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Nintedanib promotes antitumour immunity and shows
antitumour activity in combination with PD-1 blockade
in mice: potential role of cancer-associated fibroblasts
Ryoji Kato1, Koji Haratani1, Hidetoshi Hayashi 1, Kazuko Sakai2, Hitomi Sakai1, Hisato Kawakami 1, Kaoru Tanaka1, Masayuki Takeda1,
Kimio Yonesaka 1, Kazuto Nishio 2 and Kazuhiko Nakagawa1

BACKGROUND: Cancer-associated fibroblasts (CAFs) in the tumour microenvironment (TME) suppress antitumour immunity, and
the tyrosine kinase inhibitor nintedanib has antifibrotic effects.
METHODS: We performed a preclinical study to evaluate whether nintedanib might enhance antitumour immunity by targeting
CAFs and thereby improve the response to immune checkpoint blockade (ICB).
RESULTS: Whereas nintedanib did not suppress the growth of B16-F10 melanoma cells in vitro, it prolonged survival in a syngeneic
mouse model of tumour formation by these cells, suggestive of an effect on the TME without direct cytotoxicity. Gene expression
profiling indeed showed that nintedanib influenced antitumour immunity and fibrosis. Tumoural infiltration of CD8+ T cells and
granzyme B production were increased by nintedanib, and its antitumour activity was attenuated by antibody-mediated depletion
of these cells, indicating that nintedanib suppressed tumour growth in a CD8+ T cell-dependent manner. Moreover, nintedanib
inhibited the proliferation and activation of fibroblasts. Finally, the combination of nintedanib with ICB showed enhanced
antitumour efficacy in B16-F10 tumour-bearing mice.
CONCLUSIONS: Our results suggest that nintedanib targeted CAFs and thereby attenuated the immunosuppressive nature of the
TME and promoted the intratumoural accumulation and activation of CD8+ T cells, with these effects contributing to enhanced
antitumour activity in combination with ICB.
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BACKGROUND
The development of immune checkpoint blockade (ICB) over the
last decade has led to a major shift in cancer treatment for
individuals with a wide range of tumour types. ICB therapy, which
targets receptor–ligand interactions of molecules such as cytotoxic T
lymphocyte-associated protein-4 (CTLA-4) and programmed cell
death-1 (PD-1), thus provides substantial clinical benefit in terms of a
durable response in some patients. However, most patients fail to
respond to ICB,1 with resistance mechanisms being associated with
tumour immunogenicity, antigen presentation, oncogenic signalling
pathways and the tumour microenvironment (TME).1 Characterisa-
tion of the TME is therefore important to provide insight into
mechanisms of ICB resistance and for the development of effective
combination strategies to overcome such resistance.
The TME (also referred to as the tumour stroma) comprises all

the noncancer cell components of a tumour, including fibroblasts,
myeloid-derived suppressor cells, macrophages, lymphocytes,
extracellular matrix (ECM) and intertwined blood vessels formed
by endothelial cells and pericytes.2–4 Such cancer-associated
stromal cells, together with inhibitory cytokines in the TME, give
rise to an immunosuppressive niche in which tumour cells are
protected from antitumour immune cells and thereby promote

failure of ICB therapy.1 Targeting of the TME is thus a promising
approach to increase the efficacy of ICB.1 Indeed, inhibition of
vascular endothelial growth factor (VEGF), which acts on
endothelial cells to stimulate angiogenesis and limits immune
cell activity, was found to be associated with an improved
response to ICB therapy in renal cell carcinoma.5

Fibroblasts in normal tissue are generally quiescent. However,
these cells become activated during cancer development, tumour-
promoting inflammation, and tumour fibrosis.6 Such activated
fibroblasts found in association with cancer are termed cancer-
associated fibroblasts (CAFs), although they are also known as
tumour-associated fibroblasts, myofibroblasts, or reactive stromal
fibroblasts.7 Among the cellular components of the TME, CAFs are
the most abundant and play a key role in cancer progression.4

They contribute to the establishment of an immunosuppressive
TME by influencing antitumour immune cells. Deposition of ECM
components—in particular, fibrillar collagen and fibronectin—by
CAFs in the tumour stroma can result in the formation of a
physical barrier to immune cell infiltration.4,8 In addition, CAFs
release large amounts of growth factors and proinflammatory
cytokines that recruit immunosuppressive cells into the tumour
stroma and thereby promote immune evasion.4,9
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Nintedanib (BIBF1120) is an oral small-molecule inhibitor of
receptor tyrosine kinases including fibroblast growth factor
receptor (FGFR) 1 to 3, platelet-derived growth factor receptor
(PDGFR) α and β, and VEGF receptor (VEGFR) 1 to 3 and has been
approved for the treatment of lung adenocarcinoma as well as
idiopathic pulmonary fibrosis.10,11 In vitro and in vivo experiments
have shown that nintedanib inhibits several steps in the initiation
and progression of lung fibrosis, including the release of
proinflammatory and profibrotic mediators, the migration and
differentiation of fibrocytes and fibroblasts, and the deposition of
ECM.12–14 The antifibrotic activity of nintedanib and immunosup-
pressive role of CAFs suggest that nintedanib might attenuate CAF
activation and enhance antitumour immunity by inhibiting CAF-
mediated immunosuppression, with these effects possibly giving
rise to synergistic antitumour activity in combination with ICB. We
therefore performed a preclinical study to evaluate whether
nintedanib is able to abrogate the immunosuppression associated
with the TME by targeting CAFs and thereby to improve the
tumour response to ICB.

METHODS
Cell lines and reagents
B16-F10, NIH-3T3, A549 and H1703 cells were obtained from
American Type Culture Collection. Cells were maintained under a
humidified atmosphere of 5% CO2 at 37 °C in Dulbecco’s modified
Eagle’s medium (Sigma–Aldrich) for B16-F10 and NIH-3T3 or in
RPMI-1640 medium (Sigma–Aldrich) for A549 and H1703. Each
medium was supplemented with 10% heat-inactivated foetal bovine
serum (FBS) (Biowest) and 1% penicillin–streptomycin–amphotericin
B (Wako). Nintedanib was obtained from ChemScene. Antibodies to
PD-1 (clone RMP1-14) and to CD8 (clone 53–6.7) for in vivo
administration were obtained from Bio X Cell. For examination of the
antifibrotic activity of nintedanib, NIH-3T3 mouse fibroblasts were
stimulated with recombinant transforming growth factor–β1 (TGF-
β1) (R&D Systems) at 5 ng/ml in the presence of various
concentrations of nintedanib either for 48 h for immunoblot analysis
or for 72 h for in vitro assay of cell viability.15–17

Immunoblot analysis
Immunoblot analysis was performed as previously described.18

Cells were seeded at a density of 1.2 × 106/well in six‑well plates,
cultured for 24 h, harvested by exposure to trypsin, washed with
ice-cold phosphate-buffered saline (PBS), and lysed in a solution
containing 25mM Tris-HCl (pH 8.3), 192mM glycine, 0.1% SDS,
and 1mM phenylmethylsulphonyl fluoride. Tumour or normal
tissue was homogenised in the same lysis solution. Cell and tissue
lysates were centrifuged at 12,000 × g for 10 min at 4 °C, and the
resulting supernatant was assayed for protein content with a BCA
Protein Assay Kit (Pierce). Portions (35 μg of protein) of each
sample were subjected to SDS-polyacrylamide gel electrophoresis
(PAGE) on a 7.5% gel, and the separated proteins were transferred
to a nitrocellulose membrane. The membrane was then incubated
overnight at 4 °C with antibodies to VEGFR-2 (1:1000 dilution;
catalog no. 9698, Cell Signaling Technology), to PDGFR-α (1:1000;
3164, Cell Signaling Technology), to FGFR-2 (1:2000; ab10648,
Abcam), to FAP (1:1000; ab28244, Abcam) or to β‑actin (1:100;
A2066, Sigma–Aldrich). Immune complexes were detected with
horseradish peroxidase–conjugated secondary antibodies
(1:10.000; NA934V, GE Healthcare) and enhanced chemilumines-
cence reagents (GE Healthcare). Immunoblots were scanned with
an Amersham Imager 680 (GE Healthcare), and protein band
intensities were quantified with the use of Image J software
(http://rsb.info.nih.gov/ij) and normalised by the loading control.

Cell viability and proliferation assays
For assay of cell viability, B16-F10, H1703, A549 and NIH-3T3
cells were plated in 96-well round-bottomed plates at a density of

2 × 103/well and incubated for 72 h with various concentrations of
nintedanib. Cell viability was then assessed with the use of a
CellTiter-Glo 3D Luminescent Cell Viability Assay (Promega). For
assay of cell proliferation, B16-F10 or NIH-3T3 cells were seeded in
10-cm dishes and exposed to 0.5 or 1 μM nintedanib for 24, 48 or
72 h. The cells were then washed three times with ice-cold PBS,
collected with the use of Accutase solution (BD Biosciences), and
stained with the use of a Zombie Fixable Viability Kit (BioLegend)
for discrimination of live from dead cells. The living cells were
counted with a flow cytometer (LSRFortessa X-20, BD Biosciences)
and normalised by those in untreated cultures.

In vivo experiments
All mice were housed under specific pathogen-free conditions.
Six-week-old female C57BL/6 mice (CLEA Japan) with a body
weight of 16–20 g were injected subcutaneously with 5 × 105 B16-
F10 cells on the right flank. When tumour volume had reached
30–70mm3, mice were randomly assigned to treatment arms. For
analysis of tumour growth and survival, mice received nintedanib
(50 mg/kg) or vehicle orally five times a week. For examination of
the effects of combination treatment, mice received an antibody
to PD-1 (10 mg/kg) intraperitoneally twice a week or a combina-
tion of nintedanib and anti–PD-1. Nintedanib was suspended in
0.5% methylcellulose by ultrasonic treatment and was adminis-
tered intragastrically with a gavage needle. All treatment regimens
were continued for up to 2 weeks. For in vivo depletion of CD8+

cells, an antibody to CD8 (10mg/kg) was administered intraper-
itoneally 2 days before and on the day of the first dose of
nintedanib and then weekly until the end of the experiment.
Tumour volume and body weight were measured twice per week.
Tumour volume was calculated as: 0.5 × length × width2. Mice
were killed by cervical dislocation when tumours became necrotic,
grew to a volume of 1200mm3, or were harvested for analysis.

Microarray analysis
Microarray analysis was performed as described previously.19 Total
RNA was isolated from nintedanib- or vehicle-treated B16-F10
tumours with the use of a RNeasy Mini Kit (Qiagen). RNA yield and
integrity were assessed with a NanoDrop 2000 spectrophotometer
(Thermo Scientific) and an Agilent Bioanalyzer (Agilent Technol-
ogies), respectively. The analysis was conducted with a GeneChip
Mouse Gene 2.0 ST Array (Affymetrix), and data processing and
normalisation were performed with Affymetrix Transcriptome
Analysis Console (TAC) software (v.4.0). Biological interpretation of
gene expression profiles was conducted with the use of DAVID
bioinformatics resources (https://david-d.ncifcrf.gov), Gene Set
Enrichment Analysis (GSEA) 4.0 software, and Ingenuity Pathway
Analysis (IPA) software.

Immunohistochemical analysis and Sirius red staining
Immunohistochemical analysis was performed as previously
described.20 In brief, sections (thickness of 5 µm) of formalin-
fixed, paraffin-embedded tumour tissue were placed in a heat
chamber at 60 °C for 15 min to remove paraffin and then
subjected to blocking of endogenous peroxidase activity followed
by heat-mediated antigen retrieval. After blocking of nonspecific
sites with 5% goat serum and 2.5% bovine serum albumin, the
sections were incubated for 30–60min at room temperature or
overnight at 4 °C with antibodies to CD8 (1:1000 dilution; clone
D4W2Z; catalog no. 98941, Cell Signaling Technology), to CD4
(1:1000; EPR19514; ab183685, Abcam), to granzyme B (1:100;
E5V2L; 44153, Cell Signaling Technology), to α-SMA (1:500; 1A4;
M0851, Dako) or to CD31 (1:300; SZ31; DIA-310, Dianova). Immune
complexes were subsequently detected with an anti-rabbit or anti-
mouse Histofine Simple Stain MAX PO horseradish
peroxidase–conjugated polymer (Nichirei Biosciences) and the
peroxidase substrate AEC (Vector Laboratories). Sections were
counterstained with haematoxylin. For Sirius red staining of
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Fig. 1 Nintedanib shows antitumour efficacy without direct cytotoxicity. a Immunoblot analysis of VEGFR-2, PDGFR-α, FGFR-2 and β-actin
(loading control) in B16-F10 cells. Normal mouse lung tissue served as a positive control for VEGFR-2 expression, as did NIH-3T3 cells for PDGFR-
α and FGFR-2 expression. b Cell viability assay for nintedanib and either B16-F10, H1703 (positive control) or A549 (negative control) cells. Data
are means ± SEM for two independent experiments, each performed with six technical replicates. c Cell proliferation assay for nintedanib and
B16-F10 cells. Cells were treated with 0.5 or 1 μM nintedanib for 24, 48 or 72 h, after which living cells were counted by flow cytometry and
normalised by those in untreated samples. Data are means+ SEM for two independent experiments, each performed with two technical
replicates. No significant differences were apparent between untreated and treated samples at the same treatment time (one-way ANOVA with
Tukey’s correction for multiple comparisons). d Representative immunohistochemical staining of CD8 and CD4 for T cells, CD31 for microvessels
and α-SMA for CAFs as well as representative Sirius red staining of collagen in B16-F10 tumours derived from mice. Scale bars, 100 μm. e Time
course of tumour volume (left) as well as tumour volume at 13 days after treatment initiation (right) for subcutaneous B16-F10 tumours treated
with nintedanib or vehicle (control). Data are means ± SEM for seven or eight tumours in each group. The P value was determined with the
unpaired t-test. f Survival curves for the B16-F10 tumour-bearing mice in e. The P value was determined with the log-rank test.
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collagen, sections were exposed to Direct Red 80 (Sigma–Aldrich).
All slides were examined with a BZ-X700 microscope (Keyence) or
a Nanozoomer scanner (Hamamatsu). For quantification of CD8+

or CD4+ tumour-infiltrating lymphocytes (TILs), the intra- and
peritumoural borders were identified by haematoxylin-eosin
staining and observation at low magnification (×4 objective lens).
Five nonoverlapping fields were then randomly selected for each
of the intratumoural and peritumoural regions, the slides were
examined at high magnification (×20 objective lens), the number
of TILs was counted with the use of Image J software, and the
average number of TILs was determined for both intratumoural
and peritumoural tissue. For quantification of granzyme B and α-
SMA immunoreactivity as well as collagen staining, five non-
overlapping fields were randomly selected, the slides were
examined at high magnification (×20 objective lens), the positive
area (%) was measured after setting up a threshold with the use of
Image J software, and the average positive area was determined.
For quantification of CD31 immunoreactivity, the number of
microvessel structures was determined in a manner similar to that
for quantification of CD8+ and CD4+ TILs.

ELISA for FGF-2
The concentration of fibroblast growth factor–2 (FGF-2) was
measured with the use of a mouse FGF enzyme-linked immuno-
sorbent assay (ELISA) kit (R&D Systems). Cells were plated at a
density of 1.2 × 106/well in six-well plates, cultured for 24 h, and
then incubated in serum-free medium for an additional 24 h, after
which the medium was collected for assay of FGF-2 and the cells
were lysed in Cell Lysis Buffer 2 (R&D Systems). Tumour and
normal tissue resected from mice was homogenised in 300 μl of
PBS and 300 μl of Cell Lysis Buffer 2. Both cell and tissue lysates
were centrifuged at 12,000 × g for 10min at 4 °C, and the resulting
supernatants were assayed for FGF-2. The amount of FGF-2 was
normalised by the amount of total input protein.

Flow cytometric analysis
Flow cytometric analysis was performed as previously described.21

Tumour or normal skin tissue resected from mice was mechanically
dissociated and digested with the use of a gentleMACS system
(Miltenyi) and by exposure to collagenase type IV (200 U/ml,
Sigma–Aldrich) and DNase I (100 μg/ml, Sigma–Aldrich), and a
single-cell suspension was obtained by passage of the dissociated
and digested tissue through a 70-μm cell strainer. The cells were
washed three times with ice-cold PBS and then exposed to Fc block
(2.4G2, BD Pharmingen). In the case of cultured cells, the cells
were dissociated with the use of Accutase solution (BD Biosciences).
The tissue-derived and cultured cells were then stained first with the
use of a Zombie Fixable Viability Kit (BioLegend) for discrimination of
live from dead cells and then with antibodies to surface marker
proteins. They were washed twice with Stain Buffer containing FBS
(BD Biosciences) before flow cytometry. Antibodies to the following
proteins were used: CD45 (clone 30-F11; catalog no. 103149,
BioLegend), CD31 (390; 102423, BioLegend) and FAP (ab28244,
Abcam). Goat secondary antibodies to rabbit immunoglobulin G (A-
10931, Invitrogen) were used for detection of mouse FAP. All
antibodies were diluted with Stain Buffer containing FBS. Flow
cytometry was performed with an LSRFortessa X-20 instrument (BD
Biosciences), and the data were analysed with FlowJo software.
Fluorescence minus one (FMO) controls and corresponding isotype
controls were included for each analysis. See Supplementary Fig. 1
for the gating strategy.

Statistical analysis
Data are presented as means ± SEM unless indicated otherwise.
Continuous variables were compared between two groups with
the unpaired t-test or among more than two groups by one-way
analysis of variance (ANOVA) with Tukey’s correction for multiple

comparisons. Differences in survival curves constructed by the
Kaplan–Meier method were assessed with the log-rank test.
Missing data were not imputed. All statistical analysis was
performed with JMP software version 10.0.2 (SAS Institute). Data
were graphically depicted with GraphPad Prism 8.3 (GraphPad
Software). P values were based on a two-sided hypothesis, and
those of <0.05 were considered statistically significant.

RESULTS
Nintedanib manifests antitumour efficacy without direct
cytotoxicity
We first examined expression of the key molecular targets of
nintedanib in B16-F10 mouse melanoma cells. Immunoblot
analysis revealed that VEGFR-2, PDGFR-α and FGFR-2 were
essentially undetectable in these cells (Fig. 1a). We next evaluated
the antitumour efficacy of nintedanib in vitro and found that it did
not attenuate the viability of B16-F10 cells or that of A549 human
lung adenocarcinoma cells (examined as a negative control) at
concentrations up to 1 µM (Fig. 1b).22 Nintedanib did attenuate
the viability of H1703 human lung squamous cell carcinoma cells
(Fig. 1b), which served as a positive control on the basis of the
previous detection of FGFR1 and PDGFRA amplification in these
cells22,23 and of our finding that they express PDGFR-α and FGFR-2
(Supplementary Fig. 2). We also found that nintedanib did not
inhibit the proliferation of B16-F10 cells (Fig. 1c). These results thus
indicated that nintedanib does not show direct cytotoxicity for
B16-F10 cells.
Given that regulation of the TME by nintedanib might be

expected to have an antitumour effect,13 we performed in vivo
experiments with a syngeneic mouse tumour model established
by subcutaneous injection of B16-F10 cells. We first examined B16-
F10 tumour tissue resected from mice for TME components
including infiltrating immune cells, vasculature, CAFs, and collagen
produced by fibroblastic cells. Histopathologic analysis indeed
revealed the presence in B16-F10 tumours of CD8+ and CD4+

T cells, CD31+ microvessel structures, α–smooth muscle actin (α-
SMA)–positive CAFs, and collagen (stained with Sirius red) (Fig. 1d).
We further found that nintedanib treatment did not influence the
number of CD31+ microvessel structures in this model (Supple-
mentary Fig. 3), although it has been shown to possess marked
antiangiogenic activity.22 Nintedanib treatment resulted in a
marked delay in tumour growth (Fig. 1e) and significantly
prolonged the survival of the model mice (Fig. 1f) compared with
vehicle treatment. No loss of body weight was observed during
the course of nintedanib treatment, suggestive of a lack of health-
related toxicity. Given that nintedanib did not show a direct
antiproliferative effect on B16-F10 cells in vitro, its antitumour
efficacy in vivo might thus be mediated by effects on cellular
components of the tumour stromal compartment such as immune
cells or CAFs.

Gene expression profiling reveals effects of nintedanib on
antitumour immunity and fibrosis
To evaluate the effects of nintedanib on the TME, we first
performed gene expression profiling by microarray analysis for
B16-F10 tumours treated with vehicle or nintedanib for 7 days.
Differential expression analysis revealed that the expression of 175
genes was upregulated (>1.5-fold change) and that of 57 genes
was down-regulated (<0.67-fold change) in nintedanib-treated
tumours compared with vehicle-treated tumours. An unbiased
DAVID gene ontology (GO) analysis of upregulated genes in
nintedanib-treated tumours relative to control tumours showed
that the top 20 biological processes included categories related to
immune responses and responses to interferon (Fig. 2a; Supple-
mentary Fig. 4). GSEA revealed that, whereas highly upregulated
gene signatures in nintedanib-treated tumours included those
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related to interferon responses (Fig. 2b, c), gene signatures related
to fibroblasts were highly down-regulated in nintedanib-treated
tumours (Supplementary Fig. 5). IPA for canonical pathways
showed that genes whose expression was altered in nintedanib-
treated tumours were significantly associated with pathways
related to immunity and fibrosis (Fig. 2d). Collectively, these
findings suggested that nintedanib influenced antitumour immu-
nity and stromal fibroblasts in the TME.

Nintedanib promotes antitumour immunity in B16-F10 tumours
To address further the notion that nintedanib influences the TME,
we next focused on CD8+ T cells, which play a key role in the TME.
We thus counted the number of CD8+ lymphocytes in both
intratumoural and peritumoural tissue of B16-F10 tumours by
immunohistochemical analysis (Fig. 3a, b). The number of CD8+

cells in both intratumoural and peritumoural regions was
significantly higher for nintedanib-treated tumours than for
vehicle-treated tumours (Fig. 3c). To evaluate whether such
CD8+ T cells are required for the observed antitumour effect of

nintedanib, we treated B16-F10 tumour-bearing mice with an
antibody to CD8. Depletion of CD8+ T cells indeed impaired the
antitumour efficacy of nintedanib (Fig. 3d). We also examined
immunoreactivity for granzyme B, a marker of T cell activation,
and detected an increase in granzyme B production in nintedanib-
treated tumours compared with vehicle-treated tumours (Fig. 3e;
Supplementary Fig. 6). The number of CD4+ lymphocytes did not
differ between nintedanib-treated and vehicle-treated tumours
(Supplementary Fig. 7). Together, these observations indicated
that activated CD8+ T cells contribute to the antitumour efficacy
of nintedanib.

Nintedanib inhibits the proliferation and activation of fibroblasts
CAFs are the most abundant cell population in the TME and
restrict the infiltration of CD8+ cells into tumour tissue, and
nintedanib possesses antifibrotic activity.4,12,14,24 These previous
findings and our results showing that nintedanib increased the
number of CD8+ TILs in B16-F10 tumours suggested that
nintedanib might promote the antitumour immune response by
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Fig. 2 Gene expression profiling reveals that nintedanib influences antitumour immunity and fibrosis. a Gene ontology (GO) analysis by
DAVID of upregulated genes (>1.5-fold change in expression) in nintedanib-treated versus vehicle-treated (control) B16-F10 tumours (n= 4 for
each) as determined by microarray analysis. The top five significantly enriched biological processes are listed. The P values were determined
by Fisher’s exact test, with the Bonferroni correction being applied for multiple comparisons. b GSEA of upregulated gene signatures in
nintedanib-treated versus control tumours (n= 4 for each) as determined by microarray analysis. The top five gene signatures from the
Hallmark collection of MSigDB are listed. FDR, false discovery rate. c GSEA plot of enrichment for the gene signature related to the interferon-γ
response from MSigDB for nintedanib-treated versus control tumours (top) as well as a heat map for genes in this signature for each of the
four tumour replicates in each group (bottom). d Top 20 significant canonical pathways identified by IPA for nintedanib-treated versus control
tumours. Orange and blue bars represent activated and inhibited pathways, respectively, whereas grey bars indicate no overall change in
pathway activity but a highly significant association of individual genes in the pathway. P values were corrected for multiple testing with the
Benjamini–Hochberg (B–H) method, with the vertical red line indicating a B–H–corrected P value of 0.05.
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targeting CAFs. To explore this hypothesis, we first evaluated the
antifibrotic activity of nintedanib with NIH-3T3 mouse fibroblast
cells. Immunoblot analysis revealed that these cells express both
PDGFR-α and FGFR-2 but not VEGFR-2 (Fig. 1a; Supplementary
Fig. 8), suggesting that nintedanib is a potential targeted agent for
these cells. We found that nintedanib attenuated the viability and
proliferation of NIH-3T3 cells stimulated with TGF-β1 (Fig. 4a, b), a
profibrotic cytokine that activates fibroblasts by triggering their
conversion to myofibroblasts.15 We further explored whether
nintedanib might affect the activation of fibroblasts in vitro by
assessing the expression of fibroblast activation protein (FAP),
which is selectively expressed at a high level on myofibroblasts.25

Immunoblot analysis revealed that treatment with nintedanib
induced a concentration-dependent reduction in FAP expression
in TGF-β1–stimulated NIH-3T3 cells (Fig. 4c). Our in vitro results

thus showed that nintedanib inhibits both the proliferation and
activation of fibroblasts.
To verify the antifibrotic effects of nintedanib in vivo, we first

evaluated whether FAP could be detected in the B16-F10 tumour
stroma. Immunoblot analysis detected FAP in lysates of B16-F10
tumours but not in those of cultured B16-F10 cells (Fig. 4d),
suggesting that FAP-expressing CAFs are present in tumour stromal
tissue. Flow cytometric analysis also revealed the presence of FAP in
B16-F10 tumour tissue resected from mice, but not in B16-F10 cells
cultured in vitro (Supplementary Fig. 9), supporting the notion that
the B16-F10 tumour stroma contains FAP+ CAFs. Moreover, an ELISA
showed that FGF-2, which is secreted by CAFs,12 was present in B16-
F10 tumour lysates but not in lysates or conditioned medium of B16-
F10 cells cultured in vitro (Supplementary Fig. 10), suggesting that
CAFs in the tumour stroma are functional in terms of FGF-2
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production. We explored whether nintedanib might affect the
number of FAP+ CAFs in B16-F10 tumours by performing flow
cytometric analysis. Such analysis revealed that the number of FAP+

CAFs was significantly reduced in tumours from nintedanib-treated
mice compared with those from control mice (Fig. 4e). Immunohis-
tochemical analysis also showed that nintedanib treatment reduced
the number of α-SMA+ CAFs as well as the extent of collagen
deposition in B16-F10 tumours (Fig. 4f; Supplementary Fig. 11).

Furthermore, immunoblot analysis revealed that FAP expression was
significantly reduced in tumours from nintedanib-treated mice
compared with those from control mice (Fig. 4g). Together, these
findings indicated that FAP+ CAFs that express FGF-2 are present in
the B16-F10 tumour stroma and that nintedanib efficiently blocks the
proliferation and activation of these cells, with these effects possibly
leading to attenuation of the immunosuppression exerted by the TME
and an increase in the infiltration and activation of CD8+ TILs.
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Increased antitumour efficacy of combined treatment with
nintedanib and PD-1 blockade in vivo
Anticancer agents that target immunosuppression in the TME
have recently been shown to promote the antitumour immune
response and to enhance the efficacy of immunotherapy.5,26 We
therefore hypothesised that nintedanib might be a rational
partner for ICB therapy. To address this possibility, we investigated
the antitumour efficacy of the combination of nintedanib with an
antibody to PD-1 in the B16-F10 syngeneic mouse model. The
combination treatment resulted in a significant delay in tumour
growth compared with either nintedanib or PD-1 blockade alone
(Fig. 5a). No pronounced toxicity such as loss of body weight was
observed for mice in any of the four treatment groups.
Immunohistochemical analysis showed that the combination
treatment increased both the number of CD8+ TILs and granzyme
B production in B16-F10 tumour tissue compared with treatment
with nintedanib alone (Fig. 5b, c). Overall, these results suggested
that nintedanib increased the sensitivity of tumours to PD-1
blockade therapy by promoting immune activation.

DISCUSSION
Our in vitro and in vivo results have suggested that nintedanib
exerts indirect antitumour activity in B16-F10 tumour-bearing
mice by targeting the TME including immune cells and fibroblasts.
This activity thus appeared to be mediated by promotion of the
infiltration and activation of CD8+ TILs and suppression of the
proliferation and activation of CAFs. Nintedanib also showed
enhanced antitumour efficacy in combination with PD-1 blockade.
Growth factors such as platelet-derived growth factor (PDGF),

FGF and VEGF are important drivers of fibrosis, with this effect
being mediated by binding of these factors to their corresponding
receptors on fibroblasts and consequent stimulation of the
proliferation of these cells.12,27,28 Nintedanib binds competitively
to the ATP binding pocket of these receptors and thereby inhibits
the ligand-induced proliferation of lung fibroblasts.12–14 This
antiproliferative effect of nintedanib is not limited to the lung,
however, with this agent also having been shown to attenuate the
PDGF-induced proliferation and migration of dermal fibroblasts
derived from individuals with systemic sclerosis.24 In the clinical
setting, treatment with nintedanib has been found to slow disease
progression in patients with idiopathic pulmonary fibrosis by
attenuating the loss of lung function.11 On the basis of the
experimental results showing that it inhibits fundamental
processes of fibrosis regardless of the organ and its established
antifibrotic clinical efficacy in patients with fibrosis-related disease,
nintedanib has been investigated as a potential targeted agent for
CAFs. A preclinical study thus showed that nintedanib inhibited

both the proliferation and activation of patient-derived lung CAFs
in vitro,15 a finding consistent with our present data.
Various therapeutic strategies have been developed for FAP-

expressing CAFs or their functional mediators. Genetic ablation or
pharmacological inhibition of FAP resulted in a reduction in the
extent of myofibroblast infiltration and was associated with slower
tumour growth in preclinical models.29 FAP+ CAFs were also shown
to induce immunosuppression by excluding CD8+ T cells from the
TME in a manner dependent on CXCL12-CXCR4 signalling; inhibitors
of the chemokine receptor CXCR4 thus induced T cell accumulation
and acted synergistically with an inhibitor of the PD-1 ligand PD-L1
in a mouse model of pancreatic cancer.30 Moreover, dipeptidyl
peptidase 4 (DPP4) expressed on CAFs was shown to dimerise with
FAP and thereby to interact with regulatory T cells to suppress the
immune response.31,32 Blockade of DPP4 with the anti-diabetic drug
sitagliptin increased the number of effector T cells and reduced
tumour growth in mice.31,33 These previous studies have demon-
strated that FAP+ CAFs confer an immunosuppressive environment
and that elimination of these cells promotes the antitumour
immune response. They therefore support our suggestion that
targeting of FAP+ CAFs with nintedanib might alleviate CAF-
mediated immunosuppression in the TME and thereby promote the
accumulation of CD8+ TILs.
A Phase 1b/2 clinical trial of patients with advanced non–small

cell lung cancer, including some who had been previously treated
with ICB therapy, recently showed that the combination of
nintedanib with the PD-1 inhibitor nivolumab and the CTLA-4
inhibitor ipilimumab was well tolerated and conferred clinical
benefit, with 2 (17%) of 12 patients achieving a partial response
(ClinicalTrials.gov identifier NCT03377023).34 One (14%) of seven
patients who experienced disease progression after prior ICB
therapy also achieved a partial response to the combination
treatment,34 suggesting that this regimen has the potential to
overcome ICB resistance. In addition, a basket Phase 1 study of
patients with advanced solid tumours found that the combination
of nintedanib and the PD-1 inhibitor pembrolizumab exerted a
substantial antitumour effect, with a response rate of 25% (3 of 12
patients) (NCT02856425).35 In a cohort of patients with malignant
pleural mesothelioma, 6 (21%) individuals achieved a partial
response to this regimen.36 Our preclinical data show that the
combination of PD-1 blockade and nintedanib as a CAF-targeted
agent had an enhanced antitumour effect, supporting the
rationale for these ongoing trials.
In conclusion, our findings indicate that nintedanib promotes

antitumour immunity by targeting CAFs, and that the combination
of nintedanib and PD-1 blockade shows enhanced antitumour
efficacy. Clinical evaluation of nintedanib as a CAF-targeted agent
in combination with antibodies to PD-1 is thus warranted.

Fig. 4 Nintedanib inhibits both the proliferation and activation of fibroblasts. a Cell viability assay for nintedanib and either NIH-3T3 cells
treated with TGF-β1, H1703 cells (positive control) or B16-F10 cells (negative control). Data are means ± SEM for two independent experiments,
each performed with six technical replicates. b Cell proliferation assay for nintedanib and TGF-β1–stimulated NIH-3T3 cells. The cells were
treated with 0.5 or 1 μM nintedanib for 24, 48 or 72 h, after which living cells were counted by flow cytometry and normalised by those in
untreated samples. Data are means+ SEM for two independent experiments, each performed with two technical replicates. P values were
determined by one-way ANOVA with Tukey’s correction for multiple comparisons and are shown only if <0.05. c Immunoblot analysis of FAP
and β-actin (loading control) (left) as well as densitometric quantification of the FAP/β-actin ratio (right) for NIH-3T3 cells stimulated with TGF-
β1 and exposed to the indicated concentrations of nintedanib. The quantitative data are means+ SEM for two independent experiments.
P values were determined by one-way ANOVA with Tukey’s correction for multiple comparisons. d Immunoblot analysis of FAP and β-actin in
lysates of cultured B16-F10 cells, B16-F10 tumour tissue, and normal mouse skin tissue (positive control). e Flow cytometric analysis of FAP+

cells in B16-F10 tumours derived from mice treated with vehicle or nintedanib for 7 days. Data are expressed as number of FAP+ cells per
milligram of wet tumour weight and are means ± SEM for six mice per group. The P value was determined with the unpaired t-test.
f Representative immunohistochemical staining of α-SMA and Sirius red staining of collagen (left) as well as the corresponding percentage
positive areas (right) for B16-F10 tumours derived from mice treated with vehicle or nintedanib for 7 days. Scale bars, 100 μm. The quantitative
data are means ± SEM for five or six mice per group. The P values were determined with the unpaired t-test. g Immunoblot analysis of FAP and
β-actin (left) as well as densitometric quantification of the FAP/β-actin ratio for lysates of B16-F10 tumour tissue derived from mice treated with
vehicle or nintedanib for 7 days. The quantitative data are means ± SEM for five mice per group. The P value was determined with the
unpaired t-test.
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