Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular Diagnostics

Development of a non-invasive exhaled breath test for the diagnosis of head and neck cancer

Abstract

Background

Improving the ability to identify early-stage head and neck squamous cell carcinoma (HNSCC) can improve treatment outcomes and patient morbidity. We sought to determine the diagnostic accuracy of breath analysis as a non-invasive test for detecting HNSCC.

Methods

Standardised breath samples were collected from 181 patients suspected of HNSCC prior to any treatment. A selected ion flow-tube mass spectrometer was used to analyse breath for volatile organic compounds. Diagnosis was confirmed by histopathology. A binomial logistic regression model was used to differentiate breath profiles between cancer and control (benign disease) patients based on mass spectrometry derived variables.

Results

In all, 66% of participants had early-stage primary tumours (T1 and T2) and 58% had regional node metastasis. The optimised logistic regression model using three variables had a sensitivity and specificity of 80% and 86%, respectively, with an AUC for ROC curve of 0.821 (95%CI 0.625–1.0) in the testing cohort.

Conclusions

Breath analysis for non-invasive diagnosis of HNSCC appears to be practical and accurate. Future studies should be conducted in a primary care setting to determine the applicability of breath analysis for early identification of HNSCC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Xu, L., Dahlstrom, K. R., Lairson, D. R. & Sturgis, E. M. Projected oropharyngeal carcinoma incidence among middle-aged us men. Head. Neck 41, 3226–3234 (2019).

    Article  Google Scholar 

  2. 2.

    Laprise, C., Madathil, S. A., Schlecht, N. F., Castonguay, G., Soulieres, D., Nguyen-Tan, P. F. et al. Increased risk of oropharyngeal cancers mediated by oral human papillomavirus infection: Results from a canadian study. Head. Neck 41, 678–685 (2019).

    Article  Google Scholar 

  3. 3.

    Lechner, M., Jones, O. S., Breeze, C. E. & Gilson, R. Gender-neutral hpv vaccination in the uk, rising male oropharyngeal cancer rates, and lack of hpv awareness. Lancet Infect. Dis. 19, 131–132 (2019).

    Article  Google Scholar 

  4. 4.

    Deschler, D. G., Richmon, J. D., Khariwala, S. S., Ferris, R. L. & Wang, M. B. The “new” head and neck cancer patient-young, nonsmoker, nondrinker, and hpv positive: evaluation. Otolaryngol. Head. Neck Surg. 151, 375–380 (2014).

    Article  Google Scholar 

  5. 5.

    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A. & Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    Article  Google Scholar 

  6. 6.

    Gerstner, A. O. Early detection in head and neck cancer—current state and future perspectives. GMS Curr. Top Otorhinolaryngol. Head Neck Surg. 7, Doc06 (2008).

    PubMed  Google Scholar 

  7. 7.

    Tikka, T., Pracy, P. & Paleri, V. Refining the head and neck cancer referral guidelines: A two-centre analysis of 4715 referrals. Clin. Otolaryngol. 41, 66–75 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Hanna, G. B., Boshier, P. R., Markar, S. R., & Romano, A. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis a systematic review and meta-analysis. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.2815 (2019).

  9. 9.

    Leunis, N., Boumans, M. L., Kremer, B., Din, S., Stobberingh, E., Kessels, A. G. et al. Application of an electronic nose in the diagnosis of head and neck cancer. Laryngoscope 124, 1377–1381, https://doi.org/10.1002/lary.24463 (2014).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hakim, M., Billan, S., Tisch, U., Peng, G., Dvrokind, I., Marom, O. et al. Diagnosis of head-and-neck cancer from exhaled breath. Br. J. Cancer 104, 1649–1655 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Gruber, M., Tisch, U., Jeries, R., Amal, H., Hakim, M., Ronen, O. et al. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: a feasibility study. Br. J. Cancer 111, 790–798 (2014).

    CAS  Article  Google Scholar 

  12. 12.

    Chandran, D., Ooi, E. H., Watson, D. I., Kholmurodova, F., Jaenisch, S., & Yazbeck, R. The use of selected ion flow tube-mass spectrometry technology to identify breath volatile organic compounds for the detection of head and neck squamous cell carcinoma: a pilot study. Medicina. https://doi.org/10.3390/medicina55060306 (2019).

  13. 13.

    Lydiatt, W. M., Patel, S. G., O’Sullivan, B., Brandwein, M. S., Ridge, J. A., Migliacci, J. C. et al. Head and neck cancers-major changes in the american joint committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin. 67, 122–137 (2017).

    Article  Google Scholar 

  14. 14.

    Vadhwana, B., Belluomo, I., Boshier, P. R., Pavlou, C., Spanel, P. & Hanna, G. B. Impact of oral cleansing strategies on exhaled volatile organic compound levels. Rapid Commun. Mass Spectrom. 34, e8706 (2020).

    CAS  Article  Google Scholar 

  15. 15.

    Markar, S. R., Wiggins, T., Antonowicz, S., Chin, S. T., Romano, A., Nikolic, K. et al. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. JAMA Oncol. 4, 970–976 (2018).

    Article  Google Scholar 

  16. 16.

    Preiss, D. A., Azami, T. & Urman, R. D. Variations in respiratory excretion of carbon dioxide can be used to calculate pulmonary blood flow. J. Clin. Med. Res. 7, 83–90 (2015).

    Article  Google Scholar 

  17. 17.

    Bujang, M. A. & Adnan, T. H. Requirements for minimum sample size for sensitivity and specificity analysis. J. Clin. Diagn. Res. 10, YE01–YE06 (2016).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Wehinger, A., Schmid, A., Mechtcheriakov, S., Ledochowski, M., Grabmer, C., Gastl, G. A. et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas. Int. J. Mass Spectrom. 265, 49–59 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    Szabo, A., Tarnai, Z., Berkovits, C., Novak, P., Mohacsi, A., Braunitzer, G. et al. Volatile sulphur compound measurement with oralchroma(tm): a methodological improvement. J. Breath. Res. 9, 016001 (2015).

    Article  Google Scholar 

  20. 20.

    Park, J. & Look, K. A. Health care expenditure burden of cancer care in the united states. Inquiry 56, 1–9 (2019).

    Article  Google Scholar 

  21. 21.

    Benchetrit, L., Torabi, S. J., Tate, J. P., Mehra, S., Osborn, H. A., Young, M. R. et al. Gender disparities in head and neck cancer chemotherapy clinical trials participation and treatment. Oral. Oncol. 94, 32–40 (2019).

    Article  Google Scholar 

  22. 22.

    Langius, J. A., Bakker, S., Rietveld, D. H., Kruizenga, H. M., Langendijk, J. A., Weijs, P. J. et al. Critical weight loss is a major prognostic indicator for disease-specific survival in patients with head and neck cancer receiving radiotherapy. Br. J. Cancer 109, 1093–1099 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Das, M. K., Bishwal, S. C., Das, A., Dabral, D., Varshney, A., Badireddy, V. K. et al. Investigation of gender-specific exhaled breath volatome in humans by gcxgc-tof-ms. Anal. Chem. 86, 1229–1237 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Alkhouri, N., Eng, K., Cikach, F., Patel, N., Yan, C., Brindle, A. et al. Breathprints of childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls. Pediatr. Obes. 10, 23–29 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Spanel, P. & Smith, D. Selected ion flow tube: a technique for quantitative trace gas analysis of air and breath. Med Biol. Eng. Comput. 34, 409–419 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    Schmutzhard, J., Rieder, J., Deibl, M., Schwentner, I. M., Schmid, S., Lirk, P. et al. Pilot study: Volatile organic compounds as a diagnostic marker for head and neck tumors. Head. Neck 30, 743–749 (2008).

    Article  Google Scholar 

  27. 27.

    Kovaleva, O. V., Romashin, D., Zborovskaya, I. B., Davydov, M. M., Shogenov, M. S., & Gratchev, A. Human lung microbiome on the way to cancer. J Immunol. Res. https://doi.org/10.1155/2019/1394191 (2019).

  28. 28.

    Anesti, V., McDonald, I. R., Ramaswamy, M., Wade, W. G., Kelly, D. P. & Wood, A. P. Isolation and molecular detection of methylotrophic bacteria occurring in the human mouth. Environ. Microbiol. 7, 1227–1238 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Abderrahman, B. Exhaled breath biopsy: a new cancer detection paradigm. Future Oncol. 15, 1679–1682 (2019).

    CAS  Article  Google Scholar 

  30. 30.

    Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T. et al. Review on smart gas sensing technology. Sensors. https://doi.org/10.3390/s19173760 (2019).

  31. 31.

    Broza, Y. Y., Vishinkin, R., Barash, O., Nakhleh, M. K. & Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 47, 4781–4859 (2018).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

N.D. takes full responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: N.D., D.W., E.O., R.Y. Acquisition, analysis and interpretation: N.D., T.G., R.Y. Drafting of paper: N.D., R.Y. Critical revision of the paper for intellectual content: N.D., C.W., D.W., E.O., R.Y. Statistical analysis: N.D. Obtained funding: N.D., E.O., R.Y. Administrative: C.W. Study supervision: E.O., R.Y. No conflicts of interest were reported by any of the authors.

Corresponding author

Correspondence to Nuwan Dharmawardana.

Ethics declarations

Ethics approval and consent to participate

Ethical approval (HREC reference number HREC/16/SAC/70) was obtained from Southern Adelaide Local Health Network Human Ethics Committee with site-specific approvals for Flinders Medical Centre and Royal Adelaide Hospital, Adelaide, South Australia. Informed consent was obtained from all participants prior to sample collection. Local and international guidelines were followed as per the Declaration of Helsinki for research involving human participants.

Data availability

Modelling data are provided in this manuscript as well as in supplementary tables. Deidentified raw data is available upon request.

Competing interests

The authors declare no competing interests.

Funding information

Dr Dharmawardana was funded by the Garnett Passé and Rodney Williams Memorial Foundation—Academic Surgeon Scientist Research Scholarship. Associate Professor Ooi and Dr Yazbeck were funded by the Australia and New Zealand Head and Neck Cancer Society Foundation. Dr Yazbeck was also supported by the Catherine Marie Enright Kelly Research Fellowship.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dharmawardana, N., Goddard, T., Woods, C. et al. Development of a non-invasive exhaled breath test for the diagnosis of head and neck cancer. Br J Cancer 123, 1775–1781 (2020). https://doi.org/10.1038/s41416-020-01051-9

Download citation

Search

Quick links