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Population-scale predictions of DPD and TPMT phenotypes
using a quantitative pharmacogene-specific ensemble classifier
Yitian Zhou 1, Carolina Dagli Hernandez 1,2 and Volker M. Lauschke 1

BACKGROUND: Inter-individual differences in dihydropyrimidine dehydrogenase (DPYD encoding DPD) and thiopurine S-
methyltransferase (TPMT) activity are important predictors for fluoropyrimidine and thiopurine toxicity. While several variants in
these genes are known to decrease enzyme activities, many additional genetic variations with unclear functional consequences
have been identified, complicating informed clinical decision-making in the respective carriers.
METHODS: We used a novel pharmacogenetically trained ensemble classifier to analyse DPYD and TPMT genetic variability based
on sequencing data from 138,842 individuals across eight populations.
RESULTS: The algorithm accurately predicted in vivo consequences of DPYD and TPMT variants (accuracy 91.4% compared to
95.3% in vitro). Further analysis showed high genetic complexity of DPD deficiency, advocating for sequencing-based DPYD
profiling, whereas genotyping of four variants in TPMT was sufficient to explain >95% of phenotypic TPMT variability. Lastly, we
provided population-scale profiles of ethnogeographic variability in DPD and TPMT phenotypes, and revealed striking interethnic
differences in frequency and genetic constitution of DPD and TPMT deficiency.
CONCLUSION: These results provide the most comprehensive data set of DPYD and TPMT variability published to date with
important implications for population-adjusted genetic profiling strategies of fluoropyrimidine and thiopurine risk factors and
precision public health.

British Journal of Cancer (2020) 123:1782–1789; https://doi.org/10.1038/s41416-020-01084-0

BACKGROUND
Adverse drug reactions (ADRs) are a common phenomenon in
cancer therapy, and the identification of patients at increased risk
thus constitutes an important goal of precision oncology. In the
last decade, genetic profiling has identified a multitude of
variations that can guide selection and dosing of chemother-
apeutic drugs.1 Two of the most important examples of such
pharmacogenetic biomarkers that have transitioned from research
into clinical practice are germline variations in the dihydropyr-
imidine dehydrogenase (DPYD encoding DPD) and thiopurine S-
methyltransferase (TPMT) genes.2–4

Fluoropyrimidines are cornerstones of oncological therapy used
for the treatment of a wide range of solid tumours. Importantly,
DPD deficiency is strongly associated with dose-limiting and
sometimes life-threatening toxicity with 60–80% of DPD-deficient
individuals experiencing severe ADRs compared to 10–20% of
patients with normal enzyme function.5,6 The most extensively
studied variation associated with DPD deficiency is DPYD*2A
(rs3918290), a splice donor variant that results in truncated
protein without catalytic activity.7 Recent meta-analyses more-
over confirmed robust associations of DPYD I560S, D949V as
well as of the intronic splice variant rs75017182 and the associated
haplotype HapB3 with fluoropyrimidine toxicity,8–10 and prospec-
tive testing for these variants followed by genotype-guided upfront
dose adjustments significantly increased patient safety.11–13

Analogously to DPYD, individuals deficient in TPMT are more
susceptible to life-threatening toxicity of thiopurines.14 The most
important decreased function alleles are TPMT*2 (rs1800462), *3A
(rs1800460 and rs1142345) and *3C (rs1142345).15

In addition to the well-characterised variants illustrated above,
DPYD and TPMT harbour hundreds of additional rare genetic
variations with unclear effects on enzyme function.16,17 Recent
advances in large-scale mutagenesis screens unlock exciting
opportunities for the parallel experimental interrogation of the
effect of thousands of variants,18 as exemplified by the
simultaneous characterisation of the effects of thousands of
TPMT variants on intracellular abundance.19 However, without
experimental assessments of variant effects on enzyme activity,
their interpretation has to rely on computational tools. In the last
two decades, a multitude of computational prediction tools have
been developed that consider sequence conservation as an
indicator of variant deleteriousness, as well as various mechan-
istic parameters, such as impacts on physiochemical properties,
post-translational modifications and structural features, such as
protein stability and the disruption of binding interfaces.20,21

These algorithms are mostly trained on pathogenic variants for
which evolutionary conservation constitutes a suitable proxy.22

However, evolutionary constraints for DPYD and TPMT are
limited, and conservation scores are thus not the ideal
metric to predict variant function. To overcome these problems,
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we recently established a computational framework optimised
specifically for pharmacogenomic predictions.23

Using this algorithm, we here mapped DPYD and TPMT variants
on an unprecedented scale using whole-genome sequencing
(WGS) and whole-exome sequencing (WES) data from 138,842
individuals. Using all variations with known in vivo consequences
as benchmark data set, we show that our pharmacogenetically
trained ensemble classifier substantially outperforms all previous
non-gene-specific prediction methods and achieved predictive
accuracy similar to in vitro experiments (accuracy 91.4% compared
to 95.3% for in vitro). Encouraged by these results, we applied the
algorithm to the functional interpretation of all 859 identified
DPYD and TPMT variants that affect the amino acid sequence of
their respective gene products. Our results reveal that interroga-
tion of only four variants is sufficient to identify >95% of TPMT-
decreased function alleles, whereas 174 variations have to be
profiled for DPYD to explain the same level of genetically encoded
functional variability. Furthermore, we demonstrate substantial
differences in metabolic activity and the underlying genetic
variability across eight different populations with important
implications for the design of pharmacogenetic testing strategies
and precision public health.

METHODS
Data collections and definitions
In vitro data of missense single-nucleotide variants (SNVs) in DPYD
and TPMT were collected from functional studies conducted using
cell lines.7,24–33 As classification criteria for variants differed
between studies, we homogenised the definitions and considered
all variations as deleterious, which resulted in in vitro activity lower
than 70% of the respective wild-type (WT) enzyme. In vivo data
were collected from the ClinVar database.34 The deleteriousness of
variants was curated based on their annotation as impacting drug
response, pathogenic or likely pathogenic. Variant frequencies
from 138,842 individuals across eight different populations
(12,487 Africans, 17,720 Latinos, 5185 Ashkenazi Jews, 9977 East
Asians, 64,603 Non-Finnish Europeans, 12,562 Finnish, 15,308
South Asians and 1000 Swedes) were collected from GnomAD35

and SWEgene.36 Linkage between the TPMT variants rs1800460
and rs1142345 was calculated using LDlink.37

Variant-effect predictions
We used Polyphen-2, SIFT, PROVEAN and CADD for binary
predictions of variant functionality. To quantitatively predict the
functional impact of all identified variants, we used the ADME-
optimised prediction framework (APF) that provides normalised
quantitative functionality prediction scores in the range from 1
(neutral) to 0 (deleterious).23 The functional impact of frameshift
and stop-gain variations was further confirmed by LOFTEE (https://
github.com/konradjk/loftee). For qualitative comparisons with binary
scores, variants with functionality scores ≤0.5 were considered as
deleterious, while scores >0.5 denote functionally neutral variants.

Informedness calculations
Plotting the cumulative number of variants against their
cumulative aggregated frequencies reveals the excess of informa-
tion that can be obtained for each number of variants tested. The
informedness (I) of DPYD or TPMT testing is defined as the
maximal vertical difference between this receiver-operating
characteristic (ROC) curve and the bisectrix through the origin of
the coordinate system. The intronic variant rs75017182 that is
linked to haplotype HapB3 was included with a functionality score
of 0.5 according to current guidelines.38

Calculation of DPD and TPMT metaboliser phenotype frequencies
To calculate the frequencies of poor metabolisers (PM), inter-
mediate metabolisers (IM) and normal metabolisers (NM) for each

population analysed, we calculated all diplotype frequencies for
DPYD and TPMT and added the functionality scores of both alleles
to yield the corresponding activity score of the individual. PMs,
IMs and NMs were defined as activity scores (AS) of ≤0.5, 0.5 <
AS ≤ 1.5 and >1.5, respectively, according to the genotype
combinations defined by Clinical Pharmacogenetics Implementa-
tion Consortium (CPIC) guidelines.38,39

RESULTS
Benchmarking of the ADME prediction framework on DPYD and
TPMT variants with known in vivo consequences
To test the predictive power of the APF algorithm, we first defined
a gold-standard data set for DPYD and TPMT that included all
variants with well-characterised functional effects in vivo in
humans. Extensive literature search revealed a total of 61 variants
with known clinical consequences in DPYD, of which 12 were
classified as neutral and 49 as pathogenic (Supplementary Table 1).
For TPMT, only nine variants were sufficiently studied for their
impact on drug response in vivo, all of which were deleterious. For
DPYD, these characterised variants resulted in frameshifts (n= 23),
followed by missense (n= 21), stop-gain (n= 16) and splice
variants (n= 1; DPYD*2A), whereas all nine characterised TPMT
variants were missense (Fig. 1a). Of all 70 clinically annotated
DPYD and TPMT variants, six were common with global minor
allele frequencies (MAF) > 1% (C29R, I543V, M166V, V732I and
S543N in DPYD and A154T in TPMT), whereas all other variants
were rare (Fig. 1b).
For variants for which in vitro data were available (64 out of 70

variants, 91%), these experimental categorisations were in good
agreement with in vivo phenotypes (95.3% accuracy, 61 out of 64
variants, Fig. 1c). The APF could analyse all 70 variants and
achieved 91.4% accuracy (64 out of 70), thus closely approximat-
ing the accuracy of in vitro testing. In contrast, other commonly
used in silico tools, such as SIFT, Polyphen-2, PROVEAN and CADD,
had substantially lower predictive power (62.1–78.6% accuracy)
and failed to predict the functional consequences of >50% of
variations. Only one incorrectly classified variant overlapped
between in vitro and in silico assessments. R215H in TPMT
(TPMT*8) was incorrectly predicted as benign by APF and in vitro
data, while it is associated with reduced TPMT activity in vivo.40

Notably, however, as this allele is very rare (MAF= 0.2%), TPMT
enzyme activity in vivo has to the best of our knowledge only
been reported for a single carrier.

Population-scale prediction of DPYD and TPMT variant
functionality
As the predictive accuracy of APF exceeded 90% and was similar
to in vitro testing on the gold-standard in vivo data set, we
expanded our evaluations and tested DPYD and TPMT variability
on a population scale (Fig. 1d–g). By analysing WGS and WES data
from 138,842 individuals, we identified 705 and 154 DPYD and
TPMT variants, respectively, of which only 164 (23%) and 26 (17%)
had been analysed in cell systems (Fig. 1d, e). Of the 164
experimentally tested DPYD variants, in vitro tests predicted that
67 (41%) decreased enzyme function, whereas the fraction was
considerably higher using computational tests (n= 114, 69.5%,
Fig. 1d). In contrast, the number of variants predicted to be
deleterious by in vitro assays was substantially higher for TPMT
where 23 out of 26 tested variants (88%) resulted in functional
consequences, while only 19 variants (73%) were predicted to be
deleterious by APF (Fig. 1e).
Lastly, we predicted the functional effects of all identified

variants, including those without available in vitro data. In total,
506 out of 705 DPYD variants (72%) were predicted to be
deleterious with functionality scores below 0.5, of which 311 were
LOF variants with <20% of WT enzyme activity (Fig. 1f). For TPMT,
99 and 55 out of 154 variants (64 and 36%, respectively) were
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predicted to be deleterious and neutral, respectively (Fig. 1g). The
highest frequency of all alleles was for the loss-of-function allele
TPMT*3A with a MAF= 2.8%.

Genetic complexity of DPD and TPMT function
We then evaluated the distribution of DPYD and TPMT genotypes
across reduced function alleles. Specifically, we calculated the
fraction of reduced function phenotypes that could be explained by
selections of variants in the respective genes. For DPYD, 50%
of reduced function alleles are explained by two variants (HapB3 and
*2A), whereas the numbers of variants that need to be interrogated
to explain more of the functional variability increase exponentially
(Table 1). For instance, inclusion of six more variants only explains an
additional 24.6% of DPD functionality, whereas 88 and 421 variants
need to be interrogated to explain 90 and 99% of DPD deficiency,
respectively (Fig. 2a and Table 1). The highest excess of information
is obtained for the testing of 34 variations, which can explain 84.2%
of genetically encoded functional DPD variability while only
corresponding to 6.7% of deleterious DPYD variants.
In comparison to DPYD, functional variability in TPMT was

characterised by a high excess in information allotted to only few
variations. Interrogation of A154T and Y240C (TPMT*3), corre-
sponding to 2% of all deleterious TPMT variants, was sufficient to
explain >70% of functional TPMT functional variability (Fig. 2b and

Table 1). Furthermore, >95% of differences in TPMT function were
attributed to only four variants (A154T, Y240C, A80P and R163H
corresponding to *3A, *3C, *2 and *16), whereas the remaining
95 variants combined only accounted for 4.6%. Notably, while
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Fig. 1 The ADME prediction framework (APF) constitutes an accurate and scalable tool for functional DPYD and TPMT variant
interpretation. a Overview of the benchmarking data set, comprising a total of 70 variations (n= 61 in DPYD and n= 9 in TPMT) with known
clinical consequences. b The vast majority of variants resulting in decreased enzyme function (indicated in red) were rare, whereas
functionally neutral variants (indicated in blue) were predominantly common with minor allele frequencies (MAF) > 1%. c In vitro tests were
most accurate, correctly predicting the functional consequences of 95.3% of analysed variants, closely followed by predictions using APF
(91.4%). The accuracy of other computational methods was substantially lower (62.1–78.6%). Based on genomic data from 138,842 individuals,
705 and 154 coding variants in DPYD (d) and TPMT (e) were identified. Pie charts show that in vitro data were only available for a small fraction
of these. Venn diagrams indicate that in vitro tests and APF predictions agree for the majority of those variations. The majority of the number
of identified variations was predicted to abolish DPD (f) and TPMT (g) enzyme function. For DPYD, functionally neutral variations were most
common, whereas no common neutral variants were identified for TPMT. Columns indicate the number of variations, while line plots show the
aggregated frequencies of variants with the respective functionality score.

Table 1. Number of variants needed to explain the functionality of
DPD and TPMT.

Number of variants (% of all
deleterious variants) that need
to be interrogated

Functionality explained by variants DPYD TPMT

50% 2 (0.4%) 1 (1%)

70% 5 (1%) 2 (2%)

90% 88 (17.4%) 3 (3%)

95% 174 (34.3%) 4 (4%)

99% 421 (83%) 28 (28.3%)

100% 507 (100%) 99 (100%)

Maximal informedness 34 (6.7%) 4 (4.0%)

DPYD encoding DPD dihydropyrimidine dehydrogenase, TPMT thiopurine
S-methyltransferase.
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previous studies also reported *3A, *3C and *2 explaining 90–95%
of TPMT-deficient phenotypes,41 our finding underscored the
clinical relevance of TPMT*16, a missense variant with frequencies
of up to 0.5% in Scandinavia populations. Overall, these findings
reveal that the genetically encoded functional variability in DPYD
is considerably more complex than for TPMT. These findings have
important implications for genotype-guided prescribing, as
comprehensive sequencing of DPYD is necessary to assure the
identification of variations impacting fluoropyrimidine toxicity,
whereas the genotyping of only a few selected candidate
variations is sufficient to explain the vast majority of TPMT
variability to inform prescription and dosing of thiopurines.

Ethnogeographic differences of clinically important DPYD and
TPMT allele frequencies
Reduced function variations of DPYD are highly population
specific (Table 2). HapB3 variant is overall most frequent and is
common in European populations with a MAF of 2.1%. Similarly,
the frequency of DPYD*2A is the highest in Northern Europe,
particularly in Finland (MAF= 2.4%) and Sweden (MAF= 0.8%),
whereas it is very rare (MAF ≤ 0.1%) in Africans, Latinos and East
Asians. In contrast, the majority of reduced function alleles in
Africans are allotted to the population-specific variants Y186C,
A450V and V732G with MAFs of 2.2%, 0.3% and 0.2%, respectively.
In South Asians, T760I constitutes the most common variant
impacting DPD function (MAF= 0.5%), whereas this variant is
absent in all other populations studied, including East Asians.
For TPMT, only the TPMT*3 sub-alleles *3A and *3C, comprising

Y240C alone or in combination with A154T, were common in at
least one population, whereas *3B (only A154T) appeared very rare
in all populations studied (MAF < 0.1%). TPMT*3A is common

among Europeans (MAF= 3.8%), Latinos (MAF= 4.3%) and
Ashkenazi Jews (MAF= 1.3%), while TPMT*3C is most abundant
in Africa (MAF= 4.8%). In total, 17 DPYD and TPMT variants that
impact enzyme function had allele frequencies above 0.1% in at
least one population studied that might warrant inclusion into
pharmacogenomic test panels.

Population-specific differences in DPD and TPMT activity profiles
By integrating the predicted quantitative allele activities of all
identified DPYD and TPMT variations with their population-specific
frequencies, we provide the first quantitative spectrum of
functional variability across eight different populations. Our
predictions showed that Finns harboured the highest number of
DPD-poor metabolisers with frequencies of 0.14%, primarily due to
high frequencies of DPYD*2A in this population (MAF= 2.4%
compared to 0.6% in Europeans, Table 2), whereas Africans were
most likely to have intermediate DPD activity with frequencies of
8.4% (Fig. 3a). While 0.09% and 7.6% of Europeans were classified
as PMs and IMs, they are much lower among Ashkenazi Jews
(0.01% PMs and 2.8% IMs), in agreement with previous reports
showing considerably lower frequencies of D949V in Ashkenazim
compared to Europeans.42 Interestingly, substantial differences in
DPD metabolic phenotypes were found between Asian popula-
tions with the predicted incidence of PM phenotypes being
threefold higher in South Asia compared to East Asia. Combined,
these data reveal surprisingly large ethnogeographic differences
in DPD phenotypic profiles with PM and IM incidence differing
10.7 and 3-fold between populations.
Next, we compared these results to predictions obtained using

DPYD-Varifier, a recently developed machine-learning algorithm
specifically trained for DPYD variant classification.26 Notably,
population-specific frequencies of DPD metaboliser phenotypes
were overall in good agreement. However, drastic differences
were observed for Africans, for whom DPYD-Varifier under-
predicted PM and IM frequencies by nine- and fourfold,
respectively, compared to APF. To analyse the underlying reasons,
we compared variant classifications and found that Y186C, an
African-specific variant with a frequency of 2%, only showed
minor reductions in DPYD-Varifier training data (85% activity of
WT), whereas it was predicted to be deleterious by APF (20%
activity). Importantly, Y186C is associated with decreased DPD
activity and severe fluoropyrimidine toxicity in vivo.43–45

Compared to the frequency of reduced DPD activity pheno-
types, the incidence of PM and IM TPMT metabolisers was
considerably higher (Fig. 3b). Reduced TPMT activity was most
common in Africans (PM= 0.3% and IM= 11%) and Latin
Americans (PM= 0.3% and IM= 10.1%), whereas the incidence
in Ashkenazim was multiple-fold lower (PM= 0.02% and IM=
2.9%). Different from DPD, no significant phenotype difference
was found within European and Asian populations.

DISCUSSION
DPD and TPMT deficiency are the major determinants of severe
fluoropyrimidine and thiopurine-associated toxicity, and prospective
genotyping followed by genotype-guided prescribing has been
shown to reduce adverse events.12,46 Thus, the identification of
genetic variations that result in reduced enzyme function is of
central importance to improve patient outcomes. A few dozen
variants have well-characterised effects in vivo and can be acted on
accordingly once they are identified in a patient’s genome. However,
previous sequencing efforts, such as the 1000 Genomes Project (n=
2504 individuals) and the Exome Sequencing Project (n= 6503
individuals), identified >100 additional DPYD and TPMT variations
with unclear functional consequences. Consequently, while rare
genetic variations have long been considered important factors to
explain at least part of the missing heritability in drug response,47,48

there are currently no guidelines for carriers of such uncharacterised
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Fig. 2 The genetically encoded functional complexity of DPD and
TPMT is distinctly different. Receiver-operating characteristic (ROC)
curves showing the fraction of functional variability that can be
explained by a given number of DPYD (a) and TPMT (b) variants. All
deleterious variants (functionality score ≤ 0.5) were sorted by the
global minor allele frequency. Informedness was determined
graphically for every number of variants as the vertical distance
between the ROC curve and the bisectrix (dashed line). The number
of variants for which the informedness is maximal is indicated as N
(Imax) in red. Inlets specify the contribution of the seven variants that
explain most of the putative differences in enzyme function. Note
that while the eight most frequent variants explain 97.4% of
genetically encoded functional variability in TPMT, the same number
explains only 74.6% for DPD.
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variants as to whether or not to modify doses or switch to
alternative agents. There is thus a need for computational tools that
can aid in the reliable functional interpretation of such variations.
Our data showed that commonly used non-pharmacogene-

specific algorithms that perform well on disease data49 had only
moderate predictive power for DPYD and TPMT variants
(62.1–78.6%). In contrast, DPYD-Varifier, a machine-learning-
based classifier trained exclusively on DPYD variant data, showed
85% accuracy on a set of novel missense variations compared to
in vitro data.26 Here, we find that APF, a quantitative ensemble
score we recently developed specifically for pharmacogenetic
predictions,23 achieved a binary classification accuracy of 91.4%
on a set of 70 variations with known in vivo effects. However, we
want to emphasise that these results cannot be directly compared
to DPYD-Varifier, as all these variants in question were used for the
training of this tool. In contrast, APF has not been trained on any
DPYD variants, suggesting that the underlying framework is
broadly applicable to the functional interpretation of variants
across pharmacogenes encoding metabolic enzymes. Few discre-
pancies between the in vitro assessment and in vivo function were
reported for some variants, such as Y186C and D974V. Conse-
quently, we argue for the benchmarking of computational tools
on variants with known effects in vivo.
While APF constitutes the only tool providing quantitative

estimates of variant function across pharmacogenes, it also has
notable limitations. APF cannot detect gain-of-function effects and
variants that result in increased enzymatic function in vitro, such
as DPD P1023T,24 which APF classifies as functionally neutral. In
addition, APF is designed for the analysis of individual variants. As
such, the functionality of variant combinations is driven by the
most deleterious variant in the haplotype. However, a recent
clinical study showed that a DPYD haplotype containing three
neutral missense variants (C29R, M166V and V732I) is strongly

associated with decreased reduced fluorouracil degradation and
severe toxicity,50 which would thus be missed by APF. Further-
more, we note that APF results in an excess of false positives for
DPYD, such as D829N, A450V and S534N, which are correctly
classified as functionally neutral using in vitro assays. By contrast,
APF correctly flagged DPYD Y186C and D974V as deleterious,
whereas in vitro studies only detected minor reduction of 15 and
22% of WT DPD activity for these variants, respectively.24

While DPYD V732I (DPYD*6) is mostly considered as benign by
both in vivo and in vitro studies,7,51,52 as well as our APF algorithm,
this variant has recently been implicated in increased risk of
gastrointestinal and haematological fluoropyrimidine toxicity.53,54

Importantly, unlike other algorithms, APF provides an activity
score estimate that strongly correlates with measured in vitro
activity (R2= 0.9; P= 2.9 × 10−5).23 V732I was estimated to have
an activity score of 0.6, slightly above the selected binary
classification threshold for deleteriousness of 0.5, suggesting that
also variants with modest decreases in activity might increase
toxicity risks, albeit with lower risk scores than clear loss-of-
function variants, such as DPYD*2A and D949V (APF score of 0 for
both). This is consistent with the findings by Del Re et al.54 and
Boige et al.53 who reported only moderate hazard ratios (HRs) for
V732I, D949V of 1.7–1.9, respectively, whereas HRs for DPYD*2A
were substantially higher (6.3 and 4.2, respectively).
Multiple challenges need to be overcome before fluoropyrimi-

dine and thiopurine dosing based on personalised genomic
profiles and their computational interpretations can be imple-
mented in clinical practice. Most importantly, implementation
efforts critically rely on the demonstration of clinical utility using
stringent prospective trials. In addition, the establishment of
population-scale genomic biobanks55–57 with associated long-
itudinal electronic medical records offers exciting opportunities to
test the predictive power of this and other computational

Table 2. Ethnogeographic differences in reduced function variants of DPD and TPMT.

MAF (%)

Gene RSID Star allele Variant type Global EUR AFR FIN SWE EAS SAS LAT AJ

DPYD

rs75017182 HapB3 Intronic 1.3 2.1 0.2 1.2 1.9 0.2 N.A. 0.8 0.7

rs3918290 *2A Splicing 0.6 0.6 0.1 2.4 0.8 0 0.4 0.1 0.5

rs115232898 Missense (Y186C) 0.2 <0.1 2.2 0 0 <0.1 <0.1 <0.1 0

rs67376798 Missense (D949V) 0.3 0.5 <0.1 <0.1 0.5 <0.1 <0.1 0.3 <0.1

rs112766203 Missense (T760I) <0.1 0 0 0 0 0 0.5 0 0

rs72975710 Missense (A450V) <0.1 <0.1 0.3 0 0 0 0 <0.1 0

rs60511679 Missense (V732G) <0.1 <0.1 0.2 0 0 0 0 <0.1 0

rs59086055 Missense (R592W) <0.1 <0.1 <0.1 0 0 0.2 <0.1 0 0

rs769167857 Splicing <0.1 0 0 0 0 0 0.1 0 0

rs189768576 Stop gain (R74X) <0.1 0 0 0 0 0.2 <0.1 <0.1 0

TPMT

rs1142345 and rs1800460 *3A Missense (Y240C, A154T) 2.8 3.8 0.7 2.7 3.8 <0.1 0.7 4.3 1.3

rs1142345 *3C Missense (Y240C) 1 0.4 4.8 0.3 0.2 1.4 1.1 0.5 <0.1

rs1800462 *2 Missense (A80P) 0.2 0.2 <0.1 <0.1 0.2 0 0 0.4 0.2

rs144041067 *16 Missense (R163H) <0.1 <0.1 <0.1 0.5 0.1 <0.1 <0.1 <0.1 0

rs112339338 *33 Missense (R163C) <0.1 <0.1 0.2 0 0 0 <0.1 <0.1 0

rs72552739 Stop gain (E98X) <0.1 <0.1 <0.1 0 0.2 0 0 0 0

rs1446592306 Missense (F40L) <0.1 0 0 0 0 0 0 0.1 0

rs759836180 *42 Frameshift <0.1 <0.1 0 0.1 0 0 0 0 0

EUR European, AFR African, FIN Finnish, SWE Swedish, EA East Asian, SA South Asian, LAT Latino, AJ Ashkenazi Jew, TPMT thiopurine S-methyltransferase,
DPYD encoding DPD dihydropyrimidine dehydrogenase.
Deleterious variants with frequencies above 0.1% in at least one population are shown.
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prediction algorithms retrospectively. However, even in the
absence of such data, we believe that the current algorithms are
already sufficiently accurate to flag patients with putatively
deleterious but experimentally uncharacterised variations for
increased monitoring. In addition to the clinical validity of in
silico predictions, decisions of gene sequencing require careful
evaluations regarding the cost-effectiveness of such measures
compared to conventional genotyping, particularly as not even
these candidate interrogations are routinely conducted in most
countries.
By leveraging APF’s scalability, we provide the first population-

scale profiles of DPD and TPMT metaboliser phenotypes that
consider the entire repertoire of coding genetic variation.
Importantly, our analyses considered all variants affecting the
amino acid sequence of the respective gene product (missense,
start-lost, frameshifts, splicing and stop gain), as well as the
intronic variant rs75017182 (DPYD HapB3). Uracil breath tests and
peripheral blood mononuclear cell DPD radioassays indicated a
prevalence of DPD deficiency in Africans of 8%,58 which aligns
very well with our APF estimates of 8.4%. Furthermore, our data
suggested a prevalence of reduced DPD function alleles in
Europeans of 7.6%, again in good agreement with the results of
a prospective study in the Netherlands, which reported 8% of
patients to carry at least one functionally relevant DPYD variant
allele.12 A previous study indicated that DPD deficiency due to

DPYD*2 A was very high in Sweden with MAF= 3.5%,59 while our
analysis of 1000 Swedish genomes showed lower frequencies of
0.8%. Notably, however, *2A frequencies in neighbouring Finland
(n= 12,562) were substantially higher (MAF= 2.4%), corroborat-
ing an overall high rate of DPD deficiency in Scandinavia. For
TPMT, the available literature indicates PM and IM frequencies of
0.45–0.6% and 9.9–11.9% for Caucasians,15,60–63 again closely
corresponding to APF predictions of 0.2% and 9%. Notably, while
genotype-based predictions align overall well with measured
TPMT phenotypes (97% concordance), concordance is lower for
TPMT*1/*2 and *1/*3 heterozygotes (79% concordance).64

In summary, this study demonstrates that the pharmacogen-
etically trained APF classifier provides accurate predictions of
DPYD and TPMT variant functionality outperforming convention-
ally used algorithms trained on disease data. We show that DPD
metaboliser status is genetically complex and requires profiling of
tens of variations to explain the majority of phenotypic
differences. In contrast, >95% of functional TPMT variability is
explained by only four variants. By leveraging population-scale
sequencing data, we provide spectra of ethnogeographic variation
in DPD and TPMT phenotypes on an unprecedented scale, and
reveal unexpectedly large interethnic differences in DPD and
TPMT deficiencies. Our results provide a powerful resource for the
worldwide distribution of the major genetic determinants of
fluoropyrimidine and thiopurine metabolism with important
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Line plots (left) show population-specific aggregation of variant functionality scores into spectra of DPD (a) and TPMT (b) functionality.
Column plots (right) indicate the fraction of poor metabolisers (PM), intermediate metabolisers (IM) and normal metabolisers (NM) for each
population. Overlaid dots in panel a indicate predictions based on available variant activity scores of DPYD-Varifier (training and test sets). As
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implications for population-adjusted genotyping strategies and
precision public health.
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