Cancer Metabolism

High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer



The fatty acid (FA) composition of phosphatidylinositols (PIs) is tightly regulated in mammalian tissue since its disruption impairs normal cellular functions. We previously found its significant alteration in breast cancer by using matrix-assisted laser desorption and ionisation imaging mass spectrometry (MALDI-IMS).


We visualised the histological distribution of PIs containing different FAs in 65 primary breast cancer tissues using MALDI-IMS and investigated its association with clinicopathological features and gene expression profiles.


Normal ductal cells (n = 7) predominantly accumulated a PI containing polyunsaturated FA (PI-PUFA), PI(18:0/20:4). PI(18:0/20:4) was replaced by PIs containing monounsaturated FA (PIs-MUFA) in all non-invasive cancer cells (n = 12). While 54% of invasive cancer cells (n = 27) also accumulated PIs-MUFA, 46% of invasive cancer cells (n = 23) accumulated the PIs-PUFA, PI(18:0/20:3) and PI(18:0/20:4). The accumulation of PI(18:0/20:3) was associated with higher incidence of lymph node metastasis and activation of the PD-1-related immune checkpoint pathway. Fatty acid-binding protein 7 was identified as a putative molecule controlling PI composition.


MALDI-IMS identified PI composition associated with invasion and nodal metastasis of breast cancer. The accumulation of PI(18:0/20:3) could affect the PD-1-related immune checkpoint pathway, although its precise mechanism should be further validated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Schwamborn, K. & Caprioli, R. M. Molecular imaging by mass spectrometry–looking beyond classical histology. Nat. Rev. Cancer 10, 639–646 (2010).

  2. 2.

    Harada, T., Yuba-Kubo, A., Sugiura, Y., Zaima, N., Hayasaka, T., Goto-Inoue, N. et al. Visualization of volatile substances in different organelles with an atmospheric-pressure mass microscope. Anal. Chem. 81, 9153–9157 (2009).

  3. 3.

    Veselkov, K. A., Mirnezami, R., Strittmatter, N., Goldin, R. D., Kinross, J., Speller, A. V. et al. Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc. Natl Acad. Sci. USA 111, 1216–1221 (2014).

  4. 4.

    Kriegsmann, J., Kriegsmann, M. & Casadonte, R. MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int. J. Oncol. 46, 893–906 (2015).

  5. 5.

    van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

  6. 6.

    Holub, B. J. & Kuksis, A. Structural and metabolic interrelationships among glycerophosphatides of rat liver in vivo. Can. J. Biochem. 49, 1347–1356 (1971).

  7. 7.

    Baker, R. R. & Thompson, W. Positional distribution and turnover of fatty acids in phosphatidic acid, phosphinositides, phosphatidylcholine and phosphatidylethanolamine in rat brain in vivo. Biochim. Biophys. Acta. 270, 489–503 (1972).

  8. 8.

    Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

  9. 9.

    Gu, Z., Wu, J., Wang, S., Suburu, J., Chen, H., Thomas, M. J. et al. Polyunsaturated fatty acids affect the localization and signaling of PIP3/AKT in prostate cancer cells. Carcinogenesis 34, 1968–1975 (2013).

  10. 10.

    Imae, R., Inoue, T., Kimura, M., Kanamori, T., Tomioka, N. H., Kage-Nakadai, E. et al. Intracellular phospholipase A1 and acyltransferase, which are involved in Caenorhabditis elegans stem cell divisions, determine the sn-1 fatty acyl chain of phosphatidylinositol. Mol. Biol. Cell 21, 3114–3124 (2010).

  11. 11.

    Lee, H. C., Inoue, T., Sasaki, J., Kubo, T., Matsuda, S., Nakasaki, Y. et al. LPIAT1 regulates arachidonic acid content in phosphatidylinositol and is required for cortical lamination in mice. Mol. Biol. Cell 23, 4689–4700 (2012).

  12. 12.

    Lee, H. C., Kubo, T., Kono, N., Kage-Nakadai, E., Gengyo-Ando, K., Mitani, S. et al. Depletion of mboa-7, an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (PI), impairs PI 3-phosphate signaling in Caenorhabditis elegans. Genes Cells 17, 748–757 (2012).

  13. 13.

    Naguib, A., Bencze, G., Engle, D. D., Chio, II, Herzka, T., Watrud, K. et al. p53 mutations change phosphatidylinositol acyl chain composition. Cell Rep. 10, 8–19 (2015).

  14. 14.

    Network TCGA. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

  15. 15.

    Kawashima, M., Iwamoto, N., Kawaguchi-Sakita, N., Sugimoto, M., Ueno, T., Mikami, Y. et al. High-resolution imaging mass spectrometry reveals detailed spatial distribution of phosphatidylinositols in human breast cancer. Cancer Sci. 104, 1372–1379 (2013).

  16. 16.

    Goto, T., Terada, N., Inoue, T., Nakayama, K., Okada, Y., Yoshikawa, T. et al. The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One 9, e90242 (2014).

  17. 17.

    Hiraide, T., Ikegami, K., Sakaguchi, T., Morita, Y., Hayasaka, T., Masaki, N. et al. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer. Sci. Rep. 6, 29935 (2016).

  18. 18.

    Hammond, M. E. H., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S. et al. American Society of Clinical Oncology/College of American Pathologists Guideline Recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J. Clin. Oncol. 28, 2784–2795 (2010).

  19. 19.

    Salgado, R., Denkert, C., Demaria, S., Sirtaine, N., Klauschen, F., Pruneri, G. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015).

  20. 20.

    Hubbell, E., Liu, W. M. & Mei, R. Robust estimators for expression analysis. Bioinformatics 18, 1585–1592 (2002).

  21. 21.

    Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

  22. 22.

    Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).

  23. 23.

    Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

  24. 24.

    Pereira, B., Chin, S.-F., Rueda, O. M., Vollan, H.-K. M., Provenzano, E., Bardwell, H. A. et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat. Commun. 7, 11479 (2016).

  25. 25.

    Picelli, S., Faridani, O. R., Bjorklund, A. K., Winberg, G., Sagasser, S. & Sandberg, R. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 9, 171–181 (2014).

  26. 26.

    Kuch, E. M., Vellaramkalayil, R., Zhang, I., Lehnen, D., Brugger, B., Sreemmel, W. et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol. Biochim. Biophys. Acta. 1841, 227–239 (2014).

  27. 27.

    Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 7, 763–777 (2007).

  28. 28.

    Ackerman, D. & Simon, M. C. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 24, 472–478 (2014).

  29. 29.

    Furuta, E., Pai, S. K., Zhan, R., Bandyopadhyay, S., Watabe, M., Mo, Y. Y. et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 68, 1003–1011 (2008).

  30. 30.

    Menendez, J. A. & Lupu, R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin. Ther. Tar. 21, 1001–1016 (2017).

  31. 31.

    Nielsen, M. M. B., Lambertsen, K. L., Clausen, B. H., Meyer, M., Bhandari, D. R., Larsen, S. T. et al. Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci. Rep. 6, 39571 (2016).

  32. 32.

    Sparvero, L. J., Amoscato, A. A., Fink, A. B., Anthonymuthu, T., New, L. A., Kochanek, P. M. et al. Imaging mass spectrometry reveals loss of polyunsaturated cardiolipins in the cortical contusion, hippocampus, and thalamus after traumatic brain injury. J. Neurochem. 139, 659–675 (2016).

  33. 33.

    Wildburger, N. C., Wood, P. L., Gumin, J., Lichti, C. F., Emmett, M. R., Lang, F. F. et al. ESI–MS/MS and MALDI-IMS localization reveal alterations in phosphatidic acid, diacylglycerol, and DHA in glioma stem cell xenografts. J. Proteome Res. 14, 2511–2519 (2015).

  34. 34.

    Sugiura, Y., Konishi, Y., Zaima, N., Kajihara, S., Nakanishi, H., Taguchi, R. et al. Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J. Lipid Res. 50, 1776–1788 (2009).

  35. 35.

    Furuhashi, M. & Hotamisligil, G. S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008).

  36. 36.

    Smathers, R. L. & Petersen, D. R. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum. Genomics 5, 170–191 (2011).

  37. 37.

    Belkaid, A., Ouellette, R. J. & Surette, M. E. 17beta-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells. Carcinogenesis 38, 402–410 (2017).

  38. 38.

    Miki, Y., Kidoguchi, Y., Sato, M., Taketomi, Y., Taya, C., Muramatsu, K. et al. Dual roles of group IID phospholipase A2 in inflammation and cancer. J. Biol. Chem. 291, 15588–15601 (2016).

  39. 39.

    Xu, Y., Yang, X., Gao, D., Yang, L., Miskimins, K. & Qian, S. Y. Dihomo-gamma-linolenic acid inhibits xenograft tumor growth in mice bearing shRNA-transfected HCA-7 cells targeting delta-5-desaturase. BMC Cancer 18, 1268 (2018).

  40. 40.

    Yang, X., Xu, Y., Wang, T., Shu, D., Guo, P., Miskimins, K. et al. Inhibition of cancer migration and invasion by knocking down delta-5-desaturase in COX-2 overexpressed cancer cells. Redox Biol. 11, 653–662 (2017).

  41. 41.

    Dowds, C. M., Kornell, S. C., Blumberg, R. S. & Zeissig, S. Lipid antigens in immunity. Biol. Chem. 395, 61–81 (2014).

  42. 42.

    Tatituri, R. V., Watts, G. F., Bhowruth, V., Barton, N., Rothchild, A., Hsu, F. F. et al. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc. Natl Acad. Sci. USA 110, 1827–1832 (2013).

  43. 43.

    Zajonc, D. M. & Kronenberg, M. CD1 mediated T cell recognition of glycolipids. Curr. Opin. Struct. Biol. 17, 521–529 (2007).

  44. 44.

    Chow, S. C., Sisfontes, L., Jondal, M. & Bjorkhem, I. Modification of membrane phospholipid fatty acyl composition in a leukemic T cell line: effects on receptor mediated intracellular Ca2+ increase. Biochim. Biophys. Acta. 1092, 358–366 (1991).

  45. 45.

    Sabatier, R., Finetti, P., Mamessier, E., Adelaide, J., Chaffanet, M., Ali, H. R. et al. Prognostic and predictive value of PDL1 expression in breast cancer. Oncotarget. 6, 5449–5464 (2015).

  46. 46.

    Schalper, K. A., Velcheti, V., Carvajal, D., Wimberly, H., Brown, J., Pusztai, L. et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin. Cancer Res. 20, 2773–2782 (2014).

  47. 47.

    Doria, M. L., Cotrim, C. Z., Simoes, C., Macedo, B., Domingues, P., Domingues, M. R. et al. Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J. Cell Physiol. 228, 457–468 (2013).

  48. 48.

    Doria, M. L., Ribeiro, A. S., Wang, J., Cotrim, C. Z., Domingues, P., Williams, C. et al. Fatty acid and phospholipid biosynthetic pathways are regulated throughout mammary epithelial cell differentiation and correlate to breast cancer survival. FASEB J. 28, 4247–4264 (2014).

  49. 49.

    Hilvo, M., Denkert, C., Lehtinen, L., Muller, B., Brockmoller, S., Seppanen-Laakso, T. et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 71, 3236–3245 (2011).

  50. 50.

    Abbassi-Ghadi, N., Golf, O., Kumar, S., Antonowicz, S., McKenzie, J. S., Huang, J. et al. Imaging of esophageal lymph node metastases by desorption electrospray ionization mass spectrometry. Cancer Res. 76, 5647–5656 (2016).

  51. 51.

    Ide, Y., Waki, M., Hayasaka, T., Nishio, T., Morita, Y., Tanaka, H. et al. Human breast cancer tissues contain abundant phosphatidylcholine(36ratio1) with high stearoyl-CoA desaturase-1 expression. PLoS One 8, e61204 (2013).

  52. 52.

    Mao, X., He, J., Li, T., Lu, Z., Sun, J., Meng, Y. et al. Application of imaging mass spectrometry for the molecular diagnosis of human breast tumors. Sci. Rep. 6, 21043 (2016).

  53. 53.

    Guffy, M. M., North, J. A. & Burns, C. P. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 44, 1863–1866 (1984).

  54. 54.

    Holleran, W. M., DeGregorio, M. W., Ganapathi, R., Wilbur, J. R. & Macher, B. A. Characterization of cellular lipids in doxorubicin-sensitive and -resistant P388 mouse leukemia cells. Cancer Chemother. Pharmacol. 17, 11–15 (1986).

  55. 55.

    Ramu, A., Glaubiger, D. & Weintraub, H. Differences in lipid composition of doxorubicin-sensitive and -resistant P388 cells. Cancer Treat. Rep. 68, 637–641 (1984).

  56. 56.

    Rivel, T., Ramseyer, C. & Yesylevskyy, S. The asymmetry of plasma membranes and their cholesterol content influence the uptake of cisplatin. Sci. Rep. 9, 5627 (2019).

  57. 57.

    Escriba, P. V., Busquets, X., Inokuchi, J., Balogh, G., Torok, Z., Horvath, I. et al. Membrane lipid therapy: modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog. Lipid Res. 59, 38–53 (2015).

  58. 58.

    Peck, B. & Schulze, A. Lipid desaturation—the next step in targeting lipogenesis in cancer? FEBS J. 283, 2767–2778 (2016).

  59. 59.

    Jiralerspong, S., Palla, S. L., Giordano, S. H., Meric-Bernstam, F., Liedtke, C., Barnett, C. M. et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297–3302 (2009).

  60. 60.

    Lord, S. R., Cheng, W. C., Liu, D., Gaude, E., Haider, S., Metcalf, T. et al. Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer. Cell Metab. 28, 679–688.e4 (2018).

  61. 61.

    Wu, Q., Comi, T. J., Li, B., Rubakhin, S. S. & Sweedler, J. V. On-tissue derivatization via electrospray deposition for matrix-assisted laser desorption/ionization mass spectrometry imaging of endogenous fatty acids in rat brain tissues. Anal. Chem. 88, 5988–5995 (2016).

  62. 62.

    Yoshimura, K., Chen, L. C., Yu, Z., Hiraoka, K. & Takeda, S. Real-time analysis of living animals by electrospray ionization mass spectrometry. Anal. Biochem. 417, 195–201 (2011).

Download references


We wish to acknowledge the Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and University of Oxford for use of their services in this project. The facility is supported by the MRC Strategic Award to the institute. We also wish to acknowledge Drs. Koichi Tanaka and Taka-aki Sato at Shimadzu Corporation, and Techno-Research, Inc. for their crucial support in mass spectrometry analysis. We thank the support and advice from Toshifumi Fukui at the Medical Imaging System Development Center, Canon, and Professor Sigehira Saji at Fukushima Medical University for conducting the statistical analysis.

Author information

M.K., E.S. and Masakazu T. conceived and supervised this study. M.K., Mariko T., T.N., Y.K. and K.I. standardised the method of sample processing for histological diagnosis, MALDI-IMS measurements and gene expression analysis (GEA). M.K., Mariko T., T.N., Y.K. and K.I. performed sample processing, MALDI-IMS measurements and GEA. T.R.K. and T.S. participated in histological analysis of tumour sections. M.K., M.S., M.H. and A.L.H. participated in GEA. M.K., E.S. and A.L.H. drafted the paper. All authors read and approved the final paper.

Correspondence to Masahiro Kawashima.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Written informed consent was obtained from all patients prior to sample collection. The study protocol was approved by the Ethics Committee for Clinical Research, Kyoto University Hospital (authorisation number G424). This is also described in the “Methods” section.


This research was conducted under the support of the Ministry of Health, Labor and Welfare KAKENHI, the Ministry of Education, Culture, Sports, Science and Technology KAKENHI and the Japan Agency for Medical Research and Development. It was also supported by Cancer Research UK and the Breast Cancer Research Foundation.

Consent to publish

Consent for publication was obtained from all patients prior to sample collection.

Data availability

All data generated or analysed during this study are included in the supplementary tables. Alternatively, they are also available from the corresponding authors upon reasonable request.

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawashima, M., Tokiwa, M., Nishimura, T. et al. High-resolution imaging mass spectrometry combined with transcriptomic analysis identified a link between fatty acid composition of phosphatidylinositols and the immune checkpoint pathway at the primary tumour site of breast cancer. Br J Cancer 122, 245–257 (2020).

Download citation

Further reading