Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular and Molecular Biology

E2F7−EZH2 axis regulates PTEN/AKT/mTOR signalling and glioblastoma progression



E2F transcription factors are considered to be important drivers of tumour growth. E2F7 is an atypical E2F factor, and its role in glioblastoma remains undefined.


E2F7 expression was examined in patients by IHC and qRT-PCR. The overall survival probability was determined by statistical analyses. MTT assay, colony formation, cell-cycle assay, cell metastasis and the in vivo model were employed to determine the functional role of E2F7 in glioblastoma. Chromatin immunoprecipitation, luciferase assay and western blot were used to explore the underlying mechanisms.


E2F7 was found to be up-regulated in glioblastoma patients, and high E2F7 expression was associated with poor overall survival in glioblastoma patients. Functional studies showed that E2F7 promoted cell proliferation, cell-cycle progression, cell metastasis and tumorigenicity abilities in vitro and in vivo. E2F7 promoted the transcription of EZH2 by binding to its promoter and increased H3K27me3 level. EZH2 recruited H3K27me3 to the promoter of PTEN and inhibited PTEN expression, and then activated the AKT/mTOR signalling pathway. In addition, restored expression of EZH2 recovered the abilities of cell proliferation and metastasis in E2F7-silencing cells.


Collectively, our findings indicate that E2F7 promotes cell proliferation, cell metastasis and tumorigenesis via EZH2-mediated PTEN/AKT/mTOR pathway in glioblastoma.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: E2F7 expression is increased and correlated with poor outcomes.
Fig. 2: E2F7 is important for cell proliferation in glioblastoma.
Fig. 3: E2F7 promotes cell migration and invasion in glioblastoma.
Fig. 4: E2F7 is a direct transcriptional activator of EZH2 expression.
Fig. 5: E2F7−EZH2 axis triggers the AKT/mTOR pathway.
Fig. 6: E2F7 promotes tumorigenesis by regulating PTEN/AKT/mTOR pathway in glioblastoma.


  1. 1.

    Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M. A. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Preusser, M., Lim, M., Hafler, D. A., Reardon, D. A. & Sampson, J. H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. 11, 504–514 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Google Scholar 

  4. 4.

    Riddick, G. & Fine, H. A. Integration and analysis of genome-scale data from gliomas. Nat. Rev. Neurol. 7, 439–450 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Holland, E. C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R. E. & Fuller, G. N. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55–57 (2000).

    CAS  PubMed  Google Scholar 

  6. 6.

    DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).

    CAS  PubMed  Google Scholar 

  7. 7.

    Endo-Munoz, L., Dahler, A., Teakle, N., Rickwood, D., Hazar-Rethinam, M., Abdul-Jabbar, I. et al. E2F7 can regulate proliferation, differentiation, and apoptotic responses in human keratinocytes: implications for cutaneous squamous cell carcinoma formation. Cancer Res. 69, 1800–1808 (2009).

    CAS  PubMed  Google Scholar 

  8. 8.

    Chen, C. & Wells, A. D. Comparative analysis of E2F family member oncogenic activity. PLoS ONE 2, e912 (2007).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Crosby, M. E. & Almasan, A. Opposing roles of E2Fs in cell proliferation and death. Cancer Biol. Ther. 3, 1208–1211 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Trimarchi, J. M. & Lees, J. A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20 (2002).

    CAS  PubMed  Google Scholar 

  11. 11.

    Chong, J. L., Wenzel, P. L., Saenz-Robles, M. T., Nair, V., Ferrey, A., Hagan, J. P. et al. E2f1-3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462, 930–934 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Lee, B. K., Bhinge, A. A. & Iyer, V. R. Wide-ranging functions of E2F4 in transcriptional activation and repression revealed by genome-wide analysis. Nucleic Acids Res. 39, 3558–3573 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Logan, N., Delavaine, L., Graham, A., Reilly, C., Wilson, J., Brummelkamp, T. R. et al. E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. Oncogene 23, 5138–5150 (2004).

    CAS  PubMed  Google Scholar 

  14. 14.

    Lammens, T., Li, J., Leone, G. & De Veylder, L. Atypical E2Fs: new players in the E2F transcription factor family. Trends Cell Biol. 19, 111–118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Xiang, S., Wang, Z., Ye, Y., Zhang, F., Li, H., Yang, Y. et al. E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer. Oncogene 38, 1269–1281 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    de Bruin, A., Maiti, B., Jakoi, L., Timmers, C., Buerki, R. & Leone, G. Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049 (2003).

    PubMed  Google Scholar 

  17. 17.

    Di Stefano, L., Jensen, M. R. & Helin, K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J. 22, 6289–6298 (2003).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Boekhout, M., Yuan, R., Wondergem, A. P., Segeren, H. A., van Liere, E. A., Awol, N. et al. Feedback regulation between atypical E2Fs and APC/CCdh1 coordinates cell cycle progression. EMBO Rep. 17, 414–427 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lammens, T., Boudolf, V., Kheibarshekan, L., Zalmas, L. P., Gaamouche, T., Maes, S. et al. Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc. Natl Acad. Sci. USA 105, 14721–14726 (2008).

    CAS  PubMed  Google Scholar 

  20. 20.

    Liang, R., Xiao, G., Wang, M., Li, X., Li, Y., Hui, Z. et al. SNHG6 functions as a competing endogenous RNA to regulate E2F7 expression by sponging miR-26a-5p in lung adenocarcinoma. Biomed. Pharmacother. 107, 1434–1446 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Ma, Y. S., Lv, Z. W., Yu, F., Chang, Z. Y., Cong, X. L., Zhong, X. M. et al. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J. Exp. Clin. Cancer Res. 37, 252 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Saleh, A. D., Cheng, H., Martin, S. E., Si, H., Ormanoglu, P., Carlson, S. et al. Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer. Clin. Cancer Res. 25, 2860–2873 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Yang, R., Li, X., Wu, Y., Zhang, G., Liu, X., Li, Y. et al. EGFR activates GDH1 transcription to promote glutamine metabolism through MEK/ERK/ELK1 pathway in glioblastoma. Oncogene 39, 2975–2986 (2020).

    CAS  PubMed  Google Scholar 

  24. 24.

    Yang, R., Wu, Y., Wang, M., Sun, Z., Zou, J., Zhang, Y. et al. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation. Oncotarget 6, 7644–7656 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Yang, R., Yi, L., Dong, Z., Ouyang, Q., Zhou, J., Pang, Y. et al. Tigecycline inhibits glioma growth by regulating miRNA-199b-5p-HES1-AKT pathway. Mol. Cancer Ther. 15, 421–429 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Zhang, G., Zhu, Q., Fu, G., Hou, J., Hu, X., Cao, J. et al. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br. J. Cancer 121, 1069–1078 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57−74 (2012).

    CAS  Google Scholar 

  28. 28.

    Xu, T., Wang, Y., Xiong, W., Ma, P., Wang, W., Chen, W. et al. E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis. Cell Death Dis. 8, e2837 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Mori, K., Uchida, T., Fukumura, M., Tamiya, S., Higurashi, M., Sakai, H. et al. Linkage of E2F1 transcriptional network and cell proliferation with respiratory chain activity in breast cancer cells. Cancer Sci. 107, 963–971 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Riverso, M., Montagnani, V. & Stecca, B. KLF4 is regulated by RAS/RAF/MEK/ERK signaling through E2F1 and promotes melanoma cell growth. Oncogene 36, 3322–3333 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Katoh, M. Mutation spectra of histone methyltransferases with canonical SET domains and EZH2-targeted therapy. Epigenomics 8, 285–305 (2016).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    CAS  PubMed  Google Scholar 

  36. 36.

    Fujii, S., Tokita, K., Wada, N., Ito, K., Yamauchi, C., Ito, Y. et al. MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene 30, 4118–4128 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A. et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tiwari, N., Tiwari, V. K., Waldmeier, L., Balwierz, P. J., Arnold, P., Pachkov, M. et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23, 768–783 (2013).

    CAS  PubMed  Google Scholar 

  39. 39.

    Wang, Y., Chen, S. Y., Karnezis, A. N., Colborne, S., Santos, N. D., Lang, J. D. et al. The histone methyltransferase EZH2 is a therapeutic target in small cell carcinoma of the ovary, hypercalcaemic type. J. Pathol. 242, 371–383 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yu, Y., Deng, P., Yu, B., Szymanski, J. M., Aghaloo, T., Hong, C. et al. Inhibition of EZH2 promotes human embryonic stem cell differentiation into mesoderm by reducing H3K27me3. Stem Cell Rep. 9, 52–761 (2017).

    Google Scholar 

  41. 41.

    Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W. et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature 527, 249–253 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E. et al. PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in colon cancer. Cancer Res. 76, 275–282 (2016).

    CAS  PubMed  Google Scholar 

  43. 43.

    Brach, D., Johnston-Blackwell, D., Drew, A., Lingaraj, T., Motwani, V., Warholic, N. M. et al. EZH2 inhibition by tazemetostat results in altered dependency on B-cell activation signaling in DLBCL. Mol. Cancer Ther. 16, 2586–2597 (2017).

    CAS  PubMed  Google Scholar 

  44. 44.

    Riquelme, E., Behrens, C., Lin, H. Y., Simon, G., Papadimitrakopoulou, V., Izzo, J. et al. Modulation of EZH2 expression by MEK-ERK or PI3K-AKT signaling in lung cancer is dictated by different KRAS oncogene mutations. Cancer Res. 76, 675–685 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Yamagishi, M., Nakano, K., Miyake, A., Yamochi, T., Kagami, Y., Tsutsumi, A. et al. Polycomb-mediated loss of miR-31 activates NIK-dependent NF-kappaB pathway in adult T cell leukemia and other cancers. Cancer Cell 21, 121–135 (2012).

    CAS  Google Scholar 

  46. 46.

    Chang, C. J., Yang, J. Y., Xia, W., Chen, C. T., Xie, X., Chao, C. H. et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19, 86–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Gan, L., Xu, M., Hua, R., Tan, C., Zhang, J., Gong, Y. et al. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J. Hematol. Oncol. 11, 9 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Benitez, J. A., Ma, J., D’Antonio, M., Boyer, A., Camargo, M. F., Zanca, C. et al. PTEN regulates glioblastoma oncogenesis through chromatin-associated complexes of DAXX and histone H3.3. Nat. Commun. 8, 15223 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Nan, Y., Guo, L., Song, Y., Wang, L., Yu, K., Huang, Q. et al. Combinatorial therapy with adenoviral-mediated PTEN and a PI3K inhibitor suppresses malignant glioma cell growth in vitro and in vivo by regulating the PI3K/AKT signaling pathway. J. Cancer Res. Clin. Oncol. 143, 1477–1487 (2017).

    CAS  PubMed  Google Scholar 

Download references


We thank all the participants for their contributions to the study.

Author information




Conception and design: R.Y., H.C. Acquisition of data: R.Y., M.W., G.Z., Y.W., X.L. Analysis and interpretation: R.Y., Y.B., W.Y., H.C. Original manuscript drafting and figure construction: R.Y. Manuscript editing and completion: R.Y., M.W., H.C.

Corresponding authors

Correspondence to Rui Yang or Hongjuan Cui.

Ethics declarations

Ethics approval and consent to participate

The trial protocol was compliant with good clinical practice guidelines and the Declaration of Helsinki and was approved by the ethics committee of The Second People’s Hospital of Liaocheng. All patients provided written informed consent before participation. Animal experiments were performed in compliance with the guidelines of the Institute for Laboratory Animal Research, Jining Medical University, China.

Data availability

Data and material shall be available from the corresponding authors.

Competing interests

The authors declare no competing interests.

Funding information

This research was supported by the National Natural Science Foundation of China (Grants 81672502 and 81602479), the National Natural Science Foundation Cultivation Project of Jining Medical University (JYP2019KJ02) and faculty Start-up Fund for R.Y. from Jining Medical University (600788001).

Additional information

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wang, M., Zhang, G. et al. E2F7−EZH2 axis regulates PTEN/AKT/mTOR signalling and glioblastoma progression. Br J Cancer 123, 1445–1455 (2020).

Download citation

Further reading


Quick links