Metastasis

Mitochondrial oxidative phosphorylation in cutaneous melanoma

Abstract

The Warburg effect in tumour cells is associated with the upregulation of glycolysis to generate ATP, even under normoxic conditions and the presence of fully functioning mitochondria. However, scientific advances made over the past 15 years have reformed this perspective, demonstrating the importance of oxidative phosphorylation (OXPHOS) as well as glycolysis in malignant cells. The metabolic phenotypes in melanoma display heterogeneic dynamism (metabolic plasticity) between glycolysis and OXPHOS, conferring a survival advantage to adapt to harsh conditions and pathways of chemoresistance. Furthermore, the simultaneous upregulation of both OXPHOS and glycolysis (metabolic symbiosis) has been shown to be vital for melanoma progression. The tumour microenvironment (TME) has an essential supporting role in promoting progression, invasion and metastasis of melanoma. Mesenchymal stromal cells (MSCs) in the TME show a symbiotic relationship with melanoma, protecting tumour cells from apoptosis and conferring chemoresistance. With the significant role of OXPHOS in metabolic plasticity and symbiosis, our review outlines how mitochondrial transfer from MSCs to melanoma tumour cells plays a key role in melanoma progression and is the mechanism by which melanoma cells regain OXPHOS capacity even in the presence of mitochondrial mutations. The studies outlined in this review indicate that targeting mitochondrial trafficking is a potential novel therapeutic approach for this highly refractory disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Metabolism in melanoma.
Fig. 2: Mechanisms of mtDNA transfer.

References

  1. 1.

    Laikova, K. V., Oberemok, V. V., Krasnodubets, A. M., Gal’chinsky, N. V., Useinov, R. Z., Novikov, I. A., et al. Advances in the understanding of skin cancer: ultraviolet radiation, mutations, and antisense oligonucleotides as anticancer drugs. Molecules 24, 1516 (2019).

  2. 2.

    Liu, Y. & Sheikh, M. S. Melanoma: molecular pathogenesis and therapeutic management. Mol. Cell Pharmacol. 6, 228 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    UK CR. Melanoma skin cancer statistics. https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer (2019).

  4. 4.

    Hartman, R. I. & Lin, J. Y. Cutaneous melanoma—a review in detection, staging, and management. Hematol. Oncol. Clin. North Am. 33, 25–38 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M. et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet 392, 2052–2090 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Davis, L. E., Shalin, S. C. & Tackett, A. J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 20, 1366–1379 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Crosby, T., Fish, R., Coles, B. & Mason, M. WITHDRAWN: systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst. Rev. 2, CD001215 (2018).

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Polkowska, M., Ekk-Cierniakowski, P., Czepielewska, E. & Kozlowska-Wojciechowska, M. Efficacy and safety of BRAF inhibitors and anti-CTLA4 antibody in melanoma patients-real-world data. Eur. J. Clin. Pharmacol. 75, 329–334 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Spagnolo, F., Ghiorzo, P., Orgiano, L., Pastorino, L., Picasso, V., Tornari, E. et al. BRAF-mutant melanoma: treatment approaches, resistance mechanisms, and diagnostic strategies. Onco Targets Ther. 8, 157–168 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Wang, P., Zhang, X., Sun, N., Zhao, Z. & He, J. Comprehensive analysis of the tumor microenvironment in cutaneous melanoma associated with immune infiltration. J. Cancer 11, 3858–3870 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Cacho-Diaz, B., Garcia-Botello, D. R., Wegman-Ostrosky, T., Reyes-Soto, G., Ortiz-Sanchez, E. & Herrera-Montalvo, L. A. Tumor microenvironment differences between primary tumor and brain metastases. J. Transl. Med. 18, 1 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Pieniazek, M., Matkowski, R. & Donizy, P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol. Lett. 15, 5399–5404 (2018).

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Brandner, J. M. & Haass, N. K. Melanoma’s connections to the tumour microenvironment. Pathology 45, 443–452 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Chitty, J. L., Filipe, E. C., Lucas, M. C., Herrmann, D., Cox, T. R. & Timpson, P. Recent advances in understanding the complexities of metastasis. F1000Res 7, F1000 Faculty Rev-1169 (2018).

  15. 15.

    Falletta, P., Sanchez-Del-Campo, L., Chauhan, J., Effern, M., Kenyon, A., Kershaw, C. J. et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31, 18–33 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Kim, I. S., Heilmann, S., Kansler, E. R., Zhang, Y., Zimmer, M., Ratnakumar, K. et al. Microenvironment-derived factors driving metastatic plasticity in melanoma. Nat. Commun. 8, 14343 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Augello, A., De & Bari, C. The regulation of differentiation in mesenchymal stem cells. Hum. Gene Ther. 21, 1226–1238 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Keating, A. Mesenchymal stromal cells. Curr. Opin. Hematol. 13, 419–425 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Vater, C., Kasten, P. & Stiehler, M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 7, 463–477 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Lindner, U., Kramer, J., Rohwedel, J. & Schlenke, P. Mesenchymal stem or stromal cells: toward a better understanding of their biology? Transfus. Med. Hemother. 37, 75–83 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Nwabo Kamdje, A. H., Kamga, P. T., Simo, R. T., Vecchio, L., Seke Etet, P. F., Muller, J. M. et al. Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol. Med. 14, 129–141 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Wang, H., Cao, F., De, A., Cao, Y., Contag, C., Gambhir, S. S. et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27, 1548–1558 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Mirzaei, H., Sahebkar, A., Avan, A., Jaafari, M. R., Salehi, R., Salehi, H. et al. Application of mesenchymal stem cells in melanoma: a potential therapeutic strategy for delivery of targeted agents. Curr. Med. Chem. 23, 455–463 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Chulpanova, D. S., Kitaeva, K. V., Tazetdinova, L. G., James, V., Rizvanov, A. A. & Solovyeva, V. V. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment. Front. Pharmacol. 9, 259 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Reagan, M. R. & Kaplan, D. L. Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems. Stem Cells 29, 920–927 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Ridge, S. M., Sullivan, F. J. & Glynn, S. A. Mesenchymal stem cells: key players in cancer progression. Mol. Cancer 16, 31 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. 27.

    Suzuki, K., Sun, R., Origuchi, M., Kanehira, M., Takahata, T., Itoh, J. et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol. Med. 17, 579–587 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Vartanian, A., Karshieva, S., Dombrovsky, V. & Belyavsky, A. Melanoma educates mesenchymal stromal cells towards vasculogenic mimicry. Oncol. Lett. 11, 4264–4268 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Djouad, F., Bony, C., Apparailly, F., Louis-Plence, P., Jorgensen, C. & Noel, D. Earlier onset of syngeneic tumors in the presence of mesenchymal stem cells. Transplantation 82, 1060–1066 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Djouad, F., Plence, P., Bony, C., Tropel, P., Apparailly, F., Sany, J. et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102, 3837–3844 (2003).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Han, Z., Tian, Z., Lv, G., Zhang, L., Jiang, G., Sun, K. et al. Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells. J. Cell Mol. Med. 15, 2343–2352 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Kucerova, L., Matuskova, M., Hlubinova, K., Altanerova, V. & Altaner, C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol. Cancer 9, 129 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18, 883–891 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Kucerova, L., Zmajkovic, J., Toro, L., Skolekova, S., Demkova, L. & Matuskova, M. Tumor-driven molecular changes in human mesenchymal stromal cells. Cancer Microenviron. 8, 1–14 (2015).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Kucerova, L., Skolekova, S., Demkova, L., Bohovic, R. & Matuskova, M. Long-term efficiency of mesenchymal stromal cell-mediated CD-MSC/5FC therapy in human melanoma xenograft model. Gene Ther. 21, 874–887 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Ling, W., Zhang, J., Yuan, Z., Ren, G., Zhang, L., Chen, X. et al. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 74, 1576–1587 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Avagliano, A., Fiume, G., Pelagalli, A., Sanita, G., Ruocco, M. R., Montagnani, S. et al. Metabolic plasticity of melanoma cells and their crosstalk with tumor microenvironment. Front. Oncol. 10, 722 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Fischer, G. M., Vashisht Gopal, Y. N., McQuade, J. L., Peng, W., DeBerardinis, R. J. & Davies, M. A. Metabolic strategies of melanoma cells: mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res. 31, 11–30 (2018).

    PubMed  Article  Google Scholar 

  39. 39.

    Lyssiotis, C. A. & Kimmelman, A. C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27, 863–875 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Jose, C., Bellance, N. & Rossignol, R. Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim. Biophys. Acta 1807, 552–561 (2011).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Bellance, N., Benard, G., Furt, F., Begueret, H., Smolkova, K., Passerieux, E. et al. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int. J. Biochem. Cell Biol. 41, 2566–2577 (2009).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Abildgaard, C. & Guldberg, P. Molecular drivers of cellular metabolic reprogramming in melanoma. Trends Mol. Med. 21, 164–171 (2015).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Hall, A., Meyle, K. D., Lange, M. K., Klima, M., Sanderhoff, M., Dahl, C. et al. Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to glycolysis driven by the (V600E)BRAF oncogene. Oncotarget 4, 584–599 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Scott, D. A., Richardson, A. D., Filipp, F. V., Knutzen, C. A., Chiang, G. G., Ronai, Z. A. et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J. Biol. Chem. 286, 42626–42634 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Zheng, J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol. Lett. 4, 1151–1157 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Kim, A. & Cohen, M. S. The discovery of vemurafenib for the treatment of BRAF-mutated metastatic melanoma. Expert Opin. Drug Discov. 11, 907–916 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Ascierto, P. A., Kirkwood, J. M., Grob, J. J., Simeone, E., Grimaldi, A. M., Maio, M. et al. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 10, 85 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Hosseini, M., Kasraian, Z. & Rezvani, H. R. Energy metabolism in skin cancers: a therapeutic perspective. Biochim. Biophys. Acta Bioenerg. 1858, 712–722 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G. C. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF. Cancer Cell 23, 302–315 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Vazquez, F., Lim, J. H., Chim, H., Bhalla, K., Girnun, G., Pierce, K. et al. PGC1alpha expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Marusyk, A. & Polyak, K. Tumor heterogeneity: causes and consequences. Biochim. Biophys. Acta 1805, 105–117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Caro, P., Kishan, A. U., Norberg, E., Stanley, I. A., Chapuy, B., Ficarro, S. B. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Bost, F. & Kaminski, L. The metabolic modulator PGC-1alpha in cancer. Am. J. Cancer Res. 9, 198–211 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    LeBleu, V. S., O’Connell, J. T., Gonzalez Herrera, K. N., Wikman, H., Pantel, K., Haigis, M. C. et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Ho, J., de Moura, M. B., Lin, Y., Vincent, G., Thorne, S., Duncan, L. M. et al. Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol. Cancer 11, 76 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Petrelli, F., Cabiddu, M., Coinu, A., Borgonovo, K., Ghilardi, M., Lonati, V. et al. Prognostic role of lactate dehydrogenase in solid tumors: a systematic review and meta-analysis of 76 studies. Acta Oncol. 54, 961–970 (2015).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Farhana, A., Lappin, S. L. Biochemistry, Lactate Dehydrogenase (LDH) (StatPearls, Treasure Island, 2020).

  60. 60.

    Barbi de Moura, M., Vincent, G., Fayewicz, S. L., Bateman, N. W., Hood, B. L., Sun, M. et al. Mitochondrial respiration-an important therapeutic target in melanoma. PLoS ONE 7, e40690 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Xu, K., Mao, X., Mehta, M., Cui, J., Zhang, C. & Xu, Y. A comparative study of gene-expression data of basal cell carcinoma and melanoma reveals new insights about the two cancers. PLoS ONE 7, e30750 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Jia, D., Park, J. H., Jung, K. H., Levine, H., Kaipparettu, B. A. Elucidating the metabolic plasticity of cancer: mitochondrial reprogramming and hybrid metabolic states. Cells 7, 21 (2018).

  63. 63.

    Trotta, A. P., Gelles, J. D., Serasinghe, M. N., Loi, P., Arbiser, J. L. & Chipuk, J. E. Disruption of mitochondrial electron transport chain function potentiates the pro-apoptotic effects of MAPK inhibition. J. Biol. Chem. 292, 11727–11739 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Gopal, Y. N., Rizos, H., Chen, G., Deng, W., Frederick, D. T., Cooper, Z. A. et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 74, 7037–7047 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Figarola, J. L., Singhal, J., Singhal, S., Kusari, J. & Riggs, A. Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naive and vemurafenib-resistant melanomas. Oncotarget 9, 36945–36965 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Ruocco, M. R., Avagliano, A., Granato, G., Vigliar, E., Masone, S., Montagnani, S. et al. Metabolic flexibility in melanoma: a potential therapeutic target. Semin. Cancer Biol. 59, 187–207 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Corazao-Rozas, P., Guerreschi, P., Andre, F., Gabert, P. E., Lancel, S., Dekiouk, S. et al. Mitochondrial oxidative phosphorylation controls cancer cell’s life and death decisions upon exposure to MAPK inhibitors. Oncotarget 7, 39473–39485 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Audrito, V., Manago, A., Gaudino, F. & Deaglio, S. Targeting metabolic reprogramming in metastatic melanoma: the key role of nicotinamide phosphoribosyltransferase (NAMPT). Semin. Cell Dev. Biol. 98, 192–201 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W. & Broer, S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219–227 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Ma, L. & Zong, X. Metabolic symbiosis in chemoresistance: refocusing the role of aerobic glycolysis. Front. Oncol. 10, 5 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Porporato, P. E., Filigheddu, N., Pedro, J. M. B., Kroemer, G. & Galluzzi, L. Mitochondrial metabolism and cancer. Cell Res. 28, 265–280 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P. G., Casimiro, M. C. et al. Transcriptional evidence for the “Reverse Warburg Effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “Neuron-Glia Metabolic Coupling”. Aging (Albany NY) 2, 185–199 (2010).

    CAS  Article  Google Scholar 

  74. 74.

    Gonzalez, C. D., Alvarez, S., Ropolo, A., Rosenzvit, C., Bagnes, M. F. & Vaccaro, M. I. Autophagy, Warburg, and Warburg reverse effects in human cancer. Biomed. Res. Int. 2014, 926729 (2014).

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Ashton, T. M., McKenna, W. G., Kunz-Schughart, L. A. & Higgins, G. S. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res. 24, 2482–2490 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Krishnan, K. J., Reeve, A. K., Samuels, D. C., Chinnery, P. F., Blackwood, J. K., Taylor, R. W. et al. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40, 275–279 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77.

    Berridge, M. V. & Tan, A. S. Effects of mitochondrial gene deletion on tumorigenicity of metastatic melanoma: reassessing the Warburg effect. Rejuvenation Res. 13, 139–141 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Ahmad, T., Mukherjee, S., Pattnaik, B., Kumar, M., Singh, S., Kumar, M. et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33, 994–1010 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Burt, R., Dey, A., Aref, S., Aguiar, M., Akarca, A., Bailey, K. et al. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood 134, 1415–1429 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Caicedo, A., Fritz, V., Brondello, J. M., Ayala, M., Dennemont, I., Abdellaoui, N. et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5, 9073 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Cho, Y. M., Kim, J. H., Kim, M., Park, S. J., Koh, S. H., Ahn, H. S. et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS ONE 7, e32778 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Lin, H. Y., Liou, C. W., Chen, S. D., Hsu, T. Y., Chuang, J. H., Wang, P. W. et al. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion 22, 31–44 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Marlein, C. R., Piddock, R. E., Mistry, J. J., Zaitseva, L., Hellmich, C., Horton, R. H. et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79, 2285–2297 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Marlein, C. R., Zaitseva, L., Piddock, R. E., Robinson, S. D., Edwards, D. R., Shafat, M. S. et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Moschoi, R., Imbert, V., Nebout, M., Chiche, J., Mary, D., Prebet, T. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Pasquier, J., Guerrouahen, B. S., Al Thawadi, H., Ghiabi, P., Maleki, M., Abu-Kaoud, N. et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11, 94 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl Acad. Sci. USA 103, 1283–1288 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Tan, A. S., Baty, J. W., Dong, L. F., Bezawork-Geleta, A., Endaya, B., Goodwin, J. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Mistry, J. J., Moore, J. A., Kumar, P., Marlein, C. R., Hellmich, C., Pillinger, G., et al. Daratumumab inhibits acute myeloid leukaemia metabolic capacity by blocking mitochondrial transfer from mesenchymal stromal cells. Haematologica https://haematologica.org/article/view/9692 (2020).

  90. 90.

    Dong, L. F., Kovarova, J., Bajzikova, M., Bezawork-Geleta, A., Svec, D., Endaya, B., et al. Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. elife 6, e22187 (2017).

  91. 91.

    Friedman, J. R. & Nunnari, J. Mitochondrial form and function. Nature 505, 335–343 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Desler, C., Marcker, M. L., Singh, K. K. & Rasmussen, L. J. The importance of mitochondrial DNA in aging and cancer. J. Aging Res. 2011, 407536 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Torralba, D., Baixauli, F. & Sanchez-Madrid, F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol. 4, 107 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Murray, L. M. A. & Krasnodembskaya, A. D. Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells. Stem Cells 37, 14–25 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Sinclair, K. A., Yerkovich, S. T., Hopkins, P. M. & Chambers, D. C. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res. Ther. 7, 91 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  96. 96.

    Bukoreshtliev, N. V., Wang, X., Hodneland, E., Gurke, S., Barroso, J. F. & Gerdes, H. H. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett. 583, 1481–1488 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).

    CAS  Article  Google Scholar 

  98. 98.

    Koyanagi, M., Brandes, R. P., Haendeler, J., Zeiher, A. M. & Dimmeler, S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ. Res. 96, 1039–1041 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Lai, R. C., Tan, S. S., Yeo, R. W., Choo, A. B., Reiner, A. T., Su, Y. et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J. Extracell. Vesicles 5, 29828 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  100. 100.

    Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    van Niel, G., Porto-Carreiro, I., Simoes, S. & Raposo, G. Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21 (2006).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  102. 102.

    Tricarico, C., Clancy, J. & D’Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases 8, 220–232 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Monsel, A., Zhu, Y. G., Gennai, S., Hao, Q., Hu, S., Rouby, J. J. et al. Therapeutic effects of human mesenchymal stem cell-derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med. 192, 324–336 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Guescini, M., Genedani, S., Stocchi, V. & Agnati, L. F. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna) 117, 1–4 (2010).

    CAS  Article  Google Scholar 

  105. 105.

    Guescini, M., Guidolin, D., Vallorani, L., Casadei, L., Gioacchini, A. M., Tibollo, P. et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp. Cell Res. 316, 1977–1984 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Islam, M. N., Das, S. R., Emin, M. T., Wei, M., Sun, L., Westphalen, K. et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Eugenin, E. A., Gaskill, P. J. & Berman, J. W. Tunneling nanotubes (TNT): a potential mechanism for intercellular HIV trafficking. Commun. Integr. Biol. 2, 243–244 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Mistry, J. J., Marlein, C. R., Moore, J. A., Hellmich, C., Wojtowicz, E. E., Smith, J. G. W. et al. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl Acad. Sci. USA 116, 24610–24619 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Wada, K. I., Hosokawa, K., Ito, Y. & Maeda, M. Quantitative control of mitochondria transfer between live single cells using a microfluidic device. Biol. Open 6, 1960–1965 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Daratumumab with bortezomib and dexamethasone for previously treated multiple myeloma | Guidance | NICE [Internet]. Nice.org.uk. https://www.nice.org.uk/guidance/TA573 (2020).

  113. 113.

    Daratumumab monotherapy for treating relapsed and refractory multiple myeloma | Guidance | NICE [Internet]. Nice.org.uk. https://www.nice.org.uk/guidance/ta510 (2020).

Download references

Acknowledgements

Not Applicable

Author information

Affiliations

Authors

Contributions

My co-author and I participated in the research of this paper and assisted in all of the following parts: Guarantor of integrity of the entire study: P.R.K., K.M.B., S.A.R. and M.D.M. Study concepts and design: P.R.K., S.A.R. and M.D.M. Literature research: P.R.K. and S.A.R. Figure preparation: P.R.K., J.A.M. and S.A.R. Manuscript preparation: P.R.K., J.A.M., K.M.B., S.A.R. and M.D.M. Manuscript critical revision and supervision: P.R.K., J.A.M., K.M.B., S.A.R. and M.D.M.

Corresponding authors

Correspondence to Stuart A. Rushworth or Marc D. Moncrieff.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Data availability

Not Applicable.

Competing interests

The authors declare no competing interests.

Funding information

No external funding was used in the execution of this study.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R., Moore, J.A., Bowles, K.M. et al. Mitochondrial oxidative phosphorylation in cutaneous melanoma. Br J Cancer (2020). https://doi.org/10.1038/s41416-020-01159-y

Download citation

Search