Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cytotoxic CD8+ T cells in cancer and cancer immunotherapy

Abstract

The functions of, and interactions between, the innate and adaptive immune systems are vital for anticancer immunity. Cytotoxic T cells expressing cell-surface CD8 are the most powerful effectors in the anticancer immune response and form the backbone of current successful cancer immunotherapies. Immune-checkpoint inhibitors are designed to target immune-inhibitory receptors that function to regulate the immune response, whereas adoptive cell-transfer therapies use CD8+ T cells with genetically modified receptors—chimaeric antigen receptors—to specify and enhance CD8+ T-cell functionality. New generations of cytotoxic T cells with genetically modified or synthetic receptors are being developed and evaluated in clinical trials. Furthermore, combinatory regimens might optimise treatment effects and reduce adverse events. This review summarises advances in research on the most prominent immune effectors in cancer and cancer immunotherapy, cytotoxic T cells, and discusses possible implications for future cancer treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: T-cell differentiation—an overview.
Fig. 2: T-cell activation: the T-cell receptor (TCR) complex.
Fig. 3: T-cell activation.
Fig. 4: CD8+ T-cell immune-checkpoint receptors and their ligands.
Fig. 5: Development of chimaeric antigen receptors (CARs).
Fig. 6: CD8+ T-cell distribution within tumours.

References

  1. 1.

    Wellenstein, M. D. & de Visser, K. E. Cancer-cell-intrinsic mechanisms shaping the tumor immune landscape. Immunity 48, 399–416 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Barnes, T. A. & Amir, E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 117, 451–460 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Qin, S., Xu, L., Yi, M., Yu, S., Wu, K. & Luo, S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. 5.

    Overgaard, N. H., Jung, J.-W., Steptoe, R. J. & Wells, J. W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol. 97, 31–38 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6.

    Vacca, P., Munari, E., Tumino, N., Moretta, F., Pietra, G., Vitale, M. et al. Human natural killer cells and other innate lymphoid cells in cancer: friends or foes? Immunol. Lett. 201, 14–19 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Brazin, K. N., Mallis, R. J., Das, D. K., Feng, Y., Hwang, W., Wang, J.-H. et al. Structural features of the αβTCR mechanotransduction apparatus that promote pMHC discrimination. Front. Immunol. 6, 441 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Dustin, M. L. The immunological synapse. Cancer Immunol. Res. 2, 1023–1033 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Bettini, M. L., Guy, C., Dash, P., Vignali, K. M., Hamm, D. E., Dobbins, J. et al. Membrane association of the CD3ε signaling domain is required for optimal T cell development and function. J. Immunol. 193, 258–267 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Furlan, G., Minowa, T., Hanagata, N., Kataoka-Hamai, C. & Kaizuka, Y. Phosphatase CD45 both positively and negatively regulates T cell receptor phosphorylation in reconstituted membrane protein clusters. J. Biol. Chem. 289, 28514–28525 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Ngoenkam, J., Schamel, W. W. & Pongcharoen, S. Selected signalling proteins recruited to the T-cell receptor-CD3 complex. Immunology 153, 42–50 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Garcia, K. C., Scott, C. A., Brunmark, A., Carbone, F. R., Peterson, P. A., Wilson, I. A. et al. CD8 enhances formation of stable T-cell receptor/MHC class I molecule complexes. Nature 384, 577–581 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Gao, G., Tormo, J., Gerth, U., Wyer, J., McMichael, A., Stuart, D. et al. Crystal structure of the complex between CD8 alpha-alpha and HLA-A2. Nature 387, 630–634 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Williams, C. M., Schonnesen, A. A., Zhang, S.-Q., Ma, K.-Y., He, C., Yamamoto, T. et al. Normalized synergy predicts that CD8 co-receptor contribution to T cell receptor (TCR) and pMHC binding decreases as TCR affinity increases in human viral-specific T cells. Front. Immunol. 8, 894 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Zumerle, S., Molon, B. & Viola, A. Membrane rafts in T cell activation: a spotlight on CD28 costimulation. Front. Immunol. 8, 1467 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Faia, K., White, K., Murphy, E., Proctor, J., Pink, M., Kosmider, N. et al. The phosphoinositide-3 kinase (PI3K)-δ,γ inhibitor, duvelisib shows preclinical synergy with multiple targeted therapies in hematologic malignancies. PLoS ONE 13, e0200725 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Basu, R., Whitlock, B. M., Husson, J., Le Floc’h, A., Jin, W., Oyler-Yaniv, A. et al. Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165, 100–110 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Gordy, C. & He, Y.-W. Endocytosis by target cells: an essential means for perforin- and granzyme-mediated killing. Cell. Mol. Immunol. 9, 5–6 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Fu, Q., Fu, T.-M., Cruz, A. C., Sengupta, P., Thomas, S. K., Wang, S. et al. Structural basis and functional role of intramembrane trimerization of the Fas/CD95 death receptor. Mol. Cell 61, 602–613 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Wiedemann, A., Depoil, D., Faroudi, M. & Valitutti, S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc. Natl Acad. Sci. USA 103, 10985–10990 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Khazen, R., Müller, S., Gaudenzio, N., Espinosa, E., Puissegur, M.-P. & Valitutti, S. Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat. Commun. 7, 10823 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Dornmair, K., Goebels, N., Weltzien, H.-U., Wekerle, H. & Hohlfeld, R. T-cell-mediated autoimmunity: novel techniques to characterize autoreactive T-cell receptors. Am. J. Pathol. 163, 1215–1226 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Shevchenko, I. & Bazhin, A. V. Metabolic checkpoints: novel avenues for immunotherapy of cancer. Front. Immunol. 9, 1816 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Vodnala, S. K., Eil, R., Kishton, R. J., Sukumar, M., Yamamoto, T. N., Ha, N. H. et al. T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science 363, eaau0135 (2019).

  25. 25.

    Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol. 86, 8161–8170 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Li, H., van der Leun, A. M., Yofe, I., Lubling, Y., Gelbard-Solodkin, D., van Akkooi, A. C. J. et al. Dysfunctional CD8 T Cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Joller, N. & Kuchroo, V. K. Tim-3, Lag-3, and TIGIT. Curr. Top. Microbiol. Immunol. 410, 127–156 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Amatore, F., Gorvel, L. & Olive, D. Inducible co-stimulator (ICOS) as a potential therapeutic target for anti-cancer therapy. Expert Opin. Ther. Targets 22, 343–351 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Bethmann, D., Feng, Z. & Fox, B. A. Immunoprofiling as a predictor of patient’s response to cancer therapy—promises and challenges. Curr. Opin. Immunol. 45, 60–72 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Grywalska, E., Pasiarski, M., Góźdź, S. & Roliński, J. Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco. Targets Ther. 11, 6505–6524 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Arasanz, H., Gato-Cañas, M., Zuazo, M., Ibañez-Vea, M., Breckpot, K., Kochan, G. et al. PD1 signal transduction pathways in T cells. Oncotarget 8, 51936–51945 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Patsoukis, N., Bardhan, K., Chatterjee, P., Sari, D., Liu, B., Bell, L. N. et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun. 6, 6692 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Schneider, H., Downey, J., Smith, A., Zinselmeyer, B. H., Rush, C., Brewer, J. M. et al. Reversal of the TCR Stop Signal by CTLA-4. Science 313, 1972–1975 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Lanzavecchia, A. & Sallusto, F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat. Immunol. 2, 487–492 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Intlekofer, A. M. & Thompson, C. B. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J. Leukoc. Biol. 94, 25–39 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 19, 133–150 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Schmidt, E. V. Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Semin. Immunopathol. 41, 21–30 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Souza-Fonseca-Guimaraes, F., Cursons, J. & Huntington, N. D. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 40, 142–158 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Hamid, O., Robert, C., Daud, A., Hodi, F. S., Hwu, W.-J., Kefford, R. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N. Engl. J. Med. 369, 134–144 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Davis, A. A. & Patel, V. G. The role of PD-L1 expression as a predictive biomarker: an analysis of all US Food and Drug Administration (FDA) approvals of immune checkpoint inhibitors. J. Immunother. Cancer 7, 278 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Balar, A. V. & Weber, J. S. PD-1 and PD-L1 antibodies in cancer: current status and future directions. Cancer Immunol. Immunother. 66, 551–564 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535–e192535 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Soria, F., Beleni, A. I., D’Andrea, D., Resch, I., Gust, K. M., Gontero, P. et al. Pseudoprogression and hyperprogression during immune checkpoint inhibitor therapy for urothelial and kidney cancer. World J. Urol. 36, 1703–1709 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Motzer, R. J., Penkov, K., Haanen, J., Rini, B., Albiges, L., Campbell, M. T. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 380, 1103–1115 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Overman, M. J., Lonardi, S., Wong, K. Y. M., Lenz, H.-J., Gelsomino, F., Aglietta, M. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De Angelis, F. et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Horn, L., Mansfield, A. S., Szczęsna, A., Havel, L., Krzakowski, M., Hochmair, M. J. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H. et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med. 379, 2108–2121 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Schmidt, E. V., Chisamore, M. J., Chaney, M. F., Maradeo, M. E., Anderson, J., Baltus, G. A. et al. Assessment of clinical activity of PD-1 checkpoint inhibitor combination therapies reported in clinical trials. JAMA Netw. Open 3, e1920833 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Miliotou, A. & Papadopoulou, L. CAR T-cell therapy: a new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 19, 5–18 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  52. 52.

    Singh, A. K. & McGuirk, J. P. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 21, e168–e178 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Hay, K. A. & Turtle, C. J. Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs 77, 237–245 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Benmebarek, M.-R., Karches, C. H., Cadilha, B. L., Lesch, S., Endres, S. & Kobold, S. Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int. J. Mol. Sci. 20, 1283 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  55. 55.

    Brentjens, R. J., Santos, E., Nikhamin, Y., Yeh, R., Matsushita, M., La Perle, K. et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13, 5426–5435 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Pehlivan, K. C., Duncan, B. B. & Lee, D. W. CAR-T cell therapy for acute lymphoblastic leukemia: transforming the treatment of relapsed and refractory disease. Curr. Hematol. Malig. Rep. 13, 396–406 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Lowe, K. L., Mackall, C. L., Norry, E., Amado, R., Jakobsen, B. K. & Binder, G. Fludarabine and neurotoxicity in engineered T-cell therapy. Gene Ther. 25, 176–191 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Sun, S., Hao, H., Yang, G., Zhang, Y. & Fu, Y. Immunotherapy with CAR-modified T cells: toxicities and overcoming strategies. J. Immunol. Res. 2018, 2386187 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. 59.

    Norelli, M., Camisa, B., Barbiera, G., Falcone, L., Purevdorj, A., Genua, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Roybal, K. T., Rupp, L. J., Morsut, L., Walker, W. J., McNally, K. A., Park, J. S. et al. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell 164, 770–779 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Cho, J. H., Okuma, A., Al-Rubaye, D., Intisar, E., Junghans, R. P. & Wong, W. W. Engineering Axl specific CAR and SynNotch receptor for cancer therapy. Sci. Rep. 8, 3846 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Yang, Z., Yu, Z., Cai, Y., Du, R. & Cai, L. Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Commun. Biol. 3, 116 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Choi, B. D., Yu, X., Castano, A. P., Bouffard, A. A., Schmidts, A., Larson, R. C. et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat. Biotechnol. 37, 1049–1058 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc. Natl Acad. Sci. USA 105, 15016–15021 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    T.F., G. & H., S. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022 (2013).

    Article  CAS  Google Scholar 

  66. 66.

    Lafitte, M., Rousseau, B., Moranvillier, I., Taillepierre, M., Peuchant, E., Guyonnet-Dupérat, V. et al. In vivo gene transfer targeting in pancreatic adenocarcinoma with cell surface antigens. Mol. Cancer 11, 81 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Chiou, S.-H., Risca, V. I., Wang, G. X., Yang, D., Gruner, B. M., Kathiria, A. S. et al. BLIMP1 induces transient metastatic heterogeneity in pancreatic cancer. Cancer Discov. 7, 1184–1199 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Chen, P.-L., Roh, W., Reuben, A., Cooper, Z. A., Spencer, C. N., Prieto, P. A. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 6, 827–837 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Thommen, D. S. & Schumacher, T. N. T cell dysfunction in cancer. Cancer Cell 33, 547–562 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Trujillo, J. A., Sweis, R. F., Bao, R. & Luke, J. J. T cell–inflamed versus non-T cell–inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6, 990–1000 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Galon, J. & Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18, 197–218 (2019).

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Lee, J. S. & Ruppin, E. Multiomics prediction of response rates to therapies to inhibit programmed cell death 1 and programmed cell death 1 ligand 1. JAMA Oncol. 5, 1614–1618 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  73. 73.

    Rajagopal, C. & Harikumar, K. B. The origin and functions of exosomes in cancer. Front. Oncol. 8, 66 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Zeng, Z., Li, Y., Pan, Y., Lan, X., Song, F., Sun, J. et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 9, 5395 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Patel, S., Fu, S., Mastio, J., Dominguez, G., Purohit, A., Kossenkov, A. et al. Unique pattern of neutrophil migration and function during tumor progression. Nat. Immunol. 19, 1236–1247 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Othman, N., Jamal, R. & Abu, N. Cancer-derived exosomes as effectors of key inflammation-related players. Front. Immunol. 10, 2103 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Zhang, R., Qi, F., Zhao, F., Li, G., Shao, S., Zhang, X. et al. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis. 10, 273 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Monteran, L. & Erez, N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10, 1835 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Peranzoni, E., Lemoine, J., Vimeux, L., Feuillet, V., Barrin, S., Kantari-Mimoun, C. et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc. Natl Acad. Sci. USA 115, E4041–E4050 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Speiser, D. E., Ho, P.-C. & Verdeil, G. Regulatory circuits of T cell function in cancer. Nat. Rev. Immunol. 16, 599 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    CAS  Article  PubMed  Google Scholar 

  82. 82.

    Kakarla, S., Song, X.-T. & Gottschalk, S. Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy 4, 1129–1138 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Pinchuk, I. V., Saada, J. I., Beswick, E. J., Boya, G., Qiu, S. M., Mifflin, R. C. et al. PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 135, 1228–1237 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Lakins, M. A., Ghorani, E., Munir, H., Martins, C. P. & Shields, J. D. Cancer-associated fibroblasts induce antigen-specific deletion of CD8+ T cells to protect tumour cells. Nat. Commun. 9, 948 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  85. 85.

    Xue, J., Yu, X., Xue, L., Ge, X., Zhao, W. & Peng, W. Intrinsic β-catenin signaling suppresses CD8+ T-cell infiltration in colorectal cancer. Biomed. Pharmacother. 115, 108921 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Luke, J. J., Bao, R., Sweis, R. F., Spranger, S. & Gajewski, T. F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 25, 3074–3083 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Grasso, C. S., Giannakis, M., Wells, D. K., Hamada, T., Mu, X. J., Quist, M. et al. Genetic mechanisms of immune evasion in colorectal cancer. Cancer Discov. 8, 730–749 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Meng, W., Hao, Y., He, C., Li, L. & Zhu, G. Exosome-orchestrated hypoxic tumor microenvironment. Mol. Cancer 18, 57 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Rankin, E. & Giaccia, A. Hypoxic control of metastasis. Science 352, 175–180 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Garnier, D., Magnus, N., Meehan, B., Kislinger, T. & Rak, J. Qualitative changes in the proteome of extracellular vesicles accompanying cancer cell transition to mesenchymal state. Exp. Cell Res. 319, 2747–2757 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Thorburn, J., Andrysik, Z., Staskiewicz, L., Gump, J., Maycotte, P., Oberst, A. et al. Autophagy controls the kinetics and extent of mitochondrial apoptosis by regulating PUMA levels. Cell Rep. 7, 45–52 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Ichim, G., Lopez, J., Ahmed, S. U., Muthalagu, N., Giampazolias, E., Delgado, M. E. et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 57, 860–872 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Towers, C. G. & Thorburn, A. Therapeutic targeting of autophagy. EBioMedicine 14, 15–23 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Mulcahy Levy, J. M. & Thorburn, A. Autophagy in cancer: moving from understanding mechanism to improving therapy responses in patients. Cell Death Differ. 27, 843–857 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Dolgin, E. Anticancer autophagy inhibitors attract ‘resurgent’ interest. Nat. Rev. Drug Discov. 18, 408–410 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Singh, A. K. & McGuirk, J. P. Allogeneic stem cell transplantation: a historical and scientific overview. Cancer Res. 76, 6445–64451 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Tang, J., Yu, J. X., Hubbard-Lucey, V. M., Neftelinov, S. T., Hodge, J. P. & Lin, Y. The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat. Rev. Drug Discov. 17, 854 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Chruściel, E., Urban-Wójciuk, Zuzanna, Arcimowicz, Łukasz, Kurkowiak, M., Kowalski, J., Rzyman, W., Biernat, W., Montesano, C. et al. Adoptive cell therapy—harnessing antigen-specific T cells to target solid tumours. Cancers 12, 683 (2020).

    PubMed Central  Article  CAS  Google Scholar 

  99. 99.

    Heinhuis, K. M., Ros, W., Kok, M., Steeghs, N., Beijnen, J. H. & Schellens, J. H. M. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann. Oncol. 30, 219–235 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Joshi, S. & Durden, D. L. Combinatorial approach to improve cancer immunotherapy: rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system. J. Oncol. 2019, 5245034 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Horowitz, M., Neeman, E., Sharon, E. & Ben-Eliyahu, S. Exploiting the critical perioperative period to improve long-term cancer outcomes. Nat. Rev. Clin. Oncol. 12, 213–226 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Angka, L., Martel, A. B., Kilgour, M., Jeong, A., Sadiq, M., de Souza, C. T. et al. Natural killer cell IFNγ secretion is profoundly suppressed following colorectal cancer surgery. Ann. Surg. Oncol. 25, 3747–3754 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  103. 103.

    Market, M., Baxter, K. E., Angka, L., Kennedy, M. A. & Auer, R. C. The potential for cancer immunotherapy in targeting surgery-induced natural killer cell dysfunction. Cancers 11, 2 (2018).

    PubMed Central  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

H.R.: idea, design and writing of the paper. A.O.: helped write the paper, especially the section on solid tumours. J.C.: helped write the paper, especially the immunological angle. I.G.: helped with the overall design and helped write the paper.

Corresponding author

Correspondence to Hans Raskov.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to publish

Not applicable.

Data availability

Not applicable.

Competing interests

The authors declare no competing interests.

Funding information

None.

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raskov, H., Orhan, A., Christensen, J.P. et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 124, 359–367 (2021). https://doi.org/10.1038/s41416-020-01048-4

Download citation

Further reading

Search

Quick links