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EEF1A2 interacts with HSP90AB1 to promote lung
adenocarcinoma metastasis via enhancing TGF-β/SMAD
signalling
Liqing Jia1,2, Xiaolu Ge1,2,3, Chao Du1,2, Linna Chen1,2, Yanhong Zhou1,2, Wei Xiong1,2, Juanjuan Xiang1,2, Guiyuan Li1,2, Gaoming Xiao1,
Li Fang1 and Zheng Li 1,2,4

BACKGROUND: Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of
breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung
adenocarcinoma (LUAD).
METHODS: Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells,
respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding
proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by
immunofluorescence and co-immunoprecipitation (Co-IP).
RESULTS: In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the
metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and
TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD
cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD.
CONCLUSIONS: These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2
represents a promising target in the treatment of aggressive LUAD.

British Journal of Cancer (2021) 124:1301–1311; https://doi.org/10.1038/s41416-020-01250-4

BACKGROUND
Lung cancer is the most prevalent malignancy, causing 1.77
million deaths worldwide annually.1 Lung cancer is divided into
two major categories, the non-small cell lung cancer (NSCLC), and
small cell lung cancer (SCLC). NSCLC includes lung adenocarci-
noma (LUAD), and squamous cell carcinoma (SCC), which accounts
for 80–85% of all lung cancer cases.2 Although earlier reports have
confirmed the expression characteristics and corresponding
therapeutic strategies targeting KRAS, and EGFR mutations, and
the EML4-ALK fusion gene in LUAD, the 5-year overall survival rate
of lung adenocarcinoma patients remains low at 18%.3–7 In
particular, only 2–8% of patients with late stage lung adenocarci-
noma can live up to 5 years.8 Therefore, an improved under-
standing of the key underlying metastatic mechanisms of LUAD
progression is required.
Recent studies have shown that several housekeeping proteins

contribute to enhance epithelial–mesenchymal transformation
(EMT) and oncogenic transformation.9–11 β2-microglobulin (β2-
M), a well-known heterodimeric cell surface and housekeeping
protein presents antigenic peptides to cytotoxic T cells.12,13

Additionally, β2-M interacts with receptor protein hemochroma-
tosis to modulate EMT and metastasis of cancer cells.14 Recently, an
increasing number of studies have confirmed that translation
factors had a positive role in regulating cytoskeleton altering
signalling pathways.15–17 Eukaryotic protein translation elongation
factor 1α2 (EEF1A2) belongs to the eEF1A family and localises to
chromosome 20q13.3. It consists of three domains, which
predominantly deliver the aminoacylated-tRNA to the ribosome
A site for decoding of mRNA by codon–anticodon interactions
during protein synthesis.18,19 Additionally, EEF1A2 regulates
myotube survival by protecting them from undergoing apopto-
sis.20 Moreover, EEFlA2 was reported as a putative oncogene due to
its high expression in breast, ovarian, lung and liver cancers.21–24 A
previous report showed that EEF1A2-induced Akt-dependent actin
remodelling, and enhanced the invasion of breast cancer cells.25

Additionally, EEF1A2 promotes pancreatic cancer metastasis
through Akt-dependent upregulation of MMP-9 expression.26,27

In lung cancer cells, a comparative genomic hybridisation (CGH)
array identified DNA gain at 20q13 region, while fluorescence
in situ hybridisation (FISH) analysis confirmed DNA copy number
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increase of EEF1A2.28 EEF1A2 enhanced Gefitinib resistance by
preventing AKT phosphorylation for KRAS-mutated NSCLC.29 Li
et al. showed that the DNA copy number, mRNA, and protein
expression of EEF1A2 were increased in lung cancer cells using
integrated omics analysis. Additionally, EEF1A2 overexpression has
been correlated with tumour stage in NSCLC patients.30 However,
the function and molecular mechanism of EEF1A2 in promoting
development and metastasis of LUAD has not been identified. In
this study, we aimed to elucidate the oncogenic function and
mechanisms of EEF1A2 in the proliferation and metastasis of
LUAD.

METHODS
Clinical specimens and bioinformatics analysis
To elucidate the effect of upregulated EEF1A2 on promotion of
metastasis in LUAD patients, a tissue array consisting of 78 para-
carcinoma, 78 primary LUAD and four metastatic LUAD tissues
were subjected to immunohistochemistry (IHC) analysis (Supple-
mentary Table 1). All specimens in the tissue array were verified by
a clinical pathologist. Datasets GSE37745 (consisting of 106 LUAD
tissue samples) and GSE19188 (including 65 normal lung tissue
samples, and 45 LUAD tissue samples) were obtained from the
public database Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/geo/) and reanalysed to elucidate the correlation
between EEF1A2, HSP90AB1 expression level and survival time of
LUAD patients.31,32 The GSE19188 dataset provided expression
data for EEF1A2 and HSP90AB1 for comparison between LUAD
and normal lung tissue samples. The GSE37745 dataset was
analysed using the Kaplan–Meier method to create a survival
curve of EEF1A2 and HSP90AB1 in LUAD tissue samples.

Cell lines
To investigate the function and molecular mechanism of EEF1A2
in LUAD, we used A549 and PC9 cells. Immortalised normal
bronchial epithelial cells, HBE and LUAD cell lines, A549 and PC9
were cultured in RPMI-1640 medium supplemented with 10% FBS.
The cells were grown at 37 °C in a humidified atmosphere with 5%
CO2. Growing cells were tested for mycoplasma contamination
using polymerase chain reaction (PCR).

Immunohistochemistry and antibodies
Following deparaffinisation and rehydration using regular graded
alcohol and quenching with hydrogen peroxide, tissue sections on
glass slides were incubated with 0.01 M citrate buffer for antigen
retrieval. The slides were incubated with primary antibody at 4 °C
overnight. The sections were washed with phosphate buffer
solution (PBS) three times, then stained with polymerised horse-
radish peroxidase and anti-rabbit IgG (Cell Signaling Technology,
USA) for 1 h. Finally, the slides were washed, stained using 3’-
diaminobenzidine hydrochloride as the chromogen, and counter-
stained with haematoxylin. Positive labelling in the cell nucleus
was visualised and images were captured using a stereomicro-
scope (OLYMPUS BX-51, Tokyo, Japan). EEF1A2 expression was
evaluated based on the staining intensity and area, where H score
= 1 × (% weak)+ 2 × (% moderate)+ 3 × (% intense); range=
0–300.33 EEF1A2 and HSP90AB1 antibodies were purchased from
ABclonal (Wuhan, China) and Affinity (Cincinnati, OH, USA),
respectively. Antibody information is detailed in Supplementary
Table 2.

SiRNAs, plasmids and transduction
EEF1A2 and HSP90AB1 siRNAs were obtained from Ribobio
Biological Technology (Guangzhou, China). pEnter-EEF1A2 plasmid
with c-terminal Flag and His tag was purchased from ViGene
Biosciences (Jinan, China). EEF1A2-Flag and HSP90AB1-Myc
truncation mutants were generated using the pcDNA3.1(+) vector
backbone. These plasmids were co-transfected into HEK293 cells

to investigate the binding domains of EEF1A2 and HSP90AB1. To
establish stable EEF1A2 overexpression and knockdown cells, the
EEF1A2 open reading frame sequence was cloned into the
lentiviral plasmid pCDH-green fluorescent protein (GFP), and
shRNAs targeting EEF1A2 were constructed using the pLVTH-GFP
vector. The vectors were co-transfected with psPAX2 and pMD2.G
and the cells were enriched based on their GFP expression using
flow cytometry. To perform live monitoring of tumour cells in
mice, luciferase was stably expressed in sh-EEF1A2 cells using
lentiviral plasmids, and enriched by blasticidin screening (YESEN,
Shanghai, China). The sequence of EEF1A2 siRNAs, shRNAs and
HSP90AB1 siRNA are shown in Supplementary Table 3.

In vivo experiments
To investigate the function of EEF1A2 in vivo, a total of 26 4-week-
old mice (18–25 g, Balb/c nude) were purchased from Hunan SJA
Laboratory Animal Company and fed a rodent diet at the
Experimental Animal Center of Central South University (Chang-
sha, China). Mice were subjected to 12-h dark, and 12-h light
conditions and a standard temperature of 23 °C and humidity of
48%. A subcutaneous tumour mouse model was used to confirm
the role of EEF1A2 in tumorigenesis of LUAD. Sixteen female Balb/
c nude mice were randomly and equally divided into two groups:
EEF1A2 knockdown, and control groups. The sh-EEF1A2_001 and
negative control cells in the logarithmic growth phase were
collected and washed once with PBS. The cells were resuspended
at 1 × 107 cells/mL, and subcutaneously injected (200 μL) into the
right anterior axillary of the mice. The tumours were measured
daily after injection, and growth curves were plotted for each
group. The maximum (length) and minimum diameter (width) of
the tumour in each mouse were measured using a Vernier calliper
to calculate the tumour volume using the formula: Volume=
length × width2 × 0.52. All the mice were sacrificed using excess
carbon dioxide (25% chamber volume per minute) 28 days after-
inoculation. Tumours were isolated, photographed and weighed.
A metastatic tumour mouse model was used to confirm the

prometastatic potential of EEF1A2. Ten female Balb/c nude mice
were randomly and equally divided into the EEF1A2 knockdown,
and control groups. Sh-EEF1A2_001 or the negative control A549
cells were collected and resuspended at 2 × 107 cells/mL. The cell
suspension (200 μL) was injected into the tail veins of Balb/c nude
mice using a 1mL syringe (4 × 106 cells per mouse). The metastatic
stage was monitored 7–8 weeks post-injection when all mice were
under inhalation anaesthesia with 2% isoflurane, and luciferin
substrate (150 mg/kg) was injected and visualised using an in vivo
luminescence imaging system (IVIS, PerkinElmer, MA, USA). The
mice were sacrificed using excess carbon dioxide (25% chamber
volume per minute) 8 weeks post-injection, and the lungs and
lymph nodes were removed for further analysis. Haematoxylin and
Eosin staining was used to observe the metastasis of LUAD cells, to
examine the cellular morphology, and record the number of
metastatic tumour foci in the lung and lymph nodes using a
stereomicroscope.

Immunoprecipitation and liquid chromatography mass
spectrometry (LC-MS)/MS analysis
HEK293 cells (5 × 106) were lysed using cell lysis buffer for
immunoblotting and immunoprecipitation (P0013, Beyotime,
Shanghai, China) according to the manufacturer’s protocol.
Following centrifugation at 12,000 × g for 20min at 4 °C, the
supernatant was incubated with primary antibodies overnight at
4 °C, followed by incubation with protein A+G Sepharose (30 μL)
(Millipore, USA) for an additional 4 h. The beads were washed five
times with ice-cold lysis buffer. The bound proteins were eluted
from the beads with SDS-loading buffer, and separated on SDS-
PAGE, followed by LC-MS/MS analysis, and immunoblotting. Briefly,
the gel pieces were subjected to in-gel tryptic digestion after
removing the SDS. Then, the peptide was desalted using
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trifluoroacetic acid (Sigma, USA) on a C18 elution plate (Sigma,
USA). Peptide analysis was carried out using an Ultimate 3000 nano
HPLC system, and electrospray ionisation-tandem mass spectro-
meter (Thermo Fisher Scientific, USA). Data were processed,
searched and quantified using Proteome Discoverer 1.4 software
(Thermo Scientific, Waltham, MA, USA), using the default settings
and employing the Human Uniprot database (Proteome ID:
UP000005640). To find proteins that interact with EEF1A2, further
bioinformatics analysis of all the protein data was performed using
the Functional Enrichment analysis tool (FunRich Version 3.0). All
proteins were listed in Supplemental Tables 4 and 5.

Immunofluorescence microscopy
A549 cells were transfected with si-EEF1A2 or the negative control,
or Flag-EEF1A2, and Myc-HSP90AB1 for 48 h. The fluorescence was
directly visualised and recorded. The cells were cultured on glass
coverslips in a six-well plate. Thereafter, the cells were fixed with
4% paraformaldehyde in PBS, permeabilised by 0.1% Triton X-100,
followed by washing in PBS. Phalloidin (P2141, Sigma, USA) in
TBST was added onto the coverslips and incubated for 1 h.
Thereafter, anti-Flag (1:500) or anti-Myc antibodies (1:100) was
added and incubated overnight at 4 °C. Subsequently, the
coverslips were incubated with the corresponding Alexa Fluor
488 (SA00006-1, Proteintech, China) or Alexa Fluor 594 (SA00006-
4, Proteintech, China) secondary antibodies. Cellular nuclei were
stained with DAPI (Beyotime Biotechnology, Shanghai, China).

Statistical analysis
Statistical analysis of cell proliferation, colon formation, cell
invasion and metastasis and animal tumour weight were
performed using the SPSS software (version 20.0, IBM, Chicago,
USA). All statistical calculations and plotting of graphs were
performed using the GraphPad Prism5 software (GraphPad
Software LLC, San Diego, USA). Significant differences between
two groups of data in the invasion, wound healing, and colony
formation assays were evaluated by using the Student’s t-test.
One-way analysis of variance (ANOVA) was used for more than
two groups. Overall survival (OS) or relapse-free survival (RFS) for
different levels of EEF1A2 or HSP90AB1 signature was calculated
using the Kaplan–Meier method. Statistical significance was
determined using the Student’s t-test, Spearman correlation
coefficients test, Kaplan–Meier method, or Fisher’s exact test. For
all statistical tests, p < 0.05 was considered statistically significant.

RESULTS
EEF1A2 overexpression in LUAD tissues and cells is strongly
correlated with poor prognosis
To determine the clinical significance of the EEF1A2 in patients
with LUAD, immunohistochemical staining was used to detect
EEF1A2 in tissue microarrays (TMAs) consisting of 78 pairs of
cancer samples compared with their corresponding adjacent
tissues. Compared to the para-carcinoma tissues, tumour tissues
exhibited strong expression of EEF1A2 (Fig. 1a, b). Notably, EEF1A2
expression was further enhanced in advanced-stage and distant-
metastatic tumour tissues (Fig. 1c, d). Additionally, a higher
EEF1A2 expression level was associated with poorer OS and RFS
(Fig. 1e). As shown in Fig. 1f, the area under the receiver operating
characteristic (ROC) curve (AUC value) of EEF1A2 for the diagnosis
of LUAD was 0.7761. These results suggested that EEF1A2 might
be an oncoprotein involved in the progression of LUAD, and an
early diagnosis and prognostic factor thereof.

EEF1A2 promotes the development of malignant phenotypes of
LUAD cells
The expression of EEF1A2 was higher in A549 and PC9 cells than in
HBE cells. EEF1A1 protein shares 96% homology in amino acid
sequence with EEF1A2, although no expression level changes

were noted in these cells (Fig. S1A). To examine the function of
EEF1A2 in LUAD tumorigenesis, siRNAs targeting EEF1A2 were
transfected into A549 and PC9 cells to reduce the expression of
EEF1A2 (Fig. 2a). The cell counting kit 8 (CCK8) assay demon-
strated that reduction of EEF1A2 decreased the proliferation of
A549 and PC9 cells (Fig. 2b). The colony formation assay
confirmed that the downregulation of EEF1A2 led to a consider-
able reduction in the number of colonies compared to the control
(Fig. 2c). As clinical data showed high expression levels of EEF1A2
in metastatic LUAD tumour tissues, we investigated the effect of
EEF1A2 on metastatic ability of LUAD cells. Cell invasion and
wound-healing assays showed that the invasive and migration
ability was repressed in A549 and PC9 EEF1A2-knockdown cells
(Fig. 2d, e). In contrast, EEF1A2 overexpression in A549 and PC9
cells promoted cellular proliferation, invasiveness, and migration
(Fig. S1B–F).

EEF1A2 promotes LUAD cell proliferation and metastases in vivo
To elucidate the function of EEF1A2 in vivo, we designed lentiviral
vectors expressing EEF1A2 shRNAs or control shRNA with luciferase
expression. In sh-EEF1A2_001 A549 cells, the expression level of
EEF1A2 decreased by ~90% (Fig. S2A). The cell invasion assay
showed that EEF1A2 knockdown by shRNAs effectively reduced the
invasive ability of A549 cells (Fig. S2B). Hence, Sh-EEF1A2_001 A549
cell line was selected for the animal experiments. As expected,
EEF1A2 knockdown delayed tumour growth in mice xenografts
(Figs. 3a, b and S2C). Additionally, western blot results verified that
EEF1A2 protein expression decreased in tumour tissues of the sh-
EEF1A2 group (Fig. 2c). Thereafter, we tested the effect of EEF1A2
on metastasis in vivo using a tail vein injection model. As shown in
Fig. 3d, the level of tumour burden was decreased in sh-
EEF1A2_001-A549 cells group. Fewer lung and lymph metastatic
nodules were detected compared to the control group (Fig. 3e, f).
Collectively, these data demonstrated that EEF1A2 knockdown
inhibited lung tumorigenesis and metastasis in vivo.

EEF1A2 promotes EMT by enhancing TGF-β/SMAD signalling
As shown in Fig. 4a, EEF1A2 knockdown changed the morphology
of A549 cells from a mesenchymal-like shape to a cobblestone
appearance. Furthermore, cytoskeletal change detected by FITC-
phalloidin (green), showed that EEF1A2 knockdown induced
disorderly microfilaments and disruption of stress fibres (Fig. 4b).
We hypothesised that EMT may be involved in the EEF1A2-
induced changes in cell morphology. Compared to the control
cells, the expression of epithelial-like marker (E-Cadherin) was
upregulated, and expression of mesothelial-related proteins (N-
Cadherin and SLUG) was decreased in the A549 and PC9 cells
treated with si-EEF1A2 (Fig. 4c). These results suggested that EMT
activity may be involved in the function of EEF1A2 to promote
invasion and metastasis of LUAD cells.
TGF-β/SMAD signalling is an important inducer of EMT in

various cancers.34–36 We found that EEF1A2 overexpression or
silencing caused a change in the expression of two key receptors
in the TGF-β signalling pathway, TGF-β receptor type I (TβR I) and
type II (TβR II). This was accompanied by the change in the SMAD3
and pSMAD3 expression levels (Fig. 4d). Furthermore, we detected
changes in SMAD3 and pSMAD3 expression in the cytoplasm and
nucleus, following EEF1A2 overexpression. Additionally, there was
no significant change in the expression of SMAD3 and pSMAD3 in
the cytoplasm of A549 cells, whereas that in the nucleus increased
(Fig. 4e). These results suggested that EEF1A2 could promote EMT
through modulation of the TGF-β receptor and nuclear expression
of SMAD3 proteins.

EEF1A2 regulates TGF-β/SMAD signalling and EMT by interacting
with HSP90AB1
To gain further insights into the molecular mechanism of EEF1A2,
we used Flag IP-pull-down followed by LC-MS/MS to identify
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potential EEF1A2-binding proteins (Fig. 5a). A total of 127 proteins
shared by A549 and PC9 cells that interacted with EEF1A2 were
identified. However, we did not identify the SMADs amongst these
proteins (Supplementary Tables 4 and 5). Additionally, we verified
that EEF1G could interact with EEF1A2 as previously reported,37

indicating the reliability of the LC-MS/MS analysis (Fig. S3A).
Notably, the immunoprecipitation assay showed that EEF1A2
could be precipitated with HSP90AB1 and XRCC6, although not
with HSP90AA1, which was found in LC-MS/MS analysis (Fig. 5b
and Fig. S3A & B). Previous studies have shown that inhibition of
heat shock protein 90 (HSP90) function leads to the ubiquitination
and degradation of TβR.38 Lee et al. reported that inhibition of
HSP90AB1 decreased nuclear localisation and phosphorylation of
SMAD3 in Mv1Lu cells.39 Therefore, we suggested that EEF1A2
may regulate TGF-β/SMAD3 signalling through HSP90AB1 in LUAD
cells.
Immunofluorescence staining of EEF1A2 and HSP90AB1, fol-

lowed by confocal microscopy revealed strong staining in the
cytoplasm and scattered staining in the nuclei. Marked co-staining

of EEF1A2 and HSP90AB1 was visualised in the cytoplasm (Fig. 5c).
Neither si-EEF1A2 nor si-HSP90AB1 did alter the position of their
co-location in the cytoplasm (Fig. S3D). The EEF1A2 protein
consists of three domains, namely domain I, domain II, domain III.
Domain I consists of 1–240 amino acids that structured in a
Rossmann-fold topology. Domain II (241–336 aa) and domain III
(337–443 aa) span over beta strands and each domain contains
two beta sheets that form the beta barrel.18 HSP90AB1 consists of
three major structural domains: the nucleotide binding domain
(domain I, 1–232 aa) located in the N-terminal portion, which
contains the ATP-binding site; the client binding domain (domain
II, 233–620 aa) in the centre; and a C-terminal domain (domain III,
621–724 aa) responsible for HSP90AB1 dimerisation.40 We
generated various EEF1A2-Flag and HSP90AB1-Myc deletion
constructs to investigate the domain responsible for binding.
The pull-down assay showed that Flag-tagged EEF1A2 domain I
(1–240 aa) proteins could bind to HSP90AB1. Additionally, the
HSP90AB1 domain I (1–232 aa) is predominantly responsible for
interaction with EEF1A2 (Figs. 5d and S3C).
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The expression of HSP90AB1 was higher in A549 and PC9
cells than in HBE cells (Fig. S4A). HSP90AB1 knockdown
attenuated the invasive ability of LUAD in pCDH-EEF1A2 A549
cells (Fig. 6a). In A549 and PC9, HSP90AB1 knockdown could
partially reverse the increase of TβRI, TβRII, SMAD3, pSMAD3, N-
cadherin and SLUG expression levels in LUAD cells, induced by
EEF1A2 overexpression (Figs. 6b and S4B). Overall, these data

suggest that EEF1A2 interacts with HSP90AB1, and regulates
TGF-β signal transduction, thus affecting the migration of LUAD
cells.
Overexpression of HSP90AB1 also correlated with poor prog-

nosis in LUAD (Fig. S4C, D). We calculated the OS for LUAD
patients using the combined index of EEF1A2 and HSP90AB1
expression. The results showed that a combination of high EEF1A2
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and HSP90AB1 were significantly associated with the worst
prognosis in LUAD patients (Fig. 6c). As depicted in Fig. 6d, the
AUC of EEF1A2 and HSP90AB1 for diagnosis was 0.7761 and
0.7070, respectively. The combination of EEF1A2 and HSP90AB1
analysed by logistic regression showed better discrimination as
the AUC was 0.8130. Hence, the combination of EEF1A2 and
HSP90AB1 was a useful parameter for the diagnosis of LUAD
patients.

DISCUSSION
The present study identified that the expression of EEF1A2
increased in LUAD compared to para-carcinoma tissues and was
similarly higher in metastatic tissues compared to primary tumour
tissues. These results support that of previous studies, which
showed that EEF1A2 was strongly expressed in LUAD cells and
tumour tissues.28,30 Moreover, we discovered that upregulated
expression of EEF1A2 positively correlated with the tumour stage
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and OS in LUAD patients. Furthermore, we demonstrated that
EEF1A2 overexpression promoted the proliferation, migration and
invasive abilities of LUAD cells in vitro. Subcutaneous and
metastatic tumour mouse models revealed that EEF1A2 was a
putative oncogene that promoted progression of LUAD in vivo.
Epithelial–mesenchymal transformation is one of the funda-

mental processes that contribute to tumour progression, particu-
larly metastatic spread and colonisation of cancer.41,42 During
EMT, nonmotile polarised epithelial cells are converted into motile
nonpolarised invasive mesenchymal cells as a result of a series of
EMT specific transcription factor (ZEB1/2, SNAIL, SLUG and others)
changes.43–45 Our results showed that EEF1A2 silencing induced
epithelial-like morphological features in LUAD cells, decreased
expression of mesenchymal marker N-Cadherin and SLUG and
upregulated epithelial marker E-Cadherin. TGF-β signalling is a
potent initiator of EMT through activating and transforming
phosphorylated SMAD proteins in the nucleus, and inducing cell
motility processes.38,46,47 We observed that EEF1A2 enhanced TβRI
and TβRII expression and pSMAD3 nuclear expression, which

induced expression of downstream EMT-related transcription
factors, and promoted metastasis of LUAD cells.
To clarify the molecular mechanism of EEF1A2 functionality, a

pull-down experiment was conducted in A549 and PC9 cells, and
potential interaction protein partners of EEF1A2 were identified by
LC-MS. EEF1A2 interaction proteins included EEF1B2 and EEF1G,
and new potential partners, such as HSP90AA1, HSP90AB1 and
XRCC6, among them. Notably, EEF1A2 selectively combined with
XRCC6 and HSP90AB1, although not with HSP90AA1. XRCC6
interacts with BAX to prevent BAX-induced apoptosis in LUAD.48

Inhibition of HSP90 functionality using small molecule inhibitor 17-
allylamino-17-demethoxy-geldanamycin (17AAG) increased TβRI/II
ubiquitylation and degradation, and inhibited TGFβ-induced
phosphorylation and nuclear transport of endogenous SMAD2/3
in melanoma cells.38 The present study filled in the gaps of these
previous reports as we elucidated that EEF1A2 regulated TGF-β/
SMAD signalling and EMT through HSP90AB1. Furthermore, we
demonstrated binding of the EEF1A2 Rossmann-fold topology
domain to the ATP-binding domain of HSP90AB1. HSP90AB1
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belongs to the classical molecular chaperone family of HSP90 that
is associated with the prognosis and evolution of neoplasia, similar
to other HSPs proteins in cancer.49 Upregulation of HSP90AB1 has
been reported in liver and gastric cancer, which activates VEGFR
transcription and stabilises LRP5 through activation of the AKT and
Wnt/β-catenin signalling pathway, leading to carcinogenesis and
invasion.50,51 The present study showed that downregulated
expression of HSP90AB1 decreased TβRI, TβRII, SMAD3, pSMAD3,
N-cadherin and SLUG expression levels, which was enhanced by
the overexpression of EEF1A2. Similarly, downregulation of
HSP90AB1 inhibited cell invasion ability, which was elevated by
EEF1A2. Thus, EEF1A2 interacted with HSP90AB1 to enhance TGF-
β/SMAD signalling activity to promote EMT of LUAD cells.
EEF1A2 is a potential target for cancer treatment. Plitidepsin is

an antitumour agent of marine origin targeting EEF1A2 that has
completed Phase 3 clinical trials for multiple myelomas.52,53

Metarrestin interacts with EEF1A2 to disrupt the perinucleolar
compartment (PNC), and inhibits invasive ability of pancreatic
cancer cells.54 Overexpression of eEF1A2 was associated with
metastasis and poor prognosis of LUAD patients; hence, EEF1A2 is
a potential target for the treatment of aggressive LUAD.

CONCLUSIONS
In conclusion, the present study identified a novel functional role
for EEF1A2 in LUAD metastasis in vitro and in vivo. EEF1A2 is a new
oncogenic partner of HSP90AB1 due to its binding with the
nucleotide binding domain of HSP90AB1. Furthermore, EEF1A2
regulated TβRI and TβRII expression and SMAD3 nuclear expression
based on HSP90AB1 in LUAD cells. Overall, our results revealed that
EEF1A2 interacted with HSP90AB1 to activate SMAD3 signalling
and promote tumour metastasis. Therefore, EEF1A2 is a potentially
new therapeutic target for the treatment of LUAD.
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