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Spatial proximity between T and PD-L1 expressing cells
as a prognostic biomarker for oropharyngeal squamous
cell carcinoma
Anna Maria Tsakiroglou1, Martin Fergie2, Ken Oguejiofor3, Kim Linton4, David Thomson4, Peter L. Stern5, Susan Astley6,
Richard Byers7 and Catharine M. L. West 8

BACKGROUND: Fulfilling the promise of cancer immunotherapy requires novel predictive biomarkers to characterise the host
immune microenvironment. Deciphering the complexity of immune cell interactions requires an automated multiplex approach to
histological analysis of tumour sections. We tested a new automatic approach to select tissue and quantify the frequencies of cell-
cell spatial interactions occurring in the PD1/PD-L1 pathway, hypothesised to reflect immune escape in oropharyngeal squamous
cell carcinoma (OPSCC).
METHODS: Single sections of diagnostic biopsies from 72 OPSCC patients were stained using multiplex immunofluorescence (CD8,
PD1, PD-L1, CD68). Following multispectral scanning and automated regions-of-interest selection, the Hypothesised Interaction
Distribution (HID) method quantified spatial proximity between cells. Method applicability was tested by investigating the
prognostic significance of co-localised cells (within 30 μm) in patients stratified by HPV status.
RESULTS: High frequencies of proximal CD8+ and PD-L1+ (HR 2.95, p= 0.025) and PD1+ and PD-L1+ (HR 2.64, p= 0.042) cells were
prognostic for poor overall survival in patients with HPV negative OPSCC (n= 31).
CONCLUSION: The HID method can quantify spatial interactions considered to reflect immune escape and generate prognostic
information in OPSCC. The new automated approach is ready to test in additional cohorts and its applicability should be explored in
research and clinical studies.
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INTRODUCTION
It is recognised that a plethora of immune regulatory factors in the
tumour microenvironment (TME) contribute to the progression of
cancers and limit their response to treatment.1–3 An important
class of inhibitory factors, designated immune checkpoints, have
been associated with sustained tumour responses in a variety of
cancers.4,5 The programmed cell death 1 (PD-1) receptor has
emerged as a dominant negative regulator of anti-tumour effector
function. Interaction with its ligand PD-L1 leads to PD-1 mediated
T cell exhaustion and inhibition of antitumour cytotoxic T cells.
The latter results from specific T cells releasing interferon gamma
(IFN-γ+) after recognising their tumour associated antigens. IFN-γ+

release leads to upregulation of PD-L1 on the local tumour and
other cells, which in turn can compromise T cell function through
adaptive immune resistance. This state of local immune privilege
can be reversed by blocking antibodies to PD-1 or PD-L1 and such
single agent therapies are now licensed for the treatment of
patients with multiple types of cancers.4–10 Response rates can be

as high as 90% for some tumour types but as low as 15% with
others, but selection of patients likely to respond favourably to
such single agent therapy proves a challenge, as it requires an in
depth understanding of immune interactions in the TME.4,5

Head and neck squamous cell carcinomas (HNSCC) develop as a
consequence of either a persistent high risk HPV infection or
through carcinogen exposure (e.g. smoking, alcohol).11 In the
subgroup of oropharyngeal squamous cell carcinomas (OPSCC),
the HPV positive patients have a significantly better clinical
outcome and this is linked to differences in tumour infiltrating
lymphocyte (TIL) densities.12 PD-L1 positivity within a tumour has
been explored as a potential treatment biomarker but the results
have not been consistent in predicting subsequent clinical
responses.13–17 The spectrum of “conclusions” may not be
surprising considering the variability of tumour aetiology, the
antibodies and detection methodologies used, the arbitrary cut-
off levels defined and cellular diversity of cells expressing PD-L1.
Moving beyond simple enumeration of cell densities, and
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observing the spatial organisation of the TME may provide further
insight for the development of more informative biomarkers.18,19

In the TME of HNSCC the existence of varying patterns of PD-L1
expression has been highlighted.20 These qualitative results are
useful pointers to further analysis but are not easily generalised, as
the criteria for defining patterns are subjective. Quantitative, non-
subjective, assessment of spatial organisation becomes possible
using automated image analysis approaches15,21 to minimise
operator dependence and analysis time, and facilitate successful
clinical application.
Here we report an automated analysis pipeline to quantify the

potential of T cells to interact with PD-L1 expressing cells in the
TME, which will reflect a key driving force for immune regulation.
Our algorithm discards artefacts and scanning errors, performs cell
segmentation and accounts for the proximity between cell
subsets. Using the Hypothesised Interaction Distribution (HID)
method22 we assess whether a high frequency of spatial
interactions between CD8+ or PD-1+ and PD-L1+ cells correlates
with a poor prognosis in OPSCC, as previously observed in HPV-

OSCC.21

MATERIALS AND METHODS
Cohort characteristics
The dataset for this study derived from a retrospective collection
of 218 OPSCC patients treated with radiotherapy alone or
with concurrent chemotherapy at The Christie NHS Foundation
Trust in Manchester, UK between January 2002 and December
2011 (REC reference: 03/TG/076). HPV status of these patients
was assessed (p16 expression, in-situ hybridisation and
human papillomavirus DNA PCR) as described elsewhere.12

Within this cohort, 124 patients with concordant HPV status
for all three assays had sufficient formalin fixed, paraffin
embedded tissue available for multiplex immunofluorescence
staining with antibodies against PD-L1, CD8, CD68 and PD-1.15

Analyses were performed on randomly selected regions of
interest (ROIs) from sections taken from pre-treatment diag-
nostic biopsies of OPSCC. The associated clinical data for grade,
stage and comorbidities (alcohol and smoking) is described
elsewhere.15 Updated overall survival (OS) information was
obtained for 72 patients.

Multiplex staining and multispectral scanning
Multiplex immunofluorescent staining was performed using the
Ventana auto-staining platform (Ventana Medical Systems, Oro
Valley, Arizona, United States) and the Opal detection system
(PerkinElmer, Waltham, Massachusetts, United States) with tyr-
amide signal amplification (TSA), as described elsewhere16 and
summarised in Supplementary Table 1. Using TSA23 and the Opal
kit technology permits multiple repeated cycles of staining and
stripping of anti-mouse or anti-rabbit antibodies, while the TSA
conjugated fluorophores bind strongly to the epitopes and remain
on the tissue. The auto-staining platform performed an initial
deparaffinisation and epitope retrieval at pH 8.5. Subsequent
staining cycles involved incubation with the primary antibody, the
secondary antibody, and then the opal detection label. Each
staining cycle was separated by a short denaturation at pH 6. After
staining, slides were washed with EZ preparation (1:10) for three
cycles of 5 min each and cover-slipped using the Prolong aqueous
mounting agent (Thermo Fisher, Waltham, Massachusetts, United
States) with DAPI for counter-staining. Imaging was performed
using a Vectra microscope (PerkinElmer) and a 20x objective
(0.495 µm per pixel). The Vectra microscope first scanned whole
slides at low resolution to obtain the tissue grid using only the
DAPI filter. Subsequently, 10–20 ROIs (1392 × 1040 pixels) were
selected randomly for each slide from tissue areas for multi-
spectral scanning at full resolution using all available filters (DAPI,
FITC, Cy3, Texas Red and Cy 5).

Spectral un-mixing
Linear spectral un-mixing24 was performed using the inForm
software (PerkinElmer). For un-mixing a spectral library was built
comprising individual fluorophore spectra. Each spectrum was
acquired from slides that were single stained for the different
antibodies, using the same experimental parameters as in the
multiplex experiment. A slide stained only with DAPI was also
used to extract the DAPI spectrum. Finally, a slide that
underwent all steps in the multiplex experiment without
application of antibodies or fluorophores was used to extract
the spectrum of tissue auto-fluorescence (AF). After spectral un-
mixing, the images had 6 channels (1392×1040×6 pixels), each
containing the intensities of a different fluorophore (see
Supplementary Fig. 1).

Deep learning for automated identification and exclusion of
problematic areas
After spectral un-mixing, a quality assessment of images was
needed to verify that only relevant areas of tissue were included in
subsequent analyses. To discard artefacts and select areas of tissue
suitable for analysis, supervised tissue segmentation using support
vector machines (SVM) or convolutional neural networks (CNN)
has previously been employed successfully.25,26 We show that the
CNN approach can also be used with immunofluorescence, where
apart from blurring and artefacts, high auto-fluorescence in blood
vessels and red blood cells cause problems. Immunofluorescence
image artefacts include: bubbles created during cover-slipping;
tissue folding; blurriness due to scanning errors; the presence of
blood vessels with brightly auto-fluorescing red blood cells; and
the presence of fatty tissue. Digital pathology datasets tend to be
large, making manual checking of images to identify and exclude
problematic areas slow and labour intensive.
To automate this essential pre-processing step, a deep CNN

classifier was trained on a set of 3280 manually annotated image
patches of size 128 × 128 × 6 to discriminate at pixel level between
problematic areas, useful tissue, or background. The image
undergoes a series of transformations as it passes through the
layers of the network and a predicted output label is generated for
each pixel. This output is compared to the ground truth and the
parameters of the network are updated during training to
decrease the error. A variant of the U-Net network architecture,27

popular in biomedical applications, was used as detailed in
Supplementary Fig. 2. Additional implementation details are given
in Supplementary Material 2.
A test set of 640 images was used to assess performance. Pixel-

wise accuracy was 88.3% when compared with manual annota-
tions (Supplementary Fig. 3 and Supplementary Table 2). For
comparison, a tissue segmenting module trained using inForm
2.4 software to perform the same task on the same training set
achieved an accuracy of only 81.2% on the test set (implementa-
tion details in Supplementary Material 2). Therefore, the CNN was
applied to remove artefacts and background. If there was <30%
useful tissue identified by the CNN the ROI was excluded from
subsequent analysis. After pre-processing, the dataset was
reduced to 1620 images (1392 × 1040 × 6 pixels), and only cells
with centroids located within the useful tissue areas were
considered for subsequent analyses.

Cell segmentation and scoring
Cell segmentation was carried out using the open source digital
pathology software QuPath v0.1.3.28 Nuclear detection was
performed on the DAPI channel using an unsupervised watershed
algorithm with parameters tuned on a validation set of 10 ROI.
QuPath’s nuclear detection algorithm was quantitatively tested in
a separate test set of 5 manually annotated ROI and its
performance was found equivalent to that of the commercial
software inForm 2.4 in terms of cell-wise average precision, as in
ref. 29 (see Supplementary Material 3, Supplementary Tables 3 and
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4). While both software packages produce similar results as seen in
Supplementary Fig. 4, QuPath was selected for this study as it is
open-source software, with well-maintained documentation,
version management and an active supportive community.
Furthermore, it offers built-in capability of custom scripting, which
facilitates quantitative validation of its algorithms’ performance.
After nuclear detection, the cytoplasm around each nucleus was
simulated by cell expansion of 2 μm and measurements generated
for marker intensity in different compartments (mean, minimum,
maximum and standard deviation of intensity in cytoplasm or
nucleus). Details of this procedure are shown in Supplementary
Fig. 5.
Positivity was determined by the intensity of each marker in the

primary cell compartment where it is usually expressed. In our
study, markers were cytoplasmic or membranous. Before cell
scoring, the intensity of each marker was re-scaled onto a grey-
scale colour map, with the brightest and darkest values
corresponding to the 99% and 1% percentiles of the marker’s
pixel intensities in the entire dataset. Having a consistent colour-
map per marker ensured that the same intensity value was
represented with equal brightness in all images.
Guided by a pathologist (R.B), a single threshold for each marker

was selected as a cut-off to determine positivity across the entire
dataset. The threshold was identified by its ability to separate
positive from negative cells in a set of 20 ROIs from 20 different
patients (Supplementary Fig. 6). This cell scoring method was
chosen for its simplicity but provided a non-optimal separation in
some samples, possibly due to slight variations in fixation,
staining, scanning or cell segmentation performance. For sub-
sequent analysis these small variations were ignored, however
their presence remains a challenge to overcome in order to
improve the accuracy and robustness of the automated analysis
pipeline.

Proximity analysis
To quantify the proximity relationships between cell phenotypes
we applied HID analysis.22 For a pair of cell phenotypes i,j the HID
is calculated to quantify how often these phenotypes occur close
to each other in a sample. Let k,l be cells of of phenotype i,j,
respectively. Then HID is computed as follows:

H i; jð Þ ¼ xki 2 Ci ; x lj 2 Cj
n o

8 k; l s:t: xki � x lj

���
���
2
<d

n o���
���

where x represents the position of the centroid of a cell and d is
the parameter that defines closeness. To construct HID we
iteratively examine the neighbourhood within a distance d around
each cell of phenotype i and count the number of occurrences of
cells of phenotype j within that same neighbourhood. The
distance parameter d is problem specific, as the size of the
neighbourhood of interest depends on the type of cells, their
mobility and mode of interaction (e.g. directly by contact or
indirectly through secretion of cytokines).
The HID measure was normalised using the total number (N) of

all cells, regardless of phenotype, in samples, as follows:

h i; jð Þ ¼ Hði; jÞ
N

The complete image analysis pipeline is presented in Supplemen-
tary Fig. 7.

Statistical analysis
Kaplan–Meier and Proportional Hazards Cox Regression survival
analyses for right censored data were performed using the
Lifelines 0.18.1 library in Python. Statistical significance of
differences between Kaplan–Meier curves was assessed using
the Mantel-Haenszel log rank test. The variance of the
Kaplan–Meier estimator plotted as error bars in the figures was
derived using Greenwood’s formula.30 For comparisons of cell

distributions between HPV positive and negative subgroups the
Mann–Whitney one-sided U-test for unpaired data was used. This
non-parametric test was selected as the observations did not
satisfy the Kolmogorov-Smirnov (K-S) test of normality (p < 0.005).
Significance is considered at a level α= 0.05.

RESULTS
Smoking and HPV status predict overall survival
The 72-patient cohort analysed in the current study had a
minimum follow up of 7.1 years for the patients who were alive at
the time at the time of data collection, and 43 observed events
(40% censored data). The median OS of the 72 patients, observed
and censored, was 86.8 months. Clinical data for HPV status, stage,
alcohol consumption and smoking for the 72 patients are
summarised in Supplementary Table 5. Supplementary Table 6
lists the findings from a univariate Cox regression analysis. As
expected, negative HPV status was highly prognostic for poor OS
(hazard ratio [HR] 3.30; 95% CI1.77−6.15; p= 0.0002. Smoking also
correlated with a worse outcome (HR= 1.91, 95% CI 1.05−3.48,
p= 0.034).

Distribution and prognostic value of cell population densities
Table 1 summarises the percent median cell expression of various
cell phenotypes in the patient cohort of OPSCC. CD8+ T cells and
CD68+ macrophages were found in significantly greater numbers
in HPV+ OPSCC tumours. The PD-1+ phenotype outnumbered
CD8+ T cells, which could be explained by PD-1 expression in
different T cell subsets, such as CD4+ cells. Additionally, the PD-
L1+ category outnumbered CD68+ macrophages, as PD-L1
expression is expected in immune related, as well as tumour
cells. These marked populations did not differ significantly when
stratified by HPV status. An up to date survival analysis using the
median percent marker expression to define high and low
expression levels is shown in Table 2. In this study only an
increased detection of CD68+ cells (macrophages) was signifi-
cantly associated with improved outcome in the HPV negative
patients. It is not possible to compare these results with those
published previously as the current analysis did not distinguish
the stromal versus tumour locations and a different methodolo-
gical approach was applied to select ROIs, detect the cells, identify
positives and report densities by normalising with total number of
cells.12,15

Proximity analyses of T cells with PD-L1+ cells
Figure 1 illustrates an example of the methodology used to
generate the HID measure reflecting potential cell interactions. An
interaction is hypothesised to occur whenever a CD8+ cell (yellow)

Table 1. Median population density expressed as a percentage of
positive cellsa

Cell type All HPV positive HPV negative

T cells Median percentage of positive cells P value

CD8+ 6.60% 8.90% 4.90% 0.034

CD8+PD-1+ 1.50% 1.70% 1.10% 0.111

Macrophages

CD68+ 3.10% 6.00% 2.10% 0.035

CD68+PD-L1+ 1.10% 2.20% 0.70% 0.058

PD-L1 and PD-1

PD-L1+ 9.00% 9.00% 7.40% 0.356

PD-1+ 12.70% 13.50% 10.90% 0.284

aPercentage cell expression was first assessed for individual ROIs, and the
median expression from all ROI was selected to represent the patient
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occurs within 30 μm of a PD-L1+ cell (pink). A connection is drawn
(white) to represent each hypothesised interaction. Cells not
expressing CD8 or PD-L1 are presented in blue. A pre-specified
HID analysis was carried out for two pairs of interacting
phenotypes co-localised within 30 μm of each other (CD8+ and
PD-L1+ cells; PD-1+ and PD-L1+ cells). This distance was used by
Feng et al.21 and represents a neighbourhood size of 2–3 cells. The
mean ± SEM HID values are shown in Table 3. There was a larger
number of CD8/PD-L1 and PD-1/PD-L1 proximal events in the HPV
positive tumours, but the difference was not statistically
significant. A univariate Cox regression analysis stratified patients
by high versus low levels of co-localisation (percent mean). More
frequent interactions between CD8+ and PD-L1+ or PD-1+ and
PD-L1+ cells were prognostic for poor overall survival in HPV- but
not HPV+ patients or the whole cohort (Table 4, Fig. 2). When
stratifying the HPV− patients by the mean value of PD-1+ and PD-
L1+ HID interactions, 30% of the patients were assigned to the
poor prognostic group. When grouping by CD8+ and PD-L1+

interactions, 23% of patients were assigned to the poor prognostic
group (Fig. 2a, b).

DISCUSSION
This study introduces an automated pipeline for analysis of
different biomarkers in the tumour micro-environment. In
comparison with other automated image analysis studies, our

pipeline used an automated quality check of scanned images and
ROI selection prior to quantification of spatial interaction features.
Checking image quality is a time consuming but essential part of
any histopathological analysis. Blurred areas and artefacts (e.g.
bubbles, tissue folds, presence of fatty tissue) lead to processing
errors and consequently the samples are sent back for re-staining
and scanning, increasing the time required for analysis. This
automated selection of good quality ROIs decreases the need for
input from a pathologist. A key component of this study is the use
of HID methodology which can be used to assess the spatial
relations (proximity) between particular cell phenotypes.22 It has
previously been used by us to analyse T cell regulatory patterns in
follicular lymphoma.31,32

Our study provides novel evidence that the frequent proximity
of PD-1+ and PD-L1+ cells is an adverse prognostic factor in HPV-

OPSCC. It is tempting to speculate this derives from the functional
consequence of these interactions in the PD-1/PD-L1 pathway of
immune escape. If the latter is correct, then quantifying the
frequency of proximal cell-cell interactions using HID should be
further explored as a secondary companion diagnostic potentially
useful in directing checkpoint inhibitor treatment. Monitoring
levels of PD-L1 expression alone, while biologically plausible, has
shown inconsistent results, particularly in cases where expression
levels are close to the cut-off threshold.13 Interestingly, in our
analysis we observed no correlation between PD-L1 expression
and overall survival, regardless of HPV status for OPSCC. This result
agrees with the observations from other studies.16,21 However,
previous analyses of the same cohort15 demonstrated that PD-L1
expression was prognostic in HPV negative OPSCC but only if
assessed in the stromal regions with a cut-off of 5%. The optimal
manner of scoring PD-L1 is still being investigated, as the cut-off
thresholds differ in lung, urothelial and head and neck cancer.
Indeed, opinions differ on whether positivity should be assessed
only for tumour cells or additionally for immune infiltrating cells.33

An automated process to quantifying cell patterns promotes
consistency and reproducibility and could facilitate its use to
support the role of PD-L1 in personalised treatment strategies.
Interestingly, the correlation between overall survival and HID

spatial interactions in the HPV positive subgroup was not
significant. If this is a true effect, it would indicate reduced
importance of T and PD-L1+ cell interactions for the HPV+

subgroup. This finding is not surprising as HPV related OPSCC is
considered in many aspects different from HPV- OPSCC and is
known to have a better prognosis,34 more active anti-tumour
immune response12 and favourable response to treatment.34

However, the nature of PD-L1+ spatial interactions in HPV+ OPSCC
merits further investigation in larger cohorts, before their
significance could be ruled out.

Table 2. Univariate Cox Regression analysis of overall survival for patients stratified by median cell expressiona

HPV positive HPV negative All

Cell population HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

T cells

CD8+ 0.56 (0.21, 1.50) 0.25 1.03 (0.47, 2.26) 0.94 0.84 (0.46, 1.54) 0.57

CD8+PD-1+ 0.76 (0.29, 1.99) 0.57 1.88 (0.85, 4.16) 0.12 1.16 (0.63, 2.14) 0.63

Macrophages

CD68+ 1.34 (0.51, 3.53) 0.55 0.34 (0.14, 0.79) 0.01 0.58 (0.32, 1.07) 0.08

CD68+PD-L1+ 1.33 (0.51, 3.45) 0.56 1.50 (0.67, 3.34) 0.32 1.34 (0.73, 2.47) 0.34

PD-L1 and PD-1

PD-L1+ 1.36 (0.52, 3.52) 0.53 1.50 (0.67, 3.34) 0.32 1.42 (0.77, 2.60) 0.26

PD-1+ 0.60 (0.22, 1.60) 0.31 1.84 (0.83, 4.07) 0.14 1.06 (0.57, 1.94) 0.86

aVariables stratified by the median to distinguish patients with high and low expression. Percentage cell expression was first assessed for individual ROIs, and
the median expression from all ROI was selected to represent the patient

Fig. 1 Illustrative HID interaction features for a region of interest. An
interaction is hypothesised to occur whenever a CD8+ cell (yellow)
occurs within 30 μm of a PD-L1+ cell (pink). A connection is drawn
(white) to represent each hypothesised interaction. Cells not
expressing CD8 or PD-L1 are presented in blue
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Due to the size of the cohort the power of the study is limited
which increases the risk of false negative results. To avoid multiple
testing, we only explored two pre-determined hypotheses using
HID in relation to overall survival. Another possible limitation is the
image analysis pipeline, which involved a single pathologist
identifying positive cells by selecting a cut-off for each marker
based on selected images with clear positive staining. However,
variation was observed between the intensities of positive cells in
different sections, which a simple on-off scoring approach cannot
capture. Accuracy in scoring could be more reliable if it was
carried out using ground truth either from multiple pathologists, a
complementary modality, such as transcriptomics or flow cyto-
metry, or an index tissue microarray section with cores
constructed from cell lines of positive and negative cells used as
reference.
In summary, our study combined multiplex immunofluores-

cence and multispectral microscopy with an automated analysis

pipeline for quality checking, spectral unmixing, cell segmenta-
tion, scoring and assessment of the spatial pattern of cell-cell
interactions. In a cohort of OPSCC patients we showed that
frequent proximity of CD8+ or PD-1+ and PD-L1+ cells was
prognostic for OS in patients with HPV− tumours. Our method is
ready to be tested independently in additional, multicentre
cohorts to validate its potential as a companion diagnostic for
therapies targeting the PD-1/ PD-L1 pathway of immune escape.
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CD8+ within 30 μm of PD-L1+ 0.82 (0.26, 2.50) 0.73 2.95 (1.15, 7.56) 0.02 1.15 (0.58, 2.30) 0.68

PD-1+ within 30 μm of PD-L1+ 0.59 (0.17, 2.06) 0.41 2.64 (1.04, 6.71) 0.04 1.15 (0.58, 2.29) 0.69

Table 3. Distribution of HID features in all, HPV positive and HPV negative patientsa

Cell interactions All HPV positive HPV negative P value

CD8+ within 30 μm of PD-L1+ 27.65 (±6.86) 34.73 (±10.68) 17.73 (±6.69) 0.276
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