Cancer Metabolism

Serotonin activates glycolysis and mitochondria biogenesis in human breast cancer cells through activation of the Jak1/STAT3/ERK1/2 and adenylate cyclase/PKA, respectively



Although produced by several types of tumours, the role of serotonin on cancer biology is yet to be understood.


The effects of serotonin (5-HT) on human breast cancer cells proliferation, signalling pathways and metabolic profile were evaluated by cytometry, western blotting, qPCR, enzymology and confocal microscopy.


Our results revealed that incubation of MCF-7 cells with 10 µM 5-HT increased cell growth rate by 28%, an effect that was prevented by the 5-HTR2A/C antagonist, ketanserin. Conversely, increasing concentrations of 5-HT promoted glucose consumption and lactate production by MCF-7 cells. We also showed that increased glucose metabolism is provoked by the upregulation of pyruvate kinase M2 (PKM2) isoform through 5-HTR2A/C-triggered activation of Jak1/STAT3 and ERK1/2 subcellular pathways. However, we noticed a decrease in the rate of produced lactate per consumed glucose as a function of the hormone concentration, suggesting a disruption of the Warburg effect. The latter effect is due to 5-HTR2A/C-dependent mitochondrial biogenesis and metabolism, which is triggered by adenylyl cyclase/PKA, enhancing the oxidation of lactate within these cells.


We showed that serotonin, through 5-HTR2A/C, interferes with breast cancer cells proliferation and metabolism by triggering two distinct signalling pathways: Jak1/STAT3 that boosts glycolysis through upregulation of PKM2, and adenylyl cyclase/PKA that enhances mitochondrial biogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Siddiqui, E. J., Thompson, C. S., Mikhailidis, D. P. & Mumtaz, F. H. The role of serotonin in tumour growth (Review). Oncol. Rep. 14, 1593–1597 (2005).

  2. 2.

    Mammadova-Bach, E., Mauler, M., Braun, A. & Duerschmied, D. Autocrine and paracrine regulatory functions of platelet serotonin. Platelets 29, 541–548 (2018).

  3. 3.

    Terry, N. & Margolis, K. G. Serotonergic mechanisms regulating the GI tract: experimental evidence and therapeutic relevance. Handb. Exp. Pharm. (2017).

  4. 4.

    Aryal, B., Shimizu, T., Kadono, J., Furoi, A., Komokata, T., Kitazono, I. et al. Post-resection exhaustion of intra-platelet serotonin: also an indicator of early hepatocellular carcinoma recurrence? J. Cancer 8, 3984–3991 (2017).

  5. 5.

    Fröbe, A., Čičin-Šain, L., Jones, G., Soldić, Ž., Lukač, J., Bolanča, A. et al. Plasma free serotonin as a marker for early detection of breast cancer recurrence. Anticancer Res. 34, 1167–1169 (2014).

  6. 6.

    Xia, Y., Wang, D., Zhang, N., Wang, Z. & Pang, L. Plasma serotonin level is a predictor for recurrence and poor prognosis in colorectal cancer patients. J. Clin. Lab Anal. 32, 1–8 (2018).

  7. 7.

    Abdel-Hamid, N. M., Shehata, D. E., Abdel-ghany, A. A., Ragaa, A. & Wahid, A. Serum serotonin as unexpected potential marker for staging of experimental hepatocellular carcinoma. Biomed. Pharmacother. 83, 407–411 (2016).

  8. 8.

    Pai, V. P., Marshall, A. M., Hernandez, L. L., Buckley, A. R. & Horseman, N. D. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival. Breast Cancer Res. 11, 1–17. (2009).

  9. 9.

    Coelho, W. S., Costa, K. C. & Sola-Penna, M. Serotonin stimulates mouse skeletal muscle 6-phosphofructo-1-kinase through tyrosine-phosphorylation of the enzyme altering its intracellular localization. Mol. Genet. Metab. 92. (2007).

  10. 10.

    Coelho, W. S., Da, Silva D., Marinho-Carvalho, M. M. & Sola-Penna, M. Serotonin modulates hepatic 6-phosphofructo-1-kinase in an insulin synergistic manner. Int. J Biochem. Cell Biol. 44. (2012).

  11. 11.

    Coelho, W. S. & Sola-Penna, M. Serotonin regulates 6-phosphofructo-1-kinase activity in a PLC-PKC-CaMK II- and Janus kinase-dependent signaling pathway. Mol. Cell Biochem. 372. (2013).

  12. 12.

    Ganapathy-Kanniappan, S. Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit. Rev. Biochem. Mol. Biol. 53, 667–682 (2018).

  13. 13.

    Coelho, R. G., Calaça, I. C., Celestrini, D. M., Correia-Carneiro, A. P., Costa, M. M., Zancan, P. et al. Hexokinase and phosphofructokinase activity and intracellular distribution correlate with aggressiveness and invasiveness of human breast carcinoma. Oncotarget 6. (2015).

  14. 14.

    Tyszka-Czochara, M., Konieczny, P. & Majka, M. Recent advances in the role of AMP-activated protein kinase in metabolic reprogramming of metastatic cancer cells: targeting cellular bioenergetics and biosynthetic pathways for anti-tumor treatment. J. Physiol. Pharm. 69, 337–349. (2018).

  15. 15.

    Fitzgerald, G., Soro-Arnaiz, I. & Bock, K. De The Warburg effect in endothelial cells and its potential as an anti-angiogenic target in cancer. Front. Cell Dev. Biol. 6, 1–17 (2018).

  16. 16.

    Simabuco, F. M., Morale, M. G., Pavan, I. C. B., Morelli, A. P., Silva, F. R. & Tamura, R. E. P53 and metabolism: from mechanism to therapeutics. Oncotarget 9, 23780–23823. (2018).

  17. 17.

    Zancan, P., Sola-Penna, M., Furtado, C. M. & Da Silva, D. Differential expression of phosphofructokinase-1 isoforms correlates with the glycolytic efficiency of breast cancer cells. Mol. Genet. Metab. 100, 372–378 (2010).

  18. 18.

    Icard, P., Shulman, S., Farhat, D., Steyaert, J. M., Alifano, M. & Lincet, H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist. Updat. (2018).

  19. 19.

    Lunetti, P., Di Giacomo, M., Vergara, D., De Domenico, S., Maffia, M., Zara, V. et al. Metabolic reprogramming in breast cancer results in distinct mitochondrial bioenergetics between luminal and basal subtypes. FEBS J. (2019).

  20. 20.

    Sancho, P., Barneda, D. & Heeschen, C. Hallmarks of cancer stem cell metabolism. Br. J. Cancer 114, 1305–1312 (2016).

  21. 21.

    Ausina, P., Da Silva, D., Majerowicz, D., Zancan, P. & Sola-Penna, M. Insulin specifically regulates expression of liver and muscle phosphofructokinase isoforms. Biomed. Pharmacother. 103, 228–233 (2018).

  22. 22.

    Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. & Madden, T. L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma. 13, 134 (2012).

  23. 23.

    Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. (2009).

  24. 24.

    Velkova, A., Carvalho, M. A., Johnson, J. O., Tavtigian, S. V. & Monteiro, A. N. A. Identification of filamin A as a BRCA1-interacting protein required for efficient DNA repair. Cell Cycle. (2010).

  25. 25.

    Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

  26. 26.

    Roelands, J., Decock, J., Boughorbel, S., Rinchai, D., Maccalli, C., Ceccarelli, M. et al. A collection of annotated and harmonized human breast cancer transcriptome datasets, including immunologic classification. F1000Research 6, 1–24. (2017).

  27. 27.

    Nagalla, S., Chou, J. W., Willingham, M. C., Ruiz, J., Vaughn, J. P., Dubey, P. et al. Interactions between immunity, proliferation and molecular subtype in breast cancer prognosis. Genome Biol.; 14. (2013).

  28. 28.

    Knight, A. R., Misra, A., Quirk, K., Benwell, K., Revell, D., Kennett, G. et al. Pharmacological characterisation of the agonist radioligand binding site of 5-HT2A, 5-HT2B and 5-HT2C receptors. Naunyn Schmiedebergs Arch. Pharm. 370, 114–123 (2004).

  29. 29.

    Pauwels, P. J. & Colpaert, F. C. Selective antagonism of human 5-HT1D and 5-HT1B receptor-mediated responses in stably transfected C6-glial cells by ketanserin and GR 127,935. Eur. J. Pharm. 300, 141–145 (1996).

  30. 30.

    Hauser, S. R., Hedlund, P. B., Roberts, A. J., Sari, Y., Bell, R. L. & Engleman, E. A. The 5-HT7 receptor as a potential target for treating drug and alcohol abuse. Front. Neurosci. 9, 1–9 (2015).

  31. 31.

    Wang, P., Sun, C., Zhu, T. & Xu, Y. Structural insight into mechanisms for dynamic regulation of PKM2. Protein Cell. (2015).

  32. 32.

    Zahid, H., Subbaramaiah, K., Iyengar, N. M., Zhou, X. K., Chen, I. C., Bhardwaj, P. et al. Leptin regulation of the p53-HIF1α/PKM2-aromatase axis in breast adipose stromal cells: a novel mechanism for the obesity-breast cancer link. Int J. Obes. (2018).

  33. 33.

    Israelsen, W. J. & Vander Heiden, M. G. Pyruvate kinase: function, regulation and role in cancer. Semin Cell Dev. Biol. 43, 43–51 (2015).

  34. 34.

    Masson, J., Emerit, M. B., Hamon, M. & Darmon, M. Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip. Rev. Membr. Transp. Signal 1, 685–713 (2012).

  35. 35.

    Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D. et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685–696 (2012).

  36. 36.

    Matsuda, S., Adachi, J., Ihara, M., Tanuma, N., Shima, H., Kakizuka, A. et al. Nuclear pyruvate kinase M2 complex serves as a transcriptional coactivator of arylhydrocarbon receptor. Nucleic Acids Res. 44, 636–647 (2016).

  37. 37.

    Wong, N., Ojo, D., Yan, J. & Tang, D. PKM2 contributes to cancer metabolism. Cancer Lett. (2015).

  38. 38.

    Choi, J., Jo, M., Lee, E., Lee, D. Y. & Choi, D. Dienogest enhances autophagy induction in endometriotic cells by impairing activation of AKT, ERK1/2, and mTOR. Fertil. Steril. 104, 655–664.e1 (2015).

  39. 39.

    Dong, G., Mao, Q., Xia, W., Xu, Y., Wang, J., Xu, L. et al. PKM2 and cancer: the function of PKM2 beyond glycolysis (Review). Oncol. Lett. 11, 1980–1986 (2016).

  40. 40.

    Yang, W., Zheng, Y., Xia, Y., Ji, H., Chen, X., Guo, F. et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat. Cell Biol. (2012).

  41. 41.

    Semba, H., Takeda, N., Isagawa, T., Sugiura, Y., Honda, K., Wake, M. et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat. Commun. 7, 1–10. (2016).

  42. 42.

    Semenza, G. L. Hypoxia-inducible factors in physiology and medicine. Cell 148, 399–408 (2012).

  43. 43.

    Schumacker, P. T. A tumor suppressor SIRTainty. Cancer Cell 17, 5–6 (2010).

  44. 44.

    Lang, A., Grether-Beck, S., Singh, M., Kuck, F., Jakob, S., Kefalas, A. et al. MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4. Aging (Albany NY) 8, 484–505 (2016).

  45. 45.

    Hallap, T., Nagy, S., Jaakma, Ü., Johannisson, A. & Rodriguez-Martinez, H. Mitochondrial activity of frozen-thawed spermatozoa assessed by MitoTracker deep red 633. Theriogenology. (2005).

  46. 46.

    Wiese, E. K. & Hitosugi, T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the Warburg effect. Front. Cell Dev. Biol. 6, 1–8 (2018).

  47. 47.

    Leonard, W. J. & O’Shea, J. J. JAKS and STATS: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

  48. 48.

    Banes, A. K., Shaw, S. M., Tawfik, A., Patel, B. P., Ogbi, S., Fulton, D. et al. Activation of the JAK/STAT pathway in vascular smooth muscle by serotonin. Am. J. Physiol. Cell Physiol. 288, C805–C812 (2005).

  49. 49.

    Wehde, B. L., Rädler, P. D., Shrestha, H., Johnson, S. J., Triplett, A. A. & Wagner, K. U. Janus kinase 1 plays a critical role in mammary cancer progression. Cell Rep. 25, 2192–2207 (2018).

  50. 50.

    Xu, Q., Briggs, J., Park, S., Niu, G., Kortylewski, M., Zhang, S. et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene 24, 5552–5560 (2005).

  51. 51.

    Zheng, B., Geng, L., Zeng, L., Liu, F. & Huang, Q. AKT2 contributes to increase ovarian cancer cell migration and invasion through the AKT2-PKM2-STAT3/NF-κB axis. Cell Signal 45, 122–131 (2018).

  52. 52.

    Zha, X., Wang, F., Wang, Y., He, S., Jing, Y., Wu, X. et al. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 71, 13–18 (2011).

  53. 53.

    Muhammad, A. B., Xing, B., Liu, C., Naji, A., Ma, X., Simmons, R. A. et al. Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB. Am. J. Physiol. Metab. 313, E148–E166. (2017).

  54. 54.

    Fernandez-Marcos, P. J. & Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr. (2011).

  55. 55.

    Hochbaum, D., Hong, K., Barila, G., Ribeiro-Neto, F. & Altschuler, D. L. Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J. Biol. Chem. 283, 4464–4468 (2008).

  56. 56.

    de Padua, M. C., Delodi, G., Vučetić, M., Durivault, J., Vial, V., Bayer, P. et al. Disrupting glucose-6-phosphate isomerase fully suppresses the “Warburg effect” and activates OXPHOS with minimal impact on tumor growth except in hypoxia. Oncotarget 1, 87623–87637 (2017).

  57. 57.

    Yuneva, M. O., Fan, T. W. M., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T. et al. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157–170 (2012).

  58. 58.

    Maher, E. A., Marin-Valencia, I., Bachoo, R. M., Mashimo, T., Raisanen, J. & Hatanpaa, K. J. et al. Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed. 25, 1234–1244 (2012).

  59. 59.

    Hensley, C. T., Faubert, B., Yuan, Q., Lev-Cohain, N., Jin, E. Kim, J. et al. Metabolic heterogeneity in human lung tumors. Cell 164, 681–694 (2016).

  60. 60.

    Dai, X., Li, T., Bai, Z., Yang, Y., Liu, X., Zhan, J. et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 5, 2929 (2015).

  61. 61.

    Yang, P., Du, C. W., Kwan, M., Liang, S. X. & Zhang, G. J. The impact of p53 in predicting clinical outcome of breast cancer patients with visceral metastasis. Sci. Rep. 3, 1–6 (2013).

  62. 62.

    Tonellotto, F., Bergmann, A., Abrahao, K., de, S., Sales de Aguiar, S., Adeodato Bello, M. & Santos Thuler, L. C. Impact of number of positive lymph nodes and lymph node ratio on survival of women with node-positive breast cancer. Eur. J. Breast Heal 15, 76–84 (2019).

  63. 63.

    Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

  64. 64.

    Zacksenhaus, E., Shrestha, M., Liu, J. C., Vorobieva, I., Chung, P. E. D., Ju, Y. J. et al. Mitochondrial OXPHOS induced by RB1 deficiency in breast cancer: implications for anabolic metabolism, stemness, and metastasis. Trends Cancer 3, 768–779 (2017).

  65. 65.

    Sonier, B., Arseneault, M., Lavigne, C., Ouellette, R. J. & Vaillancourt, C. The 5-HT2A serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin. Biochem. Biophys. Res. Commun. (2006).

  66. 66.

    Sharif, N. A. Serotonin-2 receptor agonists as novel ocular hypotensive agents and their cellular and molecular mechanisms of action. Curr. Drug Targets 11, 978–93. (2010).

  67. 67.

    Marshall, A. M., Hernandez, L. L. & Horseman, N. D. Serotonin and serotonin transport in the regulation of lactation. J. Mammary Gland Biol. Neoplasia 19, 139–146 (2014).

  68. 68.

    Laporta, J., Peters, T. L., Merriman, K. E., Vezina, C. M. & Hernandez, L. L. Serotonin (5-HT) affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation. PLoS ONE 8, 1–10. (2013).

  69. 69.

    Stull, M. A., Pai, V., Vomachka, A. J., Marshall, A. M., Jacob, G. A. & Horseman, N. D. Mammary gland homeostasis employs serotonergic regulation of epithelial tight junctions. Proc. Natl Acad. Sci. USA 104, 16708–16713 (2007).

Download references


Authors thank Dr. Patricia L. Mitchel (Université Laval, Quebec, Canada) and Dr. Wassim Abu-Kheir (American University of Beirut, Lebanon) for critical reading of the paper and Dr. Gregg L. Semenza (Johns Hopkins University School of Medicine, Baltimore, MD, USA) for discussion of the data. Authors also thank Dr. Bruno Diaz (IBCCF, UFRJ, Brazil), Dr. Julia Clarke (FF, UFRJ, Brazil), Dr. Marcelo T. Bozza (IMPG, UFRJ, Brazil), Dr. Nathalia Meireles (INCa, Brazil) and Dr. Sergio T. Ferreira (IBCCF, UFRJ, Brazil) for contributing with analytical tools to this work.

Author information

M.S.-P. and P.Z. designed research; M.S.-P., L.P.P., J.R.B., A.C.O., J.M.A., D.M.M., W.S.C., M.C.M. and P.Z. performed research; C.P.F. and D.B.-d.-S. contributed new analytical tools; M.S.-P. and P.Z. analysed the data and wrote the paper.

Correspondence to Patricia Zancan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

No human or animal ethics approval was required for this study.


The work was supported by grants from FAPERJ (M.S.-P. and P.Z.) and CNPq (M.S.-P. and P.Z.).

Data availability

All pertinent data to support this study are included in the paper and supplementary files. Further data supporting the findings are available upon request.

Additional information

Note: This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sola-Penna, M., Paixão, L.P., Branco, J.R. et al. Serotonin activates glycolysis and mitochondria biogenesis in human breast cancer cells through activation of the Jak1/STAT3/ERK1/2 and adenylate cyclase/PKA, respectively. Br J Cancer 122, 194–208 (2020).

Download citation

Further reading