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A systematic review of meta-analyses assessing the validity of
tumour response endpoints as surrogates for progression-free
or overall survival in cancer
Katy Cooper 1, Paul Tappenden 1, Anna Cantrell 1 and Kate Ennis 1

BACKGROUND: Tumour response endpoints, such as overall response rate (ORR) and complete response (CR), are increasingly used
in cancer trials. However, the validity of response-based surrogates is unclear. This systematic review summarises meta-analyses
assessing the association between response-based outcomes and overall survival (OS), progression-free survival (PFS) or time-to-
progression (TTP).
METHODS: Five databases were searched to March 2019. Meta-analyses reporting correlation or regression between response-
based outcomes and OS, PFS or TTP were summarised.
RESULTS: The systematic review included 63 studies across 20 cancer types, most commonly non-small cell lung cancer (NSCLC),
colorectal cancer (CRC) and breast cancer. The strength of association between ORR or CR and either PFS or OS varied widely
between and within studies, with no clear pattern by cancer type. The association between ORR and OS appeared weaker and more
variable than that between ORR and PFS, both for associations between absolute endpoints and associations between treatment
effects.
CONCLUSIONS: This systematic review suggests that response-based endpoints, such as ORR and CR, may not be reliable
surrogates for PFS or OS. Where it is necessary to use tumour response to predict treatment effects on survival outcomes, it is
important to fully reflect all statistical uncertainty in the surrogate relationship.
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BACKGROUND
Decisions about the use of new and existing health technologies
should ideally be informed by estimates of treatment effects
derived from high-quality randomised controlled trials (RCTs),
which measure patient-relevant endpoints over a clinically
appropriate timeframe. Such “final” endpoints typically involve
the measurement of health benefits, which reflect aspects of the
disease, and its treatment, which are important to patients (and
potentially also their carers) and which relate to “how the patient
feels, functions or survives”.1 In the context of advanced/
metastatic cancer, the key matter of concern is often whether
the use of a given health technology leads to improvements in
overall survival (OS; a final endpoint) compared to existing
standard treatments. However, the estimation of treatment effects
on OS may be subject to numerous problems, including potential
confounding resulting from the use of post-progression treat-
ments, insufficient study follow-up resulting in data immaturity or
simply that data on OS have not been collected. In such instances,
determining the impact of health technologies becomes more
challenging and may rely on the use of surrogate endpoints to
substitute for, and predict, a final patient-relevant clinical
outcome.2 Potentially relevant surrogate endpoints vary according
to tumour type and site, but commonly include progression-free
survival (PFS), time to progression (TTP), and response-based

outcomes, which may include overall response rate (ORR),
different levels of response (e.g. complete response [CR], partial
response [PR] or very good partial response [VGPR]) and duration
of response (DoR). These surrogate endpoints are often consid-
ered attractive as they typically require smaller sample sizes, occur
faster and are less expensive to collect in clinical trials compared
with final outcomes, thereby reducing costs associated with data
collection and expediting the time required for bringing new
technologies to market.
It has been recognised in the literature that the reliance on

surrogates may lead to invalid conclusions regarding the net
health effects of technologies, which in turn have the potential to
lead to patient harm.3 Much of the published literature around the
use of surrogate endpoints has focussed on the development and
application of frameworks for their validation.4,5 In his seminal
paper, Prentice4 put forward stringent criteria for the validation of
surrogate endpoints in phase 3 trials. In general terms, these
criteria require that the surrogate endpoint must be a correlate of
the net effect of treatment on the final clinical outcome—in other
words, there must be a single pathway from the treatment to the
true endpoint, which is mediated exclusively by the surrogate
endpoint.6 Applied surrogate validation studies commonly adopt
a meta-analytic (meta-regression) approach based on multiple
studies in order to assess whether the apparent relationship
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between the surrogate and the final endpoint remains constant in
the presence of various sources of heterogeneity, such as
differences in patient population, study design and treatments
received.5

Based on the NIH Biomarkers Definition Working Group’s
preferred terms and definitions7 and the 2001 Journal of the
American Medical Association (JAMA) User’s Guide,8 Taylor and
Elston9 proposed a hierarchy of levels of surrogate validation.
Level 3 of the hierarchy relates to biological plausibility—this is
the weakest form of validation and is typically based on
pathophysiological studies and/or an understanding of the
disease process. Level 2 requires the presence of a consistent
association between the surrogate outcome and the final
endpoint; this may be assessed using observational studies or
arm-based analyses of trials, which have measured both the
surrogate and the final outcome. This level of validation requires
an assessment of the individual-level (absolute) association
between endpoints and is usually undertaken using correlation
analysis. Level 1 of the hierarchy represents the strongest level of
surrogate validation: in order to achieve this level of validation, the
treatment effect on the surrogate must correspond to the
treatment effect on the final outcome. Demonstrating this level
of validity requires an analysis of correlation in terms of treatment
effects between arms based on data from RCTs (trial-level
association). Other validation frameworks have been proposed
to assess the strength of association between surrogate and final
endpoints. These include the criteria proposed by the German
Institute of Quality and Efficiency in Health Care10 (IQWiG; based
on the treatment effect association only) and the Biomarker-
Surrogate Evaluation Schema criteria11 (BSES2; based on both
absolute and treatment effect associations). These frameworks
differ in terms of the types of analyses and the strength of the
relationship required to determine the reliability of the surrogate.
This systematic review summarises published meta-regression

studies reporting correlation and regression analyses for the
strength of the association between response-based outcomes
and PFS, TTP or OS in (primarily) advanced or metastatic cancer,
across any tumour site, in order to assess whether response-based
outcomes may be considered as valid surrogates for PFS,
TTP or OS.

METHODS
Inclusion and exclusion criteria
Inclusion was restricted to articles reporting meta-analyses or
meta-regressions across multiple studies and reporting the
strength of association between response outcomes (ORR, CR,
PR, VGPR or DoR) and either PFS, TTP or OS. The included meta-
regressions could themselves include RCTs and/or single-arm
studies. However, individual reports analysing single trials or
single cohorts were excluded from this review. Included meta-
analyses could report absolute associations and/or treatment
effect associations. These associations had to be reported as a
correlation coefficient (e.g. Pearson’s r or Spearman’s rs) and/or a
coefficient of determination (R2) between relevant outcomes.
Studies of any cancer and any treatment were included. The

review focussed mainly on studies of advanced or metastatic
cancers (and/or treatment with palliative intent), as these studies
were more likely to report PFS and OS. However, studies reporting
relevant outcomes were included even where the stage was not
specifically restricted to advanced/metastatic disease for all
patients or where this was unclear (this applied particularly to
haematological cancers). Studies were excluded if they explicitly
referred to adjuvant or neo-adjuvant treatment, or treatments that
are given with curative intent. Studies were only included if they
were written on English or contained sufficient detail in English.
The review protocol is registered on PROSPERO with registration

number CRD42019127606.

Search strategy
Five databases (MEDLINE, EMBASE, Web of Science, the Cochrane
Database of Systematic Reviews and CINAHL) were searched from
inception to March 2019. Search terms included cancer terms AND
response terms AND terms for PFS, TTP and/or OS AND terms for
regression, correlation, prediction, association or relationship AND
terms for endpoint and/or surrogate. Search results were limited to
the English language and to studies undertaken in humans. The
MEDLINE search strategy is provided in Supplementary Information 1.
In addition, a citation search was undertaken based on two existing
meta-reviews of surrogate relationships; this identified studies that
have cited any of the 48 articles included in the review by Fischer
et al.12 and/or any of the 19 articles included in the review by Davis
et al.13 In addition, relevant existing meta-reviews, including Fischer
et al.,12 Davis et al.,13 Savina et al.,14 Haslam et al.15 and any reviews
identified during searching, were checked for relevant studies.

Scoring the strength of association: IQWiG and BSES2 scoring
In this review, two sets of published criteria were used to assess
the strength of association between surrogate and final endpoints:
the IQWiG criteria10 and the BSES2 criteria.11

The IQWiG criteria10 are based on the correlation coefficient (r) for
the treatment effect association. Where r was not reported, it was
calculated as the square root of R2, if available. As the medium score
bracket was not clearly defined, slight modifications were made to
the IQWiG criteria based on the approach used in the previous
review by Savina et al.14 (Supplementary Table 1). The IQWiG score
was generated based on the magnitude of r, irrespective of its sign
(i.e. a negative correlation could generate a high score). The IQWiG
criteria were scored as follows: high (lower confidence interval of r is
≥0.85); medium+ (r ≥ 0.85 with no reported confidence interval or
r ≥ 0.85 with wide confidence intervals [lower limit <0.85]); medium
(0.85 > r ≥ 0.7 and upper confidence interval of r is ≥0.7 and lower
confidence interval of r is <0.85, or 0.85 > r ≥ 0.7 with no reported
confidence interval); or low (upper confidence interval of r is <0.7 or
r < 0.7 with no reported confidence interval).
The BSES2 criteria11 require R2 values for both the absolute and

treatment effect associations. Where R2 was not reported, it was
calculated as the square of r, if available. BSES2 criteria were used
as an adaptation from the original BSES criteria, as described in
Savina et al.14 The original BSES criteria require R2 for both
individual and treatment effect associations and a value for the
surrogate threshold effect (STE). Since so few articles report STE,
this review used BSES2, which does not require the STE. The BSES2
criteria were scored as follows: excellent (R2 [treatment effect] ≥0.6
and R2 [absolute] ≥0.6); good (R2 [treatment effect] ≥0.4 and R2

[absolute] ≥0.4); fair (R2 [treatment effect] ≥0.2 and R2 [absolute]
≥0.2); poor (R2 [treatment effect] <0.2 and/or R2 [absolute] <0.2).
Further details on the IQWiG and BSES2 scoring systems are
provided in Supplementary Tables 1 and 2.

Study selection and data extraction
Titles and abstracts of articles retrieved by the search were
examined by one reviewer and a subset was checked by a second
reviewer early in the process, followed by a discussion to ensure
consistency in the selection decisions. Full texts were examined by
one reviewer and a subset was checked by a second reviewer,
with any discrepancies resolved through discussion.
Data were extracted by one reviewer and all data were checked

by a second reviewer. Data were extracted relating to study
design, participant characteristics, surrogate and final endpoints
analysed, methods for correlation and regression, and results
including absolute associations, associations between treatment
effects, STE and regression equations.

Data synthesis
Data were presented in a narrative synthesis. Plots were constructed
to illustrate the reported associations within each study. Some of the

A systematic review of meta-analyses assessing the validity of tumour. . .
K Cooper et al.

1687

1
2
3
4
5
6
7
8
9
0
()
;,:



included meta-regression studies reported multiple subgroup
analyses with differing results. Therefore, each horizontal row in
the plots illustrates the range of reported associations across all
subgroup analyses within a single meta-regression study. Where an
included meta-regression study reported on more than one cancer
type, these are shown on separate rows on the plots.
For associations between absolute values of endpoints, the

plots show the range of correlation coefficients per study, across
all subgroup analyses. All types of correlation coefficient were
included, for example, Pearson’s r and Spearman’s rs. If no
correlation coefficient was reported, then Pearson’s r was
calculated as the square root of R2, if available.
For associations between treatment effects, the plots show the

range of regression coefficients of determination (R2) per study,
across all subgroup analyses. The plots include both adjusted and
unadjusted R2 values, as well as values from weighted and
unweighted regressions. For studies in which R2 was not reported,
this was calculated as the square of the Pearson’s r correlation
coefficient, if available. R2 was not calculated from other
correlation coefficients such as Spearman, or where the method
of correlation was unclear.

Quality assessment
Included meta-regression studies were assessed for methodolo-
gical quality based on key criteria from the AMSTAR-216 and
ReSEEM17 checklists most relevant to our review.

RESULTS
Number of included meta-regression studies
The literature search generated 2829 citations (Fig. 1), of which
2630 were excluded during the review of titles and abstracts and a
further 135 excluded during the review of full texts. In total,
63 studies (within 64 references) were included in the review.18–81

Characteristics of included meta-regression studies
Summaries of study characteristics and reported data types are
provided in Supplementary Tables 3 and 4, respectively, while full
details of study characteristics for each of the 63 included studies
are provided in Supplementary Table 5.
The most commonly reported surrogate relationships were ORR

to OS (57 studies), ORR to PFS (22 studies), CR to OS (8 studies) and
CR to PFS (7 studies). Other response outcomes (DoR, PR and
VGPR/CR) were only reported in one to two studies each. Twenty
different cancer types were analysed, the most common being
NSCLC (16 studies), CRC (10 studies), various solid tumours
(8 studies) and breast cancer (5 studies). Disease stage was
advanced/metastatic in 43 studies and unclear in 9 studies, while
the remainder (11 studies) gave other descriptions mostly
indicating advanced, extensive or recurrent disease. Treatment
was first line in 23 studies, later lines or combinations of lines in
32 studies and not reported in 8 studies. Treatment type was
chemotherapy in 21 studies, immune checkpoint inhibitors in
9 studies, targeted therapy in 8 studies and various other
treatment combinations in the remainder.
The various meta-regressions included between 4 and 191

primary studies and between 407 and 44,125 patients each. The
majority of meta-regressions (N= 44) included only RCTs, while 17
included both RCTs and single-arm studies and 2 included only
single-arm studies. Most meta-regressions (N= 58) analysed
aggregate data (e.g. medians or other summary measures per
study arm), while 5 analysed individual patient data (IPD). Across
all meta-regressions, 32 reported absolute (individual-level)
associations, 38 reported treatment effect (trial-level) associations
and only 4 reported the STE.

Methodological quality of included meta-regression studies
Methodological quality of the included studies is shown in
Supplementary Table 6. All studies had clear inclusion criteria;

Total references identified
(n = 2829)

References excluded at
title/abstract stage

(n = 2630)

Full-text references excluded (n = 135):

Not clinical study (n = 4)
Not meta-analysis of multiple studies (n = 28)
Neoadjuvant or adjuvant (n = 10)
No relevant outcomes (n = 67)
No correlation coefficient or R2 (n = 13)
Secondary publication, no additional data (n = 10)
Insufficient data reported (n = 1)
Non-English and insufficient detail (n = 1)
Not available (n = 1)

Included in systematic review
(n = 64 references to 63 studies)

References identified from
database searches

(n = 2822)

- Keyword search (n = 1102)
- Citation search (n = 1759)
- Both (n = 39)

References identified from other
sources, e.g. other reviews (n = 7)

- From previous reviews (n = 5)
- Chance find (n = 2)

Full-text references screened
(n = 199)

Fig. 1 PRISMA flow diagram for study inclusion. Illustrates the number of references retrieved from the literature searches and included/
excluded at each stage of screening.
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65% reported a comprehensive literature search; and 98%
reported a correlation coefficient or R2 value (the one study
not reporting these was included as it reported a regression
slope). However, only 27% reported duplicate study selection;
48% reported duplicate data extraction or checking; and 13%
reported a risk of bias assessment of included studies. In
addition, only 37% explored heterogeneity through subgroup
analyses, and only 40% reported confidence intervals around the
correlation coefficient or R2.

Results of included studies
The reported associations between surrogate and final endpoints
are summarised in Table 1 and illustrated in Figs. 2–5. Full results
for each included meta-regression study are provided in
Supplementary Table 7 (for absolute associations) and Supple-
mentary Table 8 (for treatment effect associations).

Absolute (individual-level) correlation and regression
The range of absolute (individual-level) correlation coefficients is
summarised in Table 1 and illustrated in Fig. 2 (for the association
between ORR and PFS) and Fig. 3 (for the association between
ORR and OS). Some of the included meta-regression studies
reported multiple subgroup analyses with differing results. There-
fore, each horizontal row in the plots illustrates the range of
correlation coefficients across all subgroup analyses within a
single meta-regression study. Where an included meta-regression
reported on more than one cancer type, these are shown on
separate rows on the plots. It is worth noting that the included
meta-regression studies differed in terms of various factors, such
as the number of included primary studies (shown as N on the
plots), treatment type, line of treatment and precise clinical
population (full details in Supplementary Table 7).

ORR and PFS (or TTP). The reported correlation coefficients
(Pearson’s r or Spearman’s rs) between absolute ORR and PFS ranged
from −0.72 to 0.96, based on multiple analyses within 12 studies
across 10 cancer types44,45,52,54,55,59,62,63,65,66,72,78 (Fig. 2 and Table 1).
Across those studies that report only a single analysis, the correlation
coefficient was generally >0.60; however, some estimates were lower.
Confidence intervals around the correlation coefficients were rarely
reported. Few separate meta-regressions reported on the same
tumour site, hence it is difficult to assess whether ORR may be a
more reliable surrogate in certain cancer types than others. One
study reported on ORR and TTP (gastric cancer; correlation rs=
0.41–0.56 across subgroup analyses, not shown on the plot).42

ORR and OS. The reported correlation coefficients between
absolute ORR and OS ranged from−0.40 to 1.00, based on 27 studies
across 15 cancer types18–20,35,37,38,42,43,45,49–52,59–66,68,70–72,75,78 (Fig. 3
and Table 1). Confidence intervals around the correlation coefficients,
where reported, were generally fairly wide. The majority of
correlation coefficients were >0.40; however, several estimates were
lower. Neither the correlation coefficients reported from multiple
analyses within the same study, nor those reported across separate
studies, suggested a clear pattern by cancer type.

CR and PFS or OS. The correlation coefficients between absolute
CR and PFS in two studies of small cell lung cancer (SCLC)59 and
non-Hodgkin’s lymphoma (NHL)81 ranged from 0.22 to 0.83, while
the correlation coefficients between absolute CR and OS ranged
from −0.04 to 0.62, based on three studies of NSCLC,49 SCLC59 and
gastroesophageal cancer61 (Table 1).

PR and PFS or OS. The correlation coefficient between absolute
PR and PFS ranged from 0.35 to 0.70 across subgroup analyses

Petrelli 2013 (renal cell, N = 6)

Ito 2019 (NSCLC, N = 6-7)

Vidaurre 2009 (NSCLC, N = 35)

Ritchie 2018 (NSCLC, N = 8)

Siddiqui 2017 (ovarian, N = 39)

Mangal 2018 (NHL, N = 73)

Vidaurre 2009 (various, N = 58-143)

Nickolich 2014 (SCLC, N = 66)

Mangal 2018 (multiple myeloma, N = 79)

Louvet 2001 (colorectal, N = 29)

Imaoka 2019 (neuroendocrine, N = 6-22)

Rose 2010 (ovarian, N = 11)

Penel 2014 (CUP, N = 38)

Ritchie 2018 (various, N = 20)

–1.00 –0.80 –0.60 –0.40 –0.20 0.00

Absolute, ORR to PFS

0.20 0.40 0.60 0.80 1.00

Fig. 2 Correlation (r or rs) between absolute (individual-level) values of ORR and PFS. For each study, the plot illustrates the range of
correlation coefficients across all subgroup analyses. N represents the number of studies included in each meta-regression. CUP cancer of
unknown primary, NHL non-Hodgkin’s lymphoma, NSCLC non-small cell lung cancer, ORR overall response rate, PFS progression-free survival,
SCLC small cell lung cancer.
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within one study of SCLC,59 while the highest correlation
coefficient between absolute PR and OS ranged from 0.29 to
0.66 in the same study59 (Table 1).

DoR and PFS or OS. No studies reported on the absolute
association between DoR and PFS or OS.

Treatment effect (trial-level) correlation and regression
The range of treatment effect (trial-level) R2 values is summarised
in Table 1 and illustrated in Fig. 4 (for the association between
ORR and PFS) and Fig. 5 (for the association between ORR and OS).
Each horizontal row in the plots illustrates the range of R2 values
across all subgroup analyses within a single meta-regression
study. Where an included meta-regression reported on more than
one cancer type, these are shown separately on the plots. It is
worth noting that the meta-regressions differed in terms of the
number of included primary studies (shown as N on the plots),
treatment type, line of treatment and precise clinical population
(full details in Supplementary Table 8).

ORR and PFS. The regression R2 values for the treatment effect
association between ORR and PFS ranged from 0.18 to 0.94, based
on nine studies across five cancer types: NSCLC,21,22,45,67,77 ovarian
cancer,27,72 colorectal cancer26,77 and various solid tumours67,77,79

(Fig. 4 and Table 1). The majority of R2 values were above 0.40. The
R2 values reported from multiple analyses within the same study,
and those reported across separate studies, did not suggest a clear
pattern by cancer type. Confidence intervals around the R2 values,
where reported, were generally fairly wide.

ORR and OS. The regression R2 values for the treatment
effect association between ORR and OS ranged from

−0.08 to 0.84, based on 31 studies across 11 cancer
types21–23,25–32,34,36,37,39–41,45–47,53,56–58,60,63,67,73,74,77,79 (Fig. 5 and
Table 1). With the exception of one analysis,77 all R2 values were
below 0.60. The R2 values reported from multiple analyses within
the same study, and those reported across separate studies, did
not suggest a clear pattern by cancer type. Confidence intervals
around the R2 values, where reported, were generally wide.

CR and PFS or OS. The regression R2 for the treatment effect
association between CR and PFS ranged from 0.45 to 0.93 across
subgroup analyses within one study of NHL,69 while the regression
R2 for the treatment effect association between CR and OS within
two studies of breast cancer36 and SCLC34 ranged from 0.05 to
0.48 (Table 1).

PR and PFS or OS. No studies reported the treatment effect
association between PR and PFS or OS.

DoR and PFS or OS. No studies reported R2 between DoR and OS
or PFS. Two studies in colorectal cancer29 and pancreatic cancer28

reported Spearman’s correlation coefficients between DoR and OS
ranging from 0.40 to 0.76 (Table 1).

Influence of clinical and study factors on association
The impact of the following patient and study factors on
the association between ORR and OS was explored: treatment
line; treatment type; response criteria; adjustment of OS for
crossover and post-progression treatments; and aggregate
versus IPD data (Supplementary Table 9). No clear effect on the
association between ORR and OS was identified for
any individual factor. However, this analysis was limited by
the small number of publications assessing each factor within

Liu 2016 (breast, N = 3–24)

Petrelli 2013 (renal cell, N = 6)

Petrelli 2014 (breast, N = 20)

Tang 2007 (colorectal, N = 39)

Giessen 2015 (colorectal, N = 22)

Rose 2010 (ovarian, N = 11)

Penel 2014 (CUP, N = 38)

Nie 2019 (various, N = 43)

Vidaurre 2009 (NSCLC, N = 35)

Li 2019 (NSCLC, N = 5)

Ichikawa 2006 (gastric, N = 11–25)

Han 2014 (glioblastoma, N = 91)

Shukuya 2016 (NSCLC, N = 10–22)

Louvet 2001 (colorectal, N = 28)

Hamada 2016 (pancreatic, N = 47)

Shitara 2014 (gastric, N = 64)

Ritchie 2018 (various, N = 20)

Abdel-Rahman 2018 (urothelial, N = 9)

Abdel-Rahman 2018 (renal cell, N = 4)

Imaoka 2017 (neuroendocrine, N = 20)

Ito 2019 (NSCLC, N = 6–7)

Li 2012 (NSCLC, N = 60)

Pang 2018 (gastroesophageal, N = 18)

Siddiqui 2017 (ovarian, N = 31)

Agarwal 2014 (urothelial, N = 10)

Agarwal 2017 (AML, N = 20)

Vidaurre 2009 (various, N = 143)
Ritchie 2018 (NSCLC, N = 8)

Nickolich 2014 (SCLC, N = 66)

Sekine 1999 (NSCLC, N = 42)

–1.00 –0.80 –0.60 –0.40 –0.20 0.00

Absolute, ORR to OS

0.20 0.40 0.60 0.80 1.00

Fig. 3 Correlation (r or rs) between absolute (individual-level) values of ORR and OS. For each study, the plot illustrates the range of
correlation coefficients across all subgroup analyses. N represents the number of studies included in each meta-regression. AML, acute
myeloid leukaemia, CUP cancer of unknown primary, NSCLC non-small cell lung cancer, ORR overall response rate, OS overall survival, SCLC
small cell lung cancer.
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each cancer, and the wide ranges of associations observed
for each.
Five of the 63 included meta-analyses analysed IPD rather than

aggregate data; two in breast cancer23,24), one in colorectal cancer25,
one in NHL69 and one in ovarian cancer66. The associations reported
in these studies were not noticeably different to those in other
studies (see Figs. 2–5).

Regression equations
Regression equations were reported in 14 studies for the
relationship between ORR and OS; of these, four reported
absolute associations42,52,72,76 and ten reported treatment effect
associations.31–33,36,41,46,56,58,67,77 Regression equations were also
reported in eight studies for the relationship between ORR and
PFS; of these, four reported absolute associations52,54,72,76 and
four reported treatment effect associations.24,33,67,77 These
analyses spanned 10 cancer types. Full details are provided in
Supplementary Tables 10 and 11. There was substantial variation
in the effect measures used for both the surrogate and final
outcomes; for example, difference in medians, hazard ratio (HR),
odds ratio (OR), log-transformed or not. None of the included
studies attempted to externally validate their regression equa-
tions for the relationship between response and other outcomes.

Surrogate threshold effect
The STE—the smallest treatment effect on the surrogate that
predicts a non-zero treatment effect on the true endpoint82—was
reported in only four studies (Supplementary Table 12).26,39,69,77

For the relationship between ORR and PFS, one study77 in various
solid tumours reported that a difference in ORR of 15% would be
required to predict a non-zero treatment effect on the HR for PFS.
For the relationship between ORR and OS, two studies in various
solid tumours77 and NSCLC39 reported that a difference in ORR of

21% and 55%, respectively, would be required to predict a non-
zero treatment effect on the HR for OS, while one study39 also
reported that a difference in ORR of 41% would be required to
predict a non-zero treatment effect on the difference in median
OS. A further study in colorectal cancer26 reported that an OR for
ORR of 0.28 would be required to predict a non-zero treatment
effect on the OR for OS. Finally, for the relationship between
CR and PFS, one study in NHL69 reported that an OR for CR
(at 30 months) of 1.56 would be required to predict a non-zero
treatment effect on the HR for PFS.

IQWiG and BSES2 scores for the strength of association
IQWiG and BSES2 scores for the strength of association between
surrogate and final endpoints were calculated for all reported
subgroup analyses with sufficient data; therefore, meta-regression
studies that reported more subgroups are more strongly
represented in this analysis. These data are presented graphically
in Supplementary Figs. 1 and 2.
In terms of IQWiG scores, of 202 analyses (across 63 studies), 0

(0%) scored high, 15 (7%) scored medium+, 26 (13%) scored
medium, 76 (38%) scored low and 85 (42%) were not evaluable. In
terms of BSES2 scores, of 202 analyses (across 63 studies), 0 (0%)
scored excellent, 3 (1%) scored good, 3 (1%) scored fair, 7 (3%)
scored poor and 189 (94%) were not evaluable.

DISCUSSION
This systematic review summarises published meta-regression
studies reporting correlation and regression analyses for the
strength of the association between response outcomes and PFS,
TTP or OS across different types of cancer. In total, the review
included 63 studies across 20 cancer types. The most commonly
analysed relationships were between ORR and either PFS or OS.

Tsujino 2010 (NSCLC, N = 6)

Blumenthal 2015 (NSCLC, N = 11–14)

Ito 2019 (NSCLC, N = 6–7)

Blumenthal 2017 (NSCLC, N = 25)

Roviello 2017 (various, N = 17)

Roviello 2017 (NSCLC, N = 7)

Siddiqui 2017 (ovarian, N = 39)

0.00 0.20 0.40 0.60

Treatment effect R2, ORR to PFS

0.80 1.00

Tsujino 2010 (colorectal, N = 7)

Tsujino 2010 (various, N = 17)

Wilkerson + Fojo 2009 (various, N = 66)

Ciani 2015, Elia 2018 (colorectal, N = 7–33)

Colloca and Venturino 2017 (ovarian, N = 15–29)

Fig. 4 Regression R2 between treatment effects (trial-level) for ORR and PFS. For each study, the plot illustrates the range of correlation
coefficients across all subgroup analyses. N represents the number of studies included in each meta-regression. NSCLC non-small cell lung
cancer, ORR overall response rate, PFS progression-free survival.
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For the association between ORR and PFS, the majority of
reported correlation coefficients between absolute values were
>0.60 (range −0.72 to 0.96). For association between treatment
effects on ORR and PFS, the majority of regression R2 values were
>0.40 (range 0.18–0.94). The association between ORR and OS
appeared weaker than that between ORR and PFS; while the
majority of reported correlation coefficients between absolute
values were >0.40, several estimates were lower (range −0.40 to
1.00). For association between treatment effects on ORR and OS,
all regression R2 values except one were below 0.60 (range −0.08
to 0.84).
There was no clear pattern by cancer type for either the absolute

or treatment effect associations, based on both multiple analyses
within the same study and results across separate studies.
Confidence intervals around the reported correlation coefficients
and R2 values were generally wide and often not reported.
Strength of association across all subgroup analyses within all

included meta-regression studies was assessed using the IQWiG
and BSES2 scoring systems. The majority of analyses were not
evaluable due to the lack of required data. Of those analyses that
could be scored, scores were relatively low, suggesting that
response-based endpoints may be poor surrogates for OS.
Previous systematic reviews of surrogate endpoints in advanced

cancer have been published. Savina et al.14 and Haslam et al.15

have reported systematic reviews of meta-analyses assessing any
endpoint as a surrogate for OS. Both these reviews also assessed
the strength of association using surrogate validation frameworks;
both studies used adaptations of the IQwiG framework, and
Savina et al.14 also used the BSES2 framework. These previous
reviews generally focussed on the main analyses presented within
individual meta-analyses (usually that with the largest number of
patients). Similar to our review, these previous reviews suggested

that response-based outcomes are likely to be poor surrogates for
OS. Our systematic review focusses exclusively on response-based
surrogates; it includes a comprehensive search to identify relevant
studies, considers PFS as a potential final endpoint as well as OS, is
more up to date, includes a greater number of studies and reports
results for the full breadth of analyses reported in the included
meta-regression studies compared with these previous reviews.
This provides a more complete picture of the extent of
heterogeneity in reported relationships across the full range of
meta-analyses across each cancer area. This additional breadth
provides a better basis to inform judgements about the validity of
response-based endpoints as a surrogate for PFS or OS.
The review is subject to a number of limitations. The reported

data were highly heterogeneous in terms of effect measure and
method of analysis. Therefore, some simplifying assumptions had
to be made to allow the data to be summarised. For example,
correlation coefficients were summarised regardless of method
(Pearson’s, Spearman’s or other); R2 values were summarised
irrespective of whether or not the regression was weighted and
whether or not the R2 was adjusted; and for treatment effect
associations, R2 values were summarised regardless of the effect
measure (e.g. HR, OR, difference in medians). In addition, only five
studies used IPD rather than aggregate data in their analysis; this
is a limitation of the analyses conducted in the majority of meta-
reviews. A recent review by Xie et al.17 highlighted wide variability
in reporting standards across surrogate evaluation meta-
regression studies; future analyses should attempt to adhere to
current best practice, for example, the reporting of surrogate
endpoint evaluation using meta-analyses (ReSEEM) guidelines in
order to improve the quality of these analyses.17

It should further be noted that while meta-regression has been
widely used for the purpose of evaluating the validity of surrogate

Tsujino 2010 (NSCLC, N = 5)

Tsujino 2010 (colorectal, N = 7)

Tsujino 2010 (various, N = 18)
Hotta 2009 (SCLC, N = 20–48)

Hotta 2015 (NSCLC, N = 8–18)

Hamada 2016 (pancreatic, N = 36)
Makris 2017 (pancreatic, N = 22)

Hackshaw 2005 (breast, N = 16–42)

Bruzzi 2005 (breast, N = 10)

Ciani 2015, Elia 2018 (colorectal, N = 7–32)
Buyse 2000 (colorectal, N = 25)

Cremolini 2017 (colorectal, N = 7–20)

Wilkerson + Fojo 2009 (various, N = 66)

Mushti 2018 (various, N = 13)

Nie 2019 (various, N = 43)

Kaufman 2018 (various, N = 27)

–0.20 0.00 0.20 0.40

Treatment effect R2, ORR to OS

0.60 0.80 1.00

Nakashima 2016 (NSCLC, N = 44)

Johnson 2006 (NSCLC, N = 191)

Blumenthal 2017 (NSCLC, N = 25)

Johnson 2006 (colorectal, N = 146)

Hashim 2018 (NSCLC, N = 17–44)
Tanaka 2019 (soft tissue sarcoma, N = 27)

Colloca and Venturino 2017 (ovarian, N = 13–27)

Sidhu 2013 (colorectal, N = 6–24)
Blumenthal 2015 (NSCLC, N = 11–14)
Moriwaki 2016 (biliary tract, N = 6–17)

Roviello 2017 (various, N = 17)

Roviello 2017 (NSCLC, N = 7)

Delea 2012 (renal cell, N = 25)
Colloca 2016b (colorectal, N = 11)

Colloca 2016a (pancreatic, N = 14–36)
Petrelli 2013 (renal cell, N = 6)

Foster 2011 (SCLC, N = 3)

Colloca 2016c (prostate, N = 5–17)
Ito 2019 (NSCLC, N = 6–7)

Fig. 5 Regression R2 between treatment effects (trial-level) for ORR and OS. For each study, the plot illustrates the range of correlation
coefficients across all subgroup analyses. N represents the number of studies included in each meta-regression. NSCLC non-small cell lung
cancer, ORR overall response rate, OS overall survival, SCLC small cell lung cancer.
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endpoints in oncology, this method has been criticised as it
ignores uncertainty around the treatment effect on the surrogate
outcome (which is treated as a fixed covariate in the analysis).
Newer methods, such as the bivariate random effects meta-
analysis (BRMA) model reported by Bujkiewicz et al.,83 provides an
approach for both the validation and prediction of surrogate
endpoints within a Bayesian framework. This approach allows for
borrowing of information across studies and fully accounts for all
uncertainty surrounding the surrogate relationship. In spite of the
generally poor association between response-based outcomes
and final outcomes, there may still be instances in which
generating predictions on the basis of response is necessary; for
example, within health economic models, or more broadly, for
decision-making within health technology assessment. In
instances where the surrogate association is weak, this uncertainty
would manifest as a wider prediction interval. If such predictions
are necessary, it is therefore important that all uncertainty is
reflected in the model. Future surrogate evaluation studies should
consider the use of the BRMA model, rather than conventional
meta-regression, as a means of fully reflecting this uncertainty.

CONCLUSIONS
This systematic review suggests that response-based endpoints
such as ORR and CR may not be reliable surrogates for PFS or OS
in cancer treatment. Strength of association varied widely
between and within studies, with no clear pattern by cancer type.
The strength of association between ORR and OS appeared
weaker and more variable than that between ORR and PFS, both
for associations between absolute endpoints and associations
between treatment effects. While there may still be value in using
response outcomes as a means of predicting final outcomes such
as OS, it is important that those predictions are made on the basis
of models which fully reflect the uncertainty around the treatment
effect on the surrogate outcome.
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