mo-MDSCs correlates
with breast cancer progression and metastasis in human breast
cancer patients.25 In the present study, we found that ibrutinib
treatment significantly reduced the Mo-MDSCs in the spleens and
tumours (Fig. 3d, e). No significant difference in the number of
G-MDSCs was observed between the groups (Fig. 3d). Collectively,
these findings suggest that ibrutinib treatment reduces the MDSC
populations in tumour-bearing mice, which could potentially
contribute to lower tumour burdens in these animals.

Ibrutinib increases the frequency of mature DCs in tumour-bearing
mice by switching MDSCs to mature DCs
It is well documented that DCs play a major role in immunity
against cancer and the ability of DCs to induce antitumour
immunity depends on their maturation.26,27 Earlier studies show
that murine DCs express Btk and that Btk-deficient DCs display a
more mature phenotype and express higher levels of MHCII as
well as co-stimulatory molecules.15,28 Previous studies have also
shown that maturation of DCs is characterised by the down-
regulation of Ly6C and upregulation of MHCII and CD80.16,29,30

Hence, we analysed the mature (CD11C+Ly6Clow MHCIIhi) and
immature (CD11C+Ly6Chi MHCIIlow) DC populations in the spleens
of ibrutinib- and vehicle-treated mice. We found that ibrutinib-
treated mice have significantly higher numbers of mature DCs in
both the spleens and tumours compared to the vehicle-treated
mice (Fig. 4a, b). Further, Ibrutinib treatment reduced the numbers

of immature DCs in the spleens and tumours (Fig. 4a, c). No
significant difference was observed in CD11C+Ly6C+MHCII+ cells
between the groups. As the spleens and tumours of ibrutinib-
treated mice contained higher proportions of mature DCs, we
explored whether or not ibrutinib can promote the development
of DCs from MDSCs, which are known to express BTK and hence
could be targeted by ibrutinib. We isolated the MDSCs from
tumour-bearing mice and treated them with 1 µM ibrutinib/DMSO
for 1 h ex vivo. We found that MDSCs treated with ibrutinib
showed enhanced expression of CD11C and MHCII compared to
MDSCs treated with DMSO (Fig. 4d, e). Not only did ibrutinib
significantly increase mature DCs (CD11C+MHCII+) from MDSCs
but it also significantly increased the number of MHCII-expressing
MDSCs (Fig. 4e). Together, these data suggest that ibrutinib
mediates its antitumour activity at least in part by promoting the
development of DCs from MDSCs.

Ibrutinib treatment promotes T cell effector functions in tumour-
bearing mice
CTLs recognise antigenic peptides on tumour cells and elicit
tumouricidal functions.31,32 However, some studies have shown
that CTLs fail to produce inflammatory cytokines that promote
tumour cell death.33,34 Ibrutinib has been shown to promote both
CD8+ and CD4+ T cells by driving TH1-selective pressure in
T lymphocytes.1,35 We therefore determined the effect of ibrutinib
treatment on proliferation and effector functions of T cells in vivo.
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Ibrutinib treatment significantly enhanced the production of IL-2
(Fig. 5a, e), IFN-γ (Fig. 5b, f), and TNF-α (Fig. 5c, g) by CD8+ T cells
compared to the vehicle treatment. In addition, CD8+ T cells of
ibrutinib-treated mice displayed increased production of Gran-
zyme B (Fig. 5d, h), which is perhaps not surprising as activated
CD8+ T cells produce Granzyme B36 to suppress metastasis in
breast and lung cancers.37 We also found that CD4+ T cells from
ibrutinib-treated mice produce more IL-2 and IFN-γ compared to
controls, but the differences were statistically not significant (data
are not shown). Taken together, these results indicate that
ibrutinib treatment in mice with breast cancer enhances T cell
effector functions.

Ibrutinib enhances T cell proliferation and promotes TH1 cytokines
Since CD8+ T cells in the spleens of ibrutinib-treated mice displayed
enhanced production of IL-2 and other TH1 cytokines, we further
analysed the production of TH1 and TH2 cytokines from anti-CD3/
CD28-stimulated splenocytes of ibrutinib- versus vehicle-treated
mice. Consistent with the results observed by intracellular staining,
we found that splenocytes from ibrutinib-treated mice have shown
increased T cell proliferation (Fig. 6d). Also, splenocytes from
ibrutinib-treated mice showed significantly higher amounts of IFN-γ
(Fig. 6e), TNF-α (Fig. 6f), IL-17 (Fig. 6g), and IL-6 (Fig. 6h), while a
decrease in TH2-associated IL-4 production was observed (Fig. 6i).
Furthermore, ibrutinib treatment significantly enhanced iNOS
(Fig. 6b) and diminished Arginase1 (Fig. 6c) expression in the
tumour, which is perhaps not surprising because ibrutinib is known
to induce TH1 selective pressure on T lymphocytes resulting in the
production of higher IFN-γ and inducible nitric oxide synthase
(iNOS).1 Taken together, these results indicate that ibrutinib
enhances T cell proliferation and TH1 effector response.

DISCUSSION
Originally recognised for its role in B cell signalling, BTK has
emerged as an essential regulator of immune responses and is

redundantly expressed by many hematopoietic cells, including
myeloid cells. It is known to play an essential role in the
maturation and function of myeloid cells.4,6 In this study, using
a murine experimental model of breast cancer, we demonstrate
that the potent BTK/ITK inhibitor ibrutinib is effective in inhibiting
breast cancer tumour growth and metastasis. Although we show
the direct effect of ibrutinib on E0.2 breast cancer cells, we also
show that ibrutinib mediates its antitumour activity at least partly
by acting on MDSCs and promoting their differentiation to mature
DCs, which boosts antitumour TH1 and CTL immune responses. To
the best of our knowledge, our study is the first report to
demonstrate the direct effect of ibrutinib on MDSCs and
promoting the generation of DCs from them.
Current cancer immunotherapies involve small-molecule check-

point inhibitors or blocking antibodies. The antibody-blockade
strategy has yielded success as a combination therapy; however, it
possesses the risk for a variety of side effects that require
supportive care services. Among small-molecule inhibitors,
ibrutinib has been reported to promote the development of DCs
in bone marrow cells, polarise immune responses to TH1, and exert
antitumour immunomodulatory effects on immune cells.1,38

MDSCs are known to contribute to tumour progression,12,13

express BTK, and can differentiate into macrophages and DCs39,40

in the peripheral lymphoid organs. However, MDSCs recruited to
the tumour display immunosuppressive properties due to
inhibition and differentiation factors present in the tumour
microenvironment. Given the role of MDSCs in cancer progression,
kinase inhibitors that block MDSC generation have been found to
be effective in cancer therapy.41,42 One such inhibitor is ibrutinib,
which has been shown to reduce the frequency of MDSCs in
breast cancer.6,43 In the present study, we hypothesised that
ibrutinib reprogrammes MDSCs to mature DCs, which trigger TH1-
mediated antitumour immunity. In line with the above studies, we
found that ibrutinib treatment reduced MDSC populations but
increased mature DCs in the spleen and tumours. Furthermore,
treatment reduced Mo-MDSCs, which are known to play a
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significant role in tumour progression and metastasis.25 These
results suggest that ibrutinib treatment significantly reduced the
migration of tumour-promoting myeloid cells to the secondary
sites and resulting in diminished metastasis. Ibrutinib treatment
also significantly reduced the expression of Vegf, Mmm9, and
Cxcl1, which are known to play a major role in tumorigenesis,
metastasis, and angiogenesis.
It is well recognised that immature DCs might exhibit

immunosuppressive and/or tolerogenic effects,29,44 and their
maturation depends on the local microenvironment. It has been
shown that BTK negatively regulates maturation of DCs and
BTK−/− DCs exhibit more mature phenotypes and stronger
T cell-stimulatory ability.15 A recent study from our group
identified that ibrutinib-treatment-induced DC activation and
maturation by upregulating CD80, MHC-II, and C-C chemokine
receptor type 7.16 In line with these findings, our present study
revealed that ibrutinib treatment significantly increased mature
DCs in the spleens as well as tumours while the immature DC
proportion remained elevated in the vehicle group. We also
found that ex vivo treatment of MDSCs with ibrutinib
significantly enhanced the expression of CD11C and MHCII
molecules, which indicates a change in their phenotype to
mature DCs. Together, these findings indicate that Ibrutinib
mediates its anticancer activity at least in part by promoting the
conversion of MDSCs into mature CD11C+MHCII+ DCs. Further-
more, our findings suggest that the BTK pathway negatively
regulates the conversion of MDSCs into mature DCs.
Previous studies have found that ibrutinib markedly improves

T cell numbers and function in CLL patients.35,45 Furthermore,
ibrutinib has been shown to increase the production of pro-
inflammatory cytokines IFN-γ, IL-6, and TNF-α and concomitantly
suppress the production of anti-inflammatory cytokines IL-4,
IL-13, and IL-10.1,46 Consistent with these findings, we also

found that the splenocytes of ibrutinib-treated mice showed
enhanced proliferation and skewed TH1 responses through
elevated levels of IFN-γ, IL-6, and TNF-α. It has been also shown
that TH17 responses alleviate cancer pathogenesis and improve
survival in CLL cases.47,48 We previously reported that ibrutinib
enhances IL-17 responses, which modulate antigen presentation
and DC functions.17 Similarly, in our present study, we found
that ibrutinib treatment was associated with a significant
increase in IL-17 production, which could be responsible for
enhancing T cell-mediated antitumour responses.
In recent years, DC-based cancer immunotherapeutic strategies

have focused on increasing DC recruitment to the tumour
microenvironment. However, the recruitment of progenitor DCs
to the tumour site may not be sufficient for eliciting antitumour
immunity since the immunosuppressive environment redirects
their development into MDSCs. On the contrary, the recruitment
of mature DCs could significantly potentiate CTL responses and
overcome the MDSC-based barrier for cancer immunotherapy.
MDSC-induced T cell dysregulation and inhibition of CTL
responses remain a common feature in cancer pathogenesis.49

This immune dysregulation of CD8+ T cells and impaired CTL
effector responses can be attributed to prevailing immunosup-
pressive conditions in the tumour microenvironment.50,51 In the
present study, we found that ibrutinib treatment was associated
with a significant enhancement of CTL activity as evident by
significantly elevated levels of Granzyme B, IL-2, IFN-γ, and TNF-α
production. These findings were consistent with previously
reported in vivo studies where ITK−/− T cells exhibited an
increased frequency of activated T cells and prolonged
survival.52,53

In conclusion, our results show that ibrutinib treatment is
effective in the suppression of breast cancer tumour progression
and metastasis. The BTK/ITK inhibitor ibrutinib reprogrammes the
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tumour-induced immunosuppressive population of myeloid line-
age (MDSCs) into mature DCs by blocking BTK, increases the
proportion of mature DCs in the tumour and lymphoid organs,
and promotes antitumour T cell activity. Together, our findings
indicate that ibrutinib and other BTK inhibitors could be novel
drugs for the treatment of breast cancer.
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