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EMTome: a resource for pan-cancer analysis of epithelial-
mesenchymal transition genes and signatures
Suhas V. Vasaikar1, Abhijeet P. Deshmukh 1, Petra den Hollander1, Sridevi Addanki1, Nick Allen Kuburich1, Sriya Kudaravalli1,
Robiya Joseph1, Jeffrey T. Chang2, Rama Soundararajan1 and Sendurai A. Mani 1

BACKGROUND: The epithelial-mesenchymal transition (EMT) enables dissociation of tumour cells from the primary tumour mass,
invasion through the extracellular matrix, intravasation into blood vessels and colonisation of distant organs. Cells that revert to the
epithelial state via the mesenchymal-epithelial transition cause metastases, the primary cause of death in cancer patients. EMT also
empowers cancer cells with stem-cell properties and induces resistance to chemotherapeutic drugs. Understanding the driving
factors of EMT is critical for the development of effective therapeutic interventions.
METHODS: This manuscript describes the generation of a database containing EMT gene signatures derived from cell lines, patient-
derived xenografts and patient studies across cancer types and multiomics data and the creation of a web-based portal to provide a
comprehensive analysis resource.
RESULTS: EMTome incorporates (i) EMT gene signatures; (ii) EMT-related genes with multiomics features across different cancer
types; (iii) interactomes of EMT-related genes (miRNAs, transcription factors, and proteins); (iv) immune profiles identified from The
Cancer Genome Atlas (TCGA) cohorts by exploring transcriptomics, epigenomics, and proteomics, and drug sensitivity and (iv)
clinical outcomes of cancer cohorts linked to EMT gene signatures.
CONCLUSION: The web-based EMTome portal is a resource for primary and metastatic tumour research publicly available at
www.emtome.org.
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BACKGROUND
Transdifferentiation between epithelial and mesenchymal states
is a fundamental cellular process necessary during embryonic
development.1,2 During epithelial-mesenchymal transition (EMT),
epithelial cells lose tight cell–cell connections and polarity, which
confers migratory and invasive properties. In the reverse process
referred to as mesenchymal-epithelial transition (MET), cells loose
migratory freedom, begin expressing junction complexes and
adopt apicobasal polarity.3 EMT and MET are critical for embryonic
development, tissue regeneration and wound healing but also
contribute to organ fibrosis, cancer progression and metastasis.4,5

It is now widely accepted that EMT and MET are activated
during cancer progression. The EMT confers properties that result
in dissociation of tumour cells from the primary tumour mass,
invasion through the extracellular matrix, intravasation into blood
vessels and colonisation of distant organs, and re-activation of
epithelial properties at the secondary site via the MET cause
metastases, the primary cause of death in cancer patients (Fig. 1a).
Identifying the EMT state in a tumour is a challenging process due
to the transient and reversible nature of the process. The
expression of E-cadherin, Epcam, claudins, occludins and cytoker-
atins are commonly used markers of the epithelial state, whereas
expression of vimentin (VIM), fibronectin and α-SMA are markers

of the mesenchymal state.6 EpCAM-based enrichment techniques
are commonly used to detect epithelial tumour progression;
however, these markers fail to enrich for tumour cells that have
undergone EMT such as circulating tumour cells of prostate
cancer, ovarian and breast cancer.7

In 1994, Miettinen et al. showed that the treatment of cuboidal
epithelial cells with TGF-β reversibly induced differentiation into a
fibroblast-like phenotype.8 Molecular dissection identified SMAD
signalling as the driving force for this differentiation; SMAD
regulates the repression of epithelial markers and activation of
mesenchymal markers.9 In addition to TGF-β, Snail, Slug, E12/E47,
ZEB-1 and SIP-1 regulate EMT in different cancer cell lines.10,11 We
have previously shown that transcription factors Twist and FOXC2
also play critical roles in EMT and metastasis of breast
tumours.12,13 SNAI1/2, PRRX1, EZH2 and miRNAs such as the
miR-200 family, miR-34 and miR-141 are important during the EMT
as well.2,14 These trans-regulatory factors drive EMT through
feedback and feedforward mechanisms. Tumour cells that have
undergone EMT exhibit stem-cell-like properties, including the
ability to self-renew, tumour-initiation properties and resistance to
chemotherapy and radiotherapy. Ovarian cancer cells express
EMT-related genes as well as stem-cell markers such as CD44,
ALDH1A1, Nanog, SOX2, Notch1/4, Oct4 and Lin28, and these
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markers can be used to identify metastatic and therapy-resistant
tumours.15

Our understanding of EMT has increased substantially over the
last decade, but the process of MET in the later stages of
metastasis is less well characterised.16 The overexpression of the
fibroblast growth factor receptor FGFR2IIIC in a bladder cancer cell
line resulted in MET,17 and in the breast cancer cell line (MDA-MB-
231), overexpression of ERp29 lead to MET transition with loss of
mesenchymal markers and induced expression of E-cadherin.18

Downregulation of MMP-7 and laminin-5γ2 and resurgent
E-cadherin expression, indicative of MET, was observed in lung
parenchyma metastatic cells.19 Moreover, multiple lines of
evidence suggest that the cellular machinery required for EMT
induction is closely related to that necessary for MET including
TGF-β superfamily members, bone morphogenetic proteins
(BMP2, BMP7), AKT, WIF1 and FZD4.20–24 miRNAs also contribute
to MET. For example, in oesophageal squamous cell carcinoma,
miR-150 induces MET-like changes by inducing degradation of

Zeb-1 mRNA, inhibiting tumorigenicity and tumour growth in a
mouse xenograft model.25 Research on the EMT and MET has also
uncovered numerous novel signalling pathways, including TGF-β,
Wnt, Notch, Hedgehog and PI3K pathways, that facilitate EMT in
tumour cells.16,22

Given the complexity of the EMT and MET transition process,
understanding the true driving factors and nature of epithelial and
mesenchymal states remains a major challenge in the research
community. Although our understanding of the epithelial and
mesenchymal state is based on molecular and phenotypic data
available in the public domain, the information is scattered in the
literature. While existing EMT databases such as dbEMT and EMT-
Regulome provide a resource for the understanding EMT, their
usage across cancers, and cross interrogation with other omics
platforms is limited.26,27 In light of this, we gathered available
signatures associated with EMT and MET transition from the
literature. For example, we reported the derivation of an EMT core
signature by overexpressing EMT-inducing TFs in breast tumour
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Fig. 1 Schematic overview of the EMTome. a The transformation between epithelial and mesenchymal cells during cancer metastasis is
orchestrated through multiple genomic changes that eventually lead to primary site escape, intravasation and formation of a tumour at a
secondary site. b Schematic of the EMTome database. The EMT core signature module allows the user to explore EMT signatures and the
markers associated with each signature across cancer types. The EMT-related gene retrieval module can be used to explore EMT-related genes
for changes at the transcriptomic, epigenomic or proteomic level. The EMT-related gene interactome module can be used to search for
significant associations between gene RNA expression and the transcriptomic landscape, copy number events, methylation, miRNA and
proteins (RPPA). The fourth module is the EMT-signature score module. c The EMT-signature score module facilitates calculation of correlations
between the normalised EMT score and RNA expression, survival comparisons across cancer types, and evaluation of genetic dependency of
EMT-related genes and available drug sensitivity information.
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cell lines, which correlated strongly with poor survival of breast
cancer patients.28 In prostate cancer, a signature of 49 genes was
identified in CTCs, which were associated with metastatic
castration-resistant prostate cancer.29 In 113 colon cancer patients,
33 molecular determinants were associated with an EMT
signature.30 Meta-analysis of 54 lung cancer (NSCLC) cell lines
identified a 76 gene EMT signature that classified cell lines into
distinct epithelial- and mesenchymal-like groups independent of
array platform.31 Soundararajan et al., reported a cell plasticity
associated novel prognostic gene expression signature derived
from mouse embryonic day 6.5.32 Metabolic analysis has further
identified a unique panel of metabolites associated with EMT in
breast cancer cell lines.33 A pan-cancer analysis identified a 77
gene signature from 11 cancer types (TCGA, n= 1104) associated
with EMT and its clinical relevance.34 Whereas, interrogating
the EMT spectrum in ovarian cancer revealed a 33 gene EMT
signature associated with an intermediate subgroup with worse
progression-free survival.35 Single-cell analysis from 18 head and
neck squamous cell carcinoma (HNSCC) patients identified a gene
signature for partial EMT (p-EMT) used to differentiate samples
with an adverse phenotype.36 Although the expression of markers
or signatures was widely used to determine the EMT and MET
state in a given cancer type, our understanding is still limited.
To serve the need for a comprehensive EMT multiomics

platform for the research community in primary and metastatic
research, we developed the EMTome portal. The EMTome includes
EMT and MET related genes and signatures across cancer types,
possible interacting partners, including miRNAs, transcription
factors and kinases. We used publicly available data from Cancer
Cell Line Encyclopedia (CCLE),37 the Cancer genome atlas (TCGA)
cancer cohorts consisting of more than 10,000 patients with
primary or metastasis cancer, and metastatic cohort (MET500)38 to
explore transcriptomics, epigenomics, mutation, immunome and
clinical relevance of identified genes/signatures. Apart from
genomic features, EMTome helps to interrogate genetic depen-
dency based on CRISPR/CAS9 dataset39 and drug sensitivity from
the genomics of drug sensitivity (GDSC).40 EMTome is the first of
its kind, to our knowledge, providing a unique platform to the
research community to query, access, and analyse EMT/MET
signatures across cancer cohorts.

METHODS
EMT/MET core signatures
We identified and collected EMT/MET gene signatures from the
literature. We used the terms “(Epithelial OR Mesenchymal) AND
(EMT OR MET) AND signature AND Cancer” to search the PubMed
database for all relevant articles. We retrieved 445 publications
(searched Jan 24, 2020) with the EMT-signature term from more
than 27,000 publications on EMT (Fig. S1a, Dataset 3), and
identified EMT signatures with a minimum of three genes as the
cut-off. Signature information and genes associated with the
signature were retrieved from the articles by one of the authors. In
total, 810 protein-coding and 122 noncoding genes have been
associated with EMT/MET. The database is gene/protein-centric
with gene information retrieved from NCBI with the Entrez Gene
symbol as the key identifier. Furthermore, EMT-related genes not
found in the signature, but identified in the literature, were
collected using GLAD4U41 with the search query “Epithelial-
mesenchymal transition, EMT, cancer”. In total, 314 genes were
selected from 4,499 publications using a hypergeometric test to
rank genes.

Cell line RNA expression dataset
We retrieved the RNA expression dataset for cell lines from the
Cancer Cell Line Encyclopedia (CCLE).37 The dataset consists of
RNA-seq gene expression data from 1019 cell lines at RNA-Seq by
Expectation-Maximization (RSEM) transcripts per million level. The

cell lines were developed from different cancers: acute myeloid
leukaemia, B-cell lymphoma, breast, cervix, colorectal, endome-
trium, oesophagus, glioma, kidney, liver, non-small-cell lung, small
cell lung, Burkitt’s lymphoma, medulloblastoma, melanoma,
mesothelioma, multiple myeloma, neuroblastoma, osteosarcoma,
ovary, pancreas, prostate, stomach, T-cell acute lymphoblastic
leukaemia, T-cell lymphoma, thyroid, upper aerodigestive and
urinary tract (https://portals.broadinstitute.org/ccle).

TCGA patient multiomics dataset
We downloaded patient genomic, epigenomic, and transcriptomic
data for 32 TCGA cancer types from the Firehose of the Broad
Institute (http://gdac.broadinstitute.org/, January 2016 version).
The datasets include mutation, copy number alteration (CNA),
methylation, mRNA expression, miRNA expression and reverse-
phase protein array (RPPA) data, which are normalised. Clinical
data with overall survival time, vital status and tumour stage were
also extracted. Cancer cohorts included were: adrenocortical
carcinoma, bladder urothelial carcinoma, breast invasive carci-
noma, cervical and endocervical cancers, cholangiocarcinoma,
colon cancer, lymphoid neoplasm diffuse large B-cell lymphoma,
oesophageal carcinoma, glioblastoma multiforme, head and neck
squamous cell carcinoma, kidney chromophobe, kidney renal clear
cell carcinoma, kidney renal papillary cell carcinoma, acute
myeloid leukaemia, brain lower-grade glioma, liver hepatocellular
carcinoma, lung adenocarcinoma, lung squamous cell carcinoma,
mesothelioma, ovarian serous cystadenocarcinoma, pancreatic
adenocarcinoma, pheochromocytoma and paraganglioma, pros-
tate adenocarcinoma, rectal adenocarcinoma, sarcoma, skin
cutaneous melanoma, stomach adenocarcinoma, testicular germ
cell tumours, thyroid carcinoma, thymoma, uterine corpus
endometrial carcinoma, uterine carcinosarcoma, uveal melanoma.
The pan-cancer batch effect normalised RNA expression (log2
(normalised value+1)), immune phenotype annotation,42 stem-
ness score43 and curated survival endpoints44 were retrieved from
XENA (https://xenabrowser.net/).

Metastatic cancer patient data
Data on 500 cancer patients with metastatic disease from 30
primary sites and biopsied from 22 organs was obtained from
MET500 dataset using XENA.38 The RNA expression for 868 cases
was available in fragments per kilobase of exon model per million
reads mapped format.

Signature-derived normalised enrichment score (NES)
The cancer hallmark enrichment score for each patient in a cancer
cohort was inferred by the ssGSEA method implemented in GSVA
using a hallmark signature from MSigDB (http://software.
broadinstitute.org/gsea/msigdb, v7.0).45 Immune abundance was
inferred for each patient using geneset markers previously
published.46 An EMT-signature score was calculated using EMT-
signature genes obtained from relevant articles. We used the
geneset enrichment analysis (GSEA) method to calculate the EMT-
signature score (EMT NES), for this we used RNA-seq data (RSEM,
gene-level log2-transformed) from the relevant cancer type
(TCGA). Over-representation of cancer hallmark gene enrichment
analysis was performed using WebGestalt,47 and gene ontology
enrichment was performed using Metascape.48 The KEGG pathway
analysis was performed using clusterProfiler v3.11.49

CRISPR/Cas9 loss-of-function and drug screening data
The gene dependency data collected by Project Achilles
was obtained from the Cancer Dependency Map to interrogate
EMT-related gene-based cancer vulnerabilities across cancer types.
The data consist of an in vitro study of genetic dependencies in
cancer cell lines using CRISPR/Cas9 loss-of-function screens
(https://depmap.org).39 Further, the cancer cell line sensitivity to
various drugs was obtained from The Genomics of Drug Sensitivity
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of Cancer (GDSC) database (Release 8.2, 2020).40 The data consists
of drug sensitivity data of 988 cancer cell lines and 518
compounds from GDSC1 and GDSC2 datasets. The IC50 values in
cancer cell lines categorised into primary or metastatic pheno-
types were extracted.

Survival analysis
Normalised gene expression was categorised into low and high
expression based on the average expression. Curated survival
endpoints used for analysis each gene expression profile were
overall survival (OS), disease-specific survival (DSS), disease-free
interval (DFI) and progression-free interval (PFI).44 The hazard
ratios across cancer types were shown in dumb-bell plot. To
compare survival response across EMT signatures and cancer
types, we used normalised enrichment score of the EMT signature
and categorised into low and high expression based on the
median. For overall survival we focused on 33 cancer types of
TCGA cohorts. While for progression-free interval (PFI) survival we
focused on 32 cancer types due to unavailability of Acute Myeloid
Leukaemia (LAML) PFI. Univariate Cox proportional hazards
models were fitted to calculate the hazard ratios using coxph
function in the Survival package (version 2.44).

Statistical analysis
The statistical analyses were performed using the computing
environment R (3.5.2). The correlations between hallmark or
immune cell abundance were determined in pan-cancer using
Spearman’s correlation function implemented in R. The correlation
coefficient and p values were retrieved. In all cases, p values less
than 0.05 were considered statistically significant.

Implementation
The EMTome web interface was developed using HyperText
Markup Language (HTML) and the Hypertext Preprocessor (PHP).
Users can access the webpage through the web link www.
emtome.org. The signature dataset and related gene sets are
stored as tables that can be accessed through the web interface.
The statistical analysis was precalculated to avoid delays in data
processing. However, for visualisation functionality at the cohort
level, we provide on-the-fly analysis using computing environ-
ment R (3.5.2) on the server side.

RESULTS
EMTome modules
EMTome is comprised of four modules: EMT core signature, EMT-
related gene retrieval, EMT-related gene interactome, and EMT-
signature score (Fig. 1b). The EMT core signature module allows
users to explore the known signatures in a given cancer type and
associated genes or gene products. The EMT-related gene retrieval
module allows searches of genomic, epigenomic, transcriptomic,
proteomic and survival information for a gene of interest. The
EMT-related gene interactome module can be used to identify
significant associations between RNA expression levels and the
transcriptomic landscape, copy number events, DNA methylation,
miRNA and proteins (RPPA). The fourth module, EMT-signature
score, can be used to determine correlations between the
normalised EMT score at the patient level and respective RNA
expression, to make survival comparisons among signatures
across cancer types, and to evaluate the genetic dependency of
EMT-related genes and associated drug sensitivity information
(Fig. 1c).

EMT core signature database
We have reported that EMT, which is activated during cancer
progression, not only facilitates tumour cell colonisation of other
organs but also induces resistance to traditional chemotherapy.50

EMT is a complex process activated by multiple molecular

switches. We have previously shown that TWIST1 and FOXC2 play
key roles during the EMT process; other such factors were
discovered recently.12,13,51 Given the complexity of the EMT
process, signatures defined in a particular cancer rarely overlap
with signatures obtained from other cancer types or organs.
Furthermore, data available in the public domain are scattered in
the literature and not easily accessible (Fig. 1a, b). In light of this,
we performed data mining to collect EMT/MET signatures from
the literature. We defined an EMT signature as three or more
genes in combination or a unique pattern of expression
responsible for either EMT or MET. We retrieved 83 gene-level
EMT signatures from the literature (Dataset 1). The median
number of genes in these signatures was 33 with a range from
3 to 593. These signatures and gene markers are available in
tabular view as accessible resources.

EMT-related gene retrieval
From the collected EMT-signature dataset, we retrieved gene
markers associated with each signature, resulting in 3600 protein-
coding and noncoding genes. The genes were annotated with the
accepted NCBI Entrez gene symbol and the extent of overlap
among the signatures was evaluated (Fig. 2a). Of the 3600 protein-
coding and noncoding genes in the signature, 814 were found in
three or more signature gene sets (Fig. 2b). Several miRNAs and
other noncoding RNAs were also found in three or more of the
gene signatures (Fig. 2b). A number of genes from each of these
categories were detected at high frequency (Fig. 2c).
We next used the GLAD4U gene retrieval and prioritisation and

identified 314 genes mentioned with significant frequency in the
literature as being correlated with EMT (see Methods; Fig. 2d). We
combined the signature-derived and literature-identified EMT-
related markers, which resulted in EMT-related 936 protein-coding
genes, 61 noncoding RNAs, and 156 miRNAs (Dataset 2). Cancer
hallmark enrichment analysis showed that these genes were
enriched in terms related to EMT, angiogenesis, TGF-β signalling
pathway and apical junctions (p < 0.05, Fig. 2e). Further, over-
representation analysis for gene ontology terms showed that
these genes were enriched for terms related to extracellular matrix
organisation, tissue morphogenesis, vasculature development,
positive regulation of locomotion, response to growth factors,
epithelial cell differentiation and embryonic morphogenesis
(Fig. 2f), supporting roles in EMT or MET.
For each gene, information was retrieved from a public cohort,

like TCGA, and linked through EMTome. Information includes
mutations, variants, copy number, mRNA expression, protein
expression, methylation and overall patient survival for 32 cancer
types. Further, EMT-related gene RNA expression and correlations
with hallmark enrichment are given tabulated. The correlations
can be visualised as scatter plots for each hallmark in a cancer
type with stage level information in a grid plot.
EMTome visualisation will help users perform experimental

analyses or validate their hypothesis. For example, we used
EMTome to perform sample-level immune abundance enrichment
for TCGA cancer type and correlated with SNAI1 expression. Levels
of SNAI1, which encodes a transcriptional repressor associated
with EMT, are correlated positively with the hallmark of EMT in
kidney chromophobe carcinoma (Spearman ρ= 0.63, p < 0.001;
Fig. S2a). The association increases with the stage in kidney
cancer. Metastasis was shown to be associated with poor immune
infiltration,52 and analysis using EMTome revealed that SNAI1
expression positively correlates with myeloid-derived suppressor
cell frequency (Spearman ρ= 0.69, p < 0.001, Fig. S2b) but
poorly correlates with activated CD4 T cells (ρ=−0.39, p=
0.001; Fig. S2c Dataset 3) and CD8+ T cell (ρ=−0.25, p < 0.05;
Fig. S2d Dataset 3) frequencies. We also discovered associations
between SNAI1 expression and cancer hallmarks (Fig. S2e)
and immune cell markers (Fig. S2f) across cancer types. Similar
results were observed where SNAI1 was shown to generate
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immunosuppressive cells to induce metastasis, suggesting possi-
ble therapeutic opportunities that may disrupt immunosuppres-
sive cells.53–55

EMT-related gene interactome
Although association analysis only identifies the strongly corre-
lated features, it can also facilitate the identification of possible
causative features.56 Using EMTome, the user can explore the
association of EMT-related gene expression with expression of
related genes, alteration of copy number events, methylation or
miRNA expression or protein levels (RPPA) (Fig. S3a). For example,
associations of VIM with genes, gene products, miRNAs, copy
number alterations, methylation and protein levels within bladder
cancer were explored (Fig. S3b, Dataset 3). The network of these
associations can be readily visualised (top 50 in each platform,
Fig. 3a). The KEGG pathway enrichment for the TWIST1-correlated
genes suggests enrichment of the PI3K-AKT signalling pathway,
proteoglycans in cancer, RAS signalling pathway and focal
adhesion (Fig. 3b–d). All the associations based EMT-related gene

interactome results were calculated using the Spearman correla-
tion and filtered with a false discovery rate (FDR) adjusted p value
at 0.01 (Benjamini–Hochberg correction). Users can easily access
the significant interactome results for each TCGA cancer cohort
through the webpage.
Furthermore, the user can explore the gene dependency of

EMT-related genes using CRISPR/Cas9 loss-of-function data or
drug sensitivity data. For example, VIM is highly expressed in
metastatic tumours including bladder cancers with high tumour
grade and stages.57 Linking to CRISPR/Cas9-based VIM knockout
data revealed that vimentin dependency across cell lines with
metastatic properties is higher than in cell lines without metastatic
properties (p= 4.92 × 10−2, Fig. 3e). Furthermore, the loss-of-
function of VIM across primary and metastatic cell lines can be
explored to interrogate gene effect across cancer types (Fig. 3f).

EMT-signature score
An EMT-signature score is calculated using the signature geneset
(see Method section). In the EMT score panel, users can select a
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Fig. 2 EMT core signatures and associated markers. a Overlap among markers associated with each signature. b Numbers of protein-coding,
miRNA, and other noncoding RNA genes found in more than three or more signatures. c The enrichment ratios of genes present at high
frequency across signatures. d Numbers of protein-coding, miRNA, and other noncoding RNA genes identified with significant frequency in
the literature (based on PubMed search February 2020). e Cancer hallmark enrichment analysis shows EMT, angiogenesis, TGF-β signalling
pathway and apical junction related terms enriched for EMT-related genes (p < 0.05). f Over-representation of gene ontology terms shows
enrichment for extracellular matrix organisation, tissue morphogenesis, vasculature development, positive regulation of locomotion, response
to growth factor, epithelial cell differentiation and embryonic morphogenesis.
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gene of interest and an EMT signature and submit a query to
evaluate the relationships among them. The query processes the
gene expression at the RNA level and matched EMT-signature
score obtained at the patient level within various cancer cohorts.
In the EMT-signature score module, the scoring does not consider
the association of a gene with the epithelial or mesenchymal
phenotype; thus, the association needs to be interpreted based on
the signature phenotype. To address this, we selected top
epithelial and mesenchymal genes (top 50 based on frequency
in combined signatures) and calculated normalised enrichment
scores similar to EMT signatures. Users can explore the relation-
ship between EMT-related genes and signature along with the top
50 epithelial and mesenchymal signatures to conclude their
findings. Further, to demonstrates the utility of the EMT signature
in a cancer cohort, we performed survival analysis using clinical

features (progression-free interval and overall survival) and EMT-
signature scores obtained at the patient level. Users can explore
the prognostic utility of the EMT-signature across cancer types
using cox regression model and can be visualised as survival forest
plot (Fig. S4, Dataset 3).

Case study
Pathway representation of EMT signatures. EMT signatures
identified by authors represent a resource of possible biomarkers
in pan-cancer analysis and can provide their functional relevance
in tumours. Thus, we performed geneset enrichment analyses for
KEGG pathways, which have been widely used to explore the role
of pathways from gene list49,58 and provided it on the webportal
under each EMT-signature profile. The pathway enrichment was
calculated using a hypergeometric test based on whether input
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geneset had a different frequency of annotation pairs unlikely
by chance. For example, Cieslik et al. have identified 141
gene signatures associated with non-small-cell lung cancer.59

The signature genes were enriched with proteoglycans in cancer
(p < 0.001), Hippo signalling pathway (p < 0.001), focal adhesion
(p < 0.001) and leukocyte trans-endothelial migration (p < 0.001).
Among proteoglycans control morphogenesis, vascularisation and
cancer metastasis and is markedly expressed in the tumour
microenvironment during tumour development.60 The proteogly-
cans in cancer is shown in Fig. 4a. The enriched proteoglycans
genes in different cancer types, including lung cancer suggest a
therapeutic opportunity in targeting the EMT process.61 On the
other hand, Voon et al. have derived an EMT signature consisting
of 93 genes from a microarray dataset of gastric cancer showing
enrichment for endocrine resistance (p < 0.001), oestrogen signal-
ling (p < 0.001), GnRH signalling (p < 0.001) and ErbB signalling
(p < 0.001) pathways apart from EGFR/RAS pathway.62 The
enrichment of the oestrogen signalling pathway in gastric cancer
suggests a possible endocrine therapy approach, which was
shown to impact cell migration negatively and enhance chemo-
sensitivity (Fig. 4b).63,64 Although we observed an enriched
endocrine resistance pathway, it was majorly associated with
an altered ER pathway. Overall, the enrichment and visual
representation of EMT-signature genes provides a useful tool to
biologists.

FGFR1 loss-of-function in primary and metastatic cell lines. To
explore the impact of EMT-related genes in primary and
metastatic cell lines, we interrogated gene dependency using
CRISPR/Cas9 loss-of-function dataset (Depmap portal65). Previous
reports have demonstrated increased expression of fibroblast
growth factor receptor 1 (FGFR1) during EMT and FGFR1 plays a
key role in metastatic tumour growth and is suggested as a
mechanism of resistance in targeted molecular therapies.66–68

Given these previous findings, we observed FGFR1 differential
dependency in primary and metastatic cell lines (Fig. 5a, p=
9.34 × 10−4). We observed higher FGFR1 dependency in meta-
static cell lines compared to primary, including brain cancer (p=
1.9 × 10−3) and sarcoma (p= 0.032) as shown in Fig. 5b. To
identify therapeutic opportunity in different cancer types, we
interrogated the FGFR1 drug screen in various cancer cell lines.
The relative comparison of IC50s between different cancer cell

lines treated with FGFR1 inhibitor (AZD4547, FGFR3861, Foretinib,
PD173074, Ponatinib) with a significant difference in primary and
metastatic cell lines are shown (Fig. 5c). Overall, we found
Foretinib and Ponatinib to be effective in most of metastatic
cancer cell lines compared to primary tumour cell lines,
suggesting therapies to target FGFR1 in metastatic cancer
(Fig. 5d).

Prognostic utility of EMT signature across cancer types. Although
EMT signature associated genes represent the markers associated
with the EMT process and led to metastasis, we observed
heterogeneity in the EMT-signature genes across publications
and cancer type. To correlate the signatures with the patient’s
survival, we performed a progression-free survival analysis for
each signature consisting of EMT-related biomarkers across 32
cancer types (Fig. 6). The hazard ratio for each EMT signature
across cancer types shown in heatmap suggests differential
prognosis across cancer types (Fig. 6a). Many of the signatures
were found to be significantly associated with poor prognosis in
uveal melanoma (UVM), brain cancer (GBM, LGG), colorectal
adenocarcinoma (COAD, READ), pancreatic adenocarcinoma
(PAAD), Testicular cancer (TGCT) and cervical cancer (CESC) but
not in lymphoid cancer (DLBC). Among EMT signatures, we
observed EMT signature (Wang et el. 2017) in lung cancer based
on network analysis to be associated with poor progression-free
survival in multiple cancers followed by ESRP-regulated splicing
EMT signature (Warzecha et al. 2010), EM plasticity signature
(Cheng et al. 2014) and EMT signature in Hepatocellular carcinoma
(Gotzmann et al. 2006) (Fig. 6b). Wang et al. signature was
associated with poor survival in lung adenocarcinoma (Fig. 6c,
HR= 1.4, logrank p= 1.8 × 10−2) and significantly higher in uveal
melanoma (Fig. 6c, HR= 10, logrank p < 0.001). Warzecha et al.
signature was associated with poor survival in breast cancer
but not significant (Fig. 6d, HR= 1.1, logrank p= 0.68) but signi-
ficant in bladder cancer cohort (Fig. 6d, HR= 1.6, logrank p=
3.6 × 10−3). Cheng et al. signature was associated with poor
survival in breast cancer (Fig. 6e, HR= 1.4, logrank p= 5.6 × 10−2)
but significant in kidney renal papillary cell carcinoma cohort
(Fig. 6e, HR= 5.2, logrank p= 2 × 10−2). Mlcochova et al. (2016)
signature was significantly associated with poor survival in Kidney
renal papillary cell carcinoma (Fig. 6f, HR= 1.8, logrank p= 3.3 ×
10−2) as well as rectal cancer cohort (Fig. 6f, HR= 3.5, logrank

a EMT signature in NSCLC cancer (Cieslik et al., 2013)
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Fig. 4 Pathway enrichment of EMT signatures. a Cieslik et al. EMT signature consisting of 141 gene enriched in proteoglycans in cancer
pathway (p < 0.001). b Voon et al. EMT signature consisting of 93 genes from gastric cancer enriched in oestrogen signalling pathway (p <
0.001). The highlighted genes were observed in signatures.
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p= 9.3 × 10−3). Overall, the pan-cancer survival analysis provides a
unique opportunity to identify the consistent role of EMT
signatures.

User interface and information retrieval. EMTome has a simple
and intuitive user interface for data access and exploration of
the EMT signatures and EMT-related genes across cancer
types (Fig. S5a–c). The interface enables the user to evaluate
transcriptomic associations with omics platforms to retrieve and
visualise significant associations (Fig. S5d). Genes are hyperlinked
to enable retrieval of detailed information through NCBI
GeneCards. EMT scores can be calculated based on EMT signatures
across the pan-cancer cohort (Fig. S5e), and loss-of-function
and drug sensitivity data can be explored (Fig. S5f). Download
options allow users to download analysis results in PNG or
Excel format or in tabular form (Fig. S5g). Relevant gene sets can
also be downloaded as text or in GMT file format from the same
interface.

DISCUSSION
The EMTome resource was designed to enhance our under-
standing of EMT signatures and integrate current knowledge into
a single platform to provide genomic, transcriptomic, epigenomic,
mutation, immune, proteomic and clinical information for EMT-
related genes. EMTome goes beyond currently available resources,
dbEMT and EMT-regulome26,27 with data of many cancer types
and integration with different omics platforms. EMTome can be
used for: (i) exploration of predicted EMT signatures in cell lines
and model organisms, (ii) retrieval of detailed information on EMT-
related gene obtained through various high-throughput ‘omics
analyses across cancer cohorts, (iii) determination of the EMT-
related gene interactome based on statistical significance
from transcriptome, epigenome and proteomic analyses, (iv)
comparison of EMT signatures in cancer cohorts and their
associations with EMT-related genes, and visualisation and down-
load of results.
Currently, EMTome incorporates information from the CCLE

dataset consisting of 1094 cell lines, a metastatic dataset with
500 patients, and the TCGA database with information on more
than 11,000 patients. Also included is human proteome atlas
immunohistochemistry data on EMT-related gene expression in
independent cancer cohorts. EMTome further provides functional
information for each signature in a TCGA cancer cohort and
related omics analysis data that allow users to explore possible
roles of genes of interest in cancer. Notably, the mutation plot is
useful for detecting genomic aberrations and their post-
translational modifications. The bar graph for copy number
variation allows the user to investigate alterations such as
deletions or amplifications of the gene of interest in a given
cancer cohort. The RNA expression bar graph can be used to plot
the abundance of the gene of interest across all cancer cohorts.
The distribution of RNA abundance can also be explored at the cell
line level and the protein expression level. Proteomics data can be
accessed using RPPA data. In addition to gene expression in
primary tumours, EMTome includes gene expression profiles in
metastatic cell lines and patient samples. The cancer hallmarks,
immune enrichment and stemness association with EMT-related
genes can be retrieved as scatter plots, and immune cluster
correlations with EMT-related genes and subtype-specific enrich-
ment as boxplots. Data from the TCGA cohort, including overall
survival, disease-specific survival, disease-free interval and
progression-free interval, can be evaluated in terms of the gene
of interest. In addition to gene-specific information, an EMT-
related gene interactome, based on the association of RNA
expression with other transcriptomic features, copy number
events, DNA methylation, miRNAs and proteins (RPPA) can be
evaluated using EMTome. To understand how the loss of function

or drug inhibition influences cancer cell lines, we included data on
genetic dependency and drug sensitivity for EMT-related genes in
primary and metastatic cancer cell lines. Further, we provided
three case studies to help users explore the webportal for their
research.
In summary, EMTome provides a comprehensive resource for

identifying metastasis-related features, exploring EMT-related
markers, and for analysis of the relevance of EMT signatures for
diagnosis or prevention of cancer metastasis. The user interface
and database structure would allow the database to be extended
to additional cancer types. Currently, EMTome lacks high-
dimensional proteomics and Chip-seq data, but this type of data
could be included with availability from on-going studies in
updated versions. Although the current version of EMTome
includes only cell line data from CCLE and patient data from
TCGA and the MET500 and HPA datasets, it can be easily extended
to support other cohort-based datasets.
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