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PD-L1 and MRN synergy in platinum-based chemoresistance
of head and neck squamous cell carcinoma
Bin Shen1,2, Dongyan Huang1,3, Andrew J. Ramsey1, Kevin Ig-Izevbekhai1, Kevin Zhang1, Shayanne A. Lajud1,4, Bert W. O’Malley1 and
Daqing Li1

BACKGROUND: We have been investigating the molecular mechanisms of cisplatin-induced chemoresistance in head and neck
squamous cell carcinoma (HNSCC). Based on our previous findings, the present study investigates how the Mre11, Rad50, and NBS1
(MRN) DNA repair complex interacts at the molecular level with the programmed cell death ligand 1 (PD-L1) in cisplatin-induced
chemoresistance.
METHODS: Human HNSCC cell lines were used to determine the role played by PD-L1 in cisplatin resistance. Initial experiments
investigated PD-L1 expression levels in cells exposed to cisplatin and whether PD-L1 interacts directly with the MRN complex.
Finally, in vitro studies and in vivo experiments on BALB/c nu/nu mice were performed to determine whether interference of PD-L1
or NBS1 synthesis modulated cisplatin resistance.
RESULTS: Exposure to cisplatin resulted in PD-L1 being upregulated in the chemoresistant but not the chemosensitive cell line.
Subsequent co-immunoprecipitation studies demonstrated that PD-L1 associates with NBS1. In addition, we found that the
knockdown of either PD-L1 or NBS1 re-sensitised the chemoresistant cell line to cisplatin. Finally, but perhaps most importantly,
synergy was observed when both PD-L1 and NBS1 were knocked down making the formerly chemoresistant strain highly cisplatin
sensitive.
CONCLUSIONS: PD-L1 plays a pivotal role in cisplatin resistance in chemoresistant human HNSCC cell lines.
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BACKGROUND
Head and neck cancer (HNC) is the sixth most common cancer
worldwide, accounting for >350,000 deaths annually,1,2 with
>65,000 HNC diagnoses expected within the United States in
2019.3 HNCs are mostly squamous cell neoplasms that originate
from the epithelial lining of the upper aerodigestive tract and are
commonly referred to as head and neck squamous cell carcinoma
(HNSCC). While HNSCC is curable when diagnosed early, the
prognosis is very poor when diagnosed at an advanced stage.4

The 3-year disease-free survival rate ranges between 35% and
55% across all stages, and there has not been a significant survival
improvement over the past 30 years due to limited available
approaches.5 Therefore, it is critical to understand the cause of
treatment failure and to identify molecular mechanisms that can
assist in the design of better and more effective therapeutic
approaches to improve patients’ outcomes.
Cis-diamminedichloroplatinum(II) (cisplatin) is a platinum-based

chemotherapy agent commonly used in combination with other
drugs in the treatment of several types of human cancers,
including HNSCC. Cisplatin induces apoptosis by multiple
mechanisms including the induction of DNA damage, which

overwhelms the cancer cell’s DNA repair mechanisms. However,
repeated treatment cycles often lead to acquired platinum-based
chemoresistance of cancer cells. This results in the use of higher
doses of the drug, which can cause severe toxicities.6–8

The Mre11, Rad50, and NBS1 (MRN) complex plays an essential
role in the cellular response to double-stranded DNA breaks.9 The
complex identifies and binds to both ends of a double-stranded
break and recruits other proteins associated with either the non-
homologous end joining or homologous repair pathways.
Increased MRN activity enhances the cells’ ability to repair DNA
damage caused by various chemotherapies, including cisplatin
treatment, and has been detected in a range of cancerous cells.10

Importantly, overexpression of the MRN complex proteins is
associated with cisplatin resistance.11,12 In line with these findings,
we have previously demonstrated that the disruption of the MRN
complex sensitises HNSCC to cisplatin in vitro and in vivo through
the dual disruption of DNA repair and telomere maintenance
mechanisms.11,13–16

The membrane-bound protein programmed cell death receptor
1 (PD-1) has been implicated in a second resistance mechanism.
The protein is located primarily on the immune system’s T cells.
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When the protein binds its ligand, PD-L1, T cells are inactivated
either through anergy or by undergoing apoptosis resulting in the
PD-L1-bound cell being immunologically privileged.17 Abnormal
levels of PD-L1 expression have been found in many cancers,
including HNSCC, which may result in unhindered tumour
growth.18–20 Recent studies suggest an alternative function of
PD-L1. PD-L1 has been observed translocating from the cell
surface to the nucleus of breast cancer cells following doxorubicin
therapy.21 Preliminary studies from our laboratory have revealed
the overexpression of PD-L1 and its presence in the nucleus of
chemoresistant JHU006 human HNSCC cells following cisplatin
treatment. While a synergy has been identified between cisplatin
and PD-1/PD-L1 inhibition in HNSCC,22 its mechanism remains
largely unknown.
In this study, we hypothesised that a link exists between the

translocated PD-L1 and the proteins of the MRN complex in
the development of a cisplatin-resistant phenotype. We used the
chemoresistant JHU006 and chemosensitive JHU020 cell lines,
which have been genetically characterised and whose MRN
expression levels are known, in order to test whether PD-L1 binds
to the MRN complex and whether synergies exist between the two
mechanisms of chemoresistance. We also investigated whether
small interfering RNA (siRNA)-based knockdown of PD-L1 and
MRN could reverse cisplatin chemoresistance. Finally, we per-
formed in vivo experiments on mice in order to determine the
effects of these knockdowns on HNSCC tumour size. The ability to
re-sensitise cancer cells in a clinical setting could have a major
impact on existing chemotherapeutic regimens.

METHODS
Cell culture
JHU020 and JHU006 human HNSCC cell lines were generated
and genetically characterised at the Johns Hopkins University
Head and Neck Biological Research Laboratories from human
tumour explants. Both cell lines were propagated and carefully
maintained in our laboratory. A large batch of both JHU020 and
JHU006 cell lines were produced immediately prior to the
beginning of the study. The majority of the cells were frozen
while aliquots were sent for authentication using Short Tandem
Repeat Analysis by BioSynthesis Inc. The cells were also tested
for mycoplasma contamination. With the exception of those
experiments that took place simultaneously, an aliquot of each
cell line was thawed for every experiment. Long-term propaga-
tion did not occur. The cell lines were cultured in RPMI-1640
culture media (Gibco, Baltimore, MD), supplemented with 12%
Foetal Bovine Serum (Hyclone Laboratories, South Logan, UT)
and 1% Penicillin–Streptomycin solution (Corning, Manassas,
VA). The cells were plated in 6-well plates at a density of
approximately1.5 × 105 cells/ml for JHU006 cells and 3 × 105

cells/ml for JHU020 cells.

Cisplatin concentration
Unless otherwise stated, the in vitro cisplatin (Teva Pharmaceu-
ticals, Sellersville, PA) experiments using the JHU020 and JHU006
cells lines were performed at the cells’ half maximal inhibitory
concentrations (IC50) of 0.3 and1.6 µg/ml, respectively.

Animals
Animal experiments were performed on 6-week-old, drug-naive
BALB/c nu/nu mice (The National Cancer Institute). Mice were
housed in filter-top cages in a designated animal facility, with four
same-sex mice per cage. In accordance with the University of
Pennsylvania Institutional Animal Care and Use Committee
statutes, mice were given food and water ad libitum and
monitored to ensure they maintained weight within 20% of age-
matched controls. At the conclusion of experimental analysis,
animals were euthanised by cervical dislocation.

Co-immunoprecipitation (Co-IP)
Co-IP was performed according to the manufacturer’s instructions
(Abcam Cambridge, MA, USA). Cell lysis buffer was applied to cells
before the cells were transferred to a microcentrifuge tube and
incubated with mixing for 30min at 4 °C to allow the cells to lyse.
The samples were then centrifuged to remove cell debris. Lysates
from JHU006 and JHU020 cell lines were incubated with
monoclonal mouse anti-human PD-L1 (Santa Cruz Biotechnology,
Dallas, TX) at a concentration of 1–2 μg per 100–500 μg of total
protein for 3–4 h at 4 °C. The PD-L1 was then captured using
Protein A/G Sepharose beads. The beads were then thoroughly
washed to remove the unbound protein. After elution from the
beads, the immunoprecipitates were analysed by western blot.

Treatment for siRNA and adenovirus short hairpin RNA (shRNA)
experiment
The shRNA-PD-L1 and shRNA-NBS1 viruses were constructed
according to our previously described methodology.23 Both
JHU006 and JHU020 cell lines were treated with siRNA-STAT1
and siRNA-STAT3 at concentrations of 10 nM and siRNA-NBS1 and
siRNA-PD-L1 at concentrations of 25 nM. Cells treated with control
siRNA were used as experimental controls. The siRNA was
combined with HiPerFect Transfection Reagent (QIAGEN, German-
town, MD) and was allowed to incubate for 20min to allow the
transfection complexes to form. Opti-MEM Reduced Serum Media
(Gibco, Baltimore, MD) was then added to the RNA complexes, and
500 μl of the RNA complex-containing media was added to each
well. After 4 h, another 1 ml of Opti-MEM was added to the
remaining wells. The cells were collected at time points of 0, 12,
24, 48, and 72 h in preparation for western blot analysis designed
to determine the optimal incubation time. The cells treated with
the control siRNA treatment cells were collected at the 72-h
time point.

Alamar Blue cytotoxicity assay
JHU020 and JHU006 cells were loaded onto wells of 96-well plates
at a density of 2 × 105 cells/ml and 1 × 105 cells/ml, respectively.
The treatment groups consisted of 25 nM of siRNA-Control, 25 nM
of siRNA-NBS1, 25 nM of siRNA-PD-L1, or 25 nM of a mixture of
siRNA-NBS1 and siRNA-PD-L1 and a control using standard growth
medium. HiPerFect Transfection Reagent at 0.75 μl/well was
added to all wells containing siRNA. After 24-h incubation,
cisplatin was added to half of the wells to give a final
concentration equal to the cells’ IC50 concentration. Meanwhile,
0.75 μl/well of regular media was added to the remaining wells.
Each experimental condition was run in quadruplicate on each
plate. After incubation for a further 48 h, 10 μl of Alamar Blue
cytotoxicity assay solution (Bio-Rad, Hercules, CA) was added to
each well. The wells were incubated for a total of 4 h before the
sample’s absorption at 570 and 630 nm was measured.

Xenograft tumours in vivo
BALB/c nude mice were allocated to five treatment groups and
one control group by non-blinded randomisation, with six mice in
each group. In all groups, mice underwent surgical implantation
and harvesting of HNSCC tissue. All surgical procedures were
performed with animals under anaesthesia, using aseptic surgical
techniques in a special procedure room. For all surgeries, a
ketamine/xylazine cocktail was prepared at a concentration of 10/
1 mg/ml and 0.010ml/g was injected into the peritoneal cavity
with a small needle, to achieve appropriate anaesthesia. Mice
were monitored during recovery from anaesthesia and every 24 h
after surgery. If mice demonstrated signs of pain upon recovery,
they were treated with buprenorphine 0.05mg/kg.
Tumours were established in the right flank of mice by

subcutaneous injection of 1.0 × 107 JHU006 cells. Seven days after
tumour injection, mice underwent surgical exposure of neoplastic
tissue. A pre-operative subcutaneous injection of 0.01 ml/g of 0.2
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mg/ml bupivacaine was given at the site of the incision, then 0.01
ml/g of 0.005mg/ml buprenorphine was administered. Finally,
0.01 ml/g of 0.5 mg/ml meloxicam was given subcutaneously
before ketamine/xylazine anaesthesia. The tumours were then
surgically exposed and measured in three dimensions. Subse-
quently, intratumoural injections containing 3.4 × 1010 plaque-
forming units of adenoviruses encoding dominant-negative
mutants of PD-L1 and NBS1 were delivered in 50 µl of saline,
while 50 µl of saline alone were delivered to the control tumours.
Cisplatin was intraperitoneally injected into the cisplatin-treated
groups at 5 mg/Kg. Eight days later, the tumour masses were
measured again in three dimensions and harvested using
the aforementioned anaesthetic dosing, with individual mice as
the units of analysis. All procedures were daytime experiments. All
animal experiments were performed in accordance with protocols
approved by the Animal Care and Use Committee of The
University of Pennsylvania.

Statistical analysis
Mann–Whitney analysis was applied using STATMOST (Detaxion
Software Inc., Los Angeles, CA, USA) to determine the statistical
significance.

RESULTS
Cisplatin upregulates the expression of PD-L1 at the protein and
mRNA levels in JHU006 cells, but not in JHU020 cells
JHU006 and JHU020 cells were exposed to a range of cisplatin
concentrations based on their respective IC50. Figure 1a, b
demonstrate that the exposure of the chemoresistant JHU006 cells
to cisplatin resulted in greatly increased PD-L1 expression, which

occurred in a nearly dose-dependent manner. The highest level of
PD-L1 expression was observed at the IC50 concentration where
PD-L1 expression was almost threefold higher than the expression
observed in the absence of cisplatin. In contrast, PD-L1 expression
in the chemosensitive JHU020 cells was not significantly altered
following their exposure to the drug. The effect of cisplatin on PD-
L1 mRNA levels was also measured. Figure 1c, d demonstrate that
the application of cisplatin to JHU006 cells resulted in almost a
doubling of PD-L1 mRNA synthesis while the application of the
drug to JHU020 cells had no significant effect on their PD-L1
mRNA levels. The differential expression of PD-L1 at the mRNA
and protein levels in the chemosensitive and chemoresistant cell
lines strongly implicate PD-L1 in the development of cisplatin
resistance.

PD-L1 associates with NBS1
Co-IP was then used to monitor the interactions between PD-L1
and the MRN complex. Figure 2 indicates that the PD-L1 antibody
successfully pulled down NBS1 from both JHU006 and JHU020 cell
lysates demonstrating that PD-L1 associates with NBS1 in both
chemosensitive and chemoresistant cell lines. This strongly
suggests that PD-L1 and NBS1 may regulate a common pathway.

PD-L1 knockdown induced the reduction of phosphorylation of
Akt and epidermal growth factor receptor (EGFR) expression in
chemoresistant JHU006 cell lines
JHU006 and JHU020 cells were treated with siRNA-PD-L1 for 48 h
before protein extraction and western blotting. The levels of Akt,
p-Akt, p-P53 and EGFR expression were then determined. Figure 3a
demonstrates that PD-L1 knockdown resulted in the qualitative
downregulation of Akt, p-Akt and EGFR in JHU006 cells.
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Fig. 1 PD-L1 expression increased in chemoresistant cells following exposure to cisplatin. JHU020 and JHU006 cells were incubated with a
range of cisplatin concentrations for 48 h (a, b). The addition of cisplatin resulted in a significant upregulation of PD-L1 protein expression in
the chemoresistant JHU006 cells with a near-linear relationship observed between PD-L1 expression and cisplatin concentration at cisplatin
levels at or below the IC50. However, the level of PD-L1 expression did not change significantly upon cisplatin addition to the chemosensitive
JHU020 cell line. c, d RNA was extracted from cells incubated in media with or without CDDP for 48 h. The quantification of the western blot
bands indicates that application of cisplatin results in increased PD-L1 mRNA transcription in JHU006 cells but not in JHU020 cells (*P < 0.05).
The statistics represent the standard errors of the means from three separate experiments. The western blots are cropped in order to improve
clarity.
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Meanwhile, only Akt was significantly downregulated by PD-L1 in
JHU020 cells. Quantitative data (Fig. 3b) confirmed that the
downregulation of Akt, p-Akt and EGFR expression in the JHU006
cells lines was statistically significant. Conversely, only Akt
expression was downregulated in the JHU020 cell line. Notably,

the addition of siRNA-PD-L1 did not modify the expression levels
of the anti-apoptotic protein p-P53 in either the JHU006 or the
JHU020 cell lines.

Signal transducer and activator of transcription 1 (STAT1) and
STAT3 regulate PD-L1 expression independent of NBS1 in HNSCC
cell lines
The STAT family has been implicated in the regulation of PD-L1.24

Consequently, we investigated the effect of downregulating
STAT1 and STAT3 in both JHU006 and JHU020 cell lines. The
expression of PD-L1 and NBS1 was monitored 48 h after siRNA-
STAT1 or siRNA-STAT3 treatment. Figure 4a, b demonstrate that
downregulation of STAT1 and STAT3 via siRNA, in turn,
significantly downregulated PD-L1 but not NBS1 in both cell lines.
The data suggest that both STATs are implicated in the regulation
of PD-L1 expression independent of NBS1.

Downregulation of PD-L1 and NBS1 re-sensitises chemoresistant
cells to cisplatin therapy in vitro
JHU006 and JHU020 cells were transfected with siRNA sequences
that knocked down PD-L1 or NBS1 expression or treated with a
siRNA mixture that knocked down both proteins. Cells were then
exposed to their IC50 concentration of cisplatin and incubated for
48 h. The control group did not receive cisplatin. The cells’ viability
was then determined using the Alamar Blue cytotoxicity assay. As
shown in Fig. 5, siRNA treatments had a minimal effect on the
viability of either JHU006 or JHU020 cells in the absence of
cisplatin. When exposed to cisplatin and siNBS1, JHU006 cells had
a 50% reduction in their viability. Interestingly, the application of
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Fig. 3 siPD-L1 induced a reduction of p-Akt and EGFR expression in the JHU006 chemoresistant cell line but not in chemosensitive
JHU020 cells. a The expression of Akt, p-Akt, p-P53 and EGFR 48 h after the application of siPD-L1. b The intensities of the protein bands
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significant decreases in Akt, p-Akt and EGFR expression in the JHU006 cell line (*P < 0.05). Akt was the only one of the four proteins examined
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from the chemoresistant JHU006 cell lysates than with the
chemosensitive JHU020 lysates. The western blots are cropped in
order to improve clarity.
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siPD-L1 and cisplatin combination treatment of JHU006 cells
appeared to be more effective, causing approximately a 65%
reduction in cell viability (P < 0.05). It was highly significant that
the use of a mixture of both siRNAs in combination with cisplatin
proved to be the most effective treatment, resulting in
approximately 80% cell death. This demonstrates synergy
between the PD-L1 and NBS1/MRN. Conversely, the addition of
cisplatin to siRNA-treated JHU020 cells produced much smaller
decreases in cell viability as compared with JHU006 cells.

Adenovirus-delivered shRNA for PD-L1 and NBS1 re-sensitise
JHU006 cells to cisplatin therapy in vivo
All mice were drug-naive and healthy prior to surgery. The rodents
were split into six treatment groups and then implanted with
JHU006 tumour xenografts that were allowed to grow for 1 week
before treatment was implemented. Tumours were harvested
from six mice in each group. As shown in Fig. 6a, b, tumour
volumes decreased for all groups, including the control, after
treatment. The experimental groups that were treated with

cisplatin and the mixture of shRNA adenoviruses that inhibited
both PD-L1 and NBS1 expression showed the greatest reduction in
volume (P < 0.05), again suggesting synergy between the two
proteins.

DISCUSSION
While the exposure of chemoresistant JHU006 cells to cisplatin
resulted in increased expression of PD-L1 both at the protein and
mRNA levels, this pattern is not observed in the chemosensitive
JHU020 cells, where cisplatin exposure did not significantly alter
PD-L1 expression. These two patterns of expression strongly
implicate PD-L1 in cisplatin chemoresistance in HNSCC. These
results suggest that PD-L1 overexpression, which contributes to
the immunosuppression of HNSCC, could be a promising
therapeutic target. This finding is consistent with the literature
where Cacan25 found that the expression of the immunosuppres-
sive molecule PD-L1 is higher in chemoresistant cells than the
parental chemosensitive ovarian cancer cells.
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Given the known importance of chemoresistance in the
prognosis of HNC, many studies have sought to discover ways
to reverse the chemoresistant phenotype. Our previous studies13–
16 identified multiple therapeutic targets involved in DNA repair
pathways, including the sensitisation of cancer cells to che-
motherapy and radiotherapy through the molecular disruption of

the MRN complex, as well as through poly (ADP-ribose)
polymerase inhibition.26 The NBS1 protein ensures the overall
stability of the MRN complex and the knockdown of NBS1 can
produce decreased expression of the other two members of the
complex. In line with these crucial roles, we have previously
demonstrated a significant synthetic lethality effect upon the dual
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disruption of NBS1 and (ADP-ribose) polymerase 1 in a novel
clinically applicable approach. In the present study, the Co-IP of
NBS1 by anti-PD-L1 indicates that PD-L1 associates with either
NBS1 or the MRN complex and may play a major role in the
development of chemoresistance. Similar to the findings of Sato
et al.,27 we demonstrate an association between PD-L1 with MRN
complex, suggesting a novel interaction between DNA repair and
the mechanisms of immune response. Further research should be
focused on this area to test the exact mechanism of this
interaction.
The STAT signalling pathway is known to play an important role

in many cellular processes, including division, apoptosis and
metastasis.28 The transcriptional activator STAT3 has been
reported to be involved in the development and growth of
tumours,29 while PD-L1 is one of the proteins regulated by STAT3
in tolerogenic antigen-presenting cells.30 STAT3 inhibition has also
been recently shown to reduce PD-L1 expression in non-small cell
lung cancer.31 Similarly, our present experiments demonstrate
that the inhibition of STAT3 expression resulted in decreased PD-
L1 expression in both cell lines. Unexpectedly, inhibiting STAT1
expression also decreased the PD-L1 expression in both cell lines.
Our data also indicate that both the Akt/STAT3 and the JAK/STAT1
pathways regulate PD-L1 expression. Elucidating the role played
by STAT1 and STAT3 in the regulation of PD-L1 in HNSCC may
shed light on potential therapeutic targets or factors influencing
the ability of these tumours to respond to a PD-L1 blockade.
Although the knockdown of either STAT1 or STAT3 reduces PD-L1
expression, it does not affect NBS1 expression. This suggests that
the regulation of PD-L1 and NBS1 probably occurs via indepen-
dent mechanisms.
Interestingly, the JHU006 and JHU020 cell lines showed

different protein expression profiles following the knockdown of
PD-L1. The knockdown of PD-L1 resulted in lower expression of
both P-Akt and EGFR in JHU006 cell lines, but not in JHU020 cells.
Thus the data strongly suggest that both Akt and EGFR are
downstream of PD-L1. The siRNA-mediated knockdown of PD-L1,
NBS1 or both proteins followed by exposure to cisplatin
significantly decreased cell viability. The cell viability assays also
demonstrated that targeting the expression of PD-L1 and NBS1
can re-sensitise JHU006 cells to cisplatin therapy. The fact that the
experimental groups produced different levels of re-sensitisation
suggests that multiple pathways could be involved. Remarkably,
both the cell viability assays and in vivo studies indicate that
downregulation of both PD-L1 and NBS1 in combination with
cisplatin leads to the most potent antitumour effect. This indicates
the presence of a synergy between the two proteins and suggests
that they may collectively contribute to the chemoresistant
phenotype.
Membrane PD-L1 expression in tumours is already known to

result in a poor prognosis. This is due to the creation of an
immunologically privileged site caused by the interactions of
PD-L1 with PD-1 receptors on T cells. PD-L1 has the potential to
be a major dual therapeutic target. For instance, if cisplatin
induces PD-L1 upregulation, PD-L1 could become an immu-
notherapy target, stimulating the immune system. However, if
PD-L1 translocates to the nucleus and leads to enhanced MRN-
based DNA repair, it could also be a target used to combat
chemoresistance. The reversal of chemoresistance by the
downregulation of PD-L1 and NBS1 expression could lead to
the use of lower concentrations of cisplatin during chemother-
apy while maintaining the same or greater therapeutic profile.
This should, in turn, reduce the severity of undesired side
effects, such as neurotoxicity and ototoxicity.
The present study, for the first time, shows a link between PD-L1

and the MRN complex in driving chemoresistance in HNSCC. This
novel finding could lead to improved patient outcomes by
targeting a critical factor in treatment-related failures: chemore-
sistance. While this work is a step closer to developing a clinically

sound therapeutic approach, further in-depth experiments should
be designed to explore the nature of these relationships.
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