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Relationship between the immune microenvironment
of different locations in a primary tumour and clinical
outcomes of oesophageal squamous cell carcinoma
Ken Hatogai1,2,3, Satoshi Fujii1, Shigehisa Kitano4, Takashi Kojima2, Hiroyuki Daiko5, Takayuki Yoshino2, Atsushi Ohtsu2,
Yuichi Takiguchi3, Toshihiko Doi2 and Atsushi Ochiai1

BACKGROUND: Tumour microenvironments can differ according to intratumoural locations. We investigated the immune status at
different locations in primary tumours and its clinical significance in oesophageal squamous cell carcinoma (ESCC).
METHODS: The number of CD8+ tumour-infiltrating immune cells (TIICs) and PD-1+ TIICs, and PD-L1 expression on tumour cells
(PD-L1TC) were immunohistochemically examined in the surface (Surf), centre (Cent) and invasive front (Inv) of tumours surgically
resected from 192 patients with ESCC.
RESULTS: The PD-L1+ rate was lower in Inv than in Cent (12.0% vs. 18.2%, P= 0.012), although the numbers of CD8+ TIICs and PD-
1+ TIICs were comparable among intratumoural locations. High numbers of CD8+ and PD-1+ TIICs and positive PD-L1TC were
related to better overall survival (OS) only in Surf and Cent (CD8: P= 0.012 in Surf, 0.018 in Cent, and 0.165 in Inv; PD-1: P= 0.028 in
Surf, 0.021 in Cent, and 0.208 in Inv; and PD-L1: 0.044 in Surf, 0.026 in Cent, and 0.718 in Inv). Positive PD-L1TC in Surf and/or Cent
but not in Inv demonstrated a strong tendency toward better OS (P= 0.053).
CONCLUSIONS: Immune microenvironments according to the intratumoural location have different effects on the survival of
patients with ESCC.
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INTRODUCTION
The emergence of immune checkpoint inhibitors has been
revolutionising cancer therapeutics, from therapy for melanoma
and lung cancer to that of various other cancer types.1 Regarding
gastrointestinal cancers, PD-1 inhibitors have been approved as
one of the standard therapies for gastric cancer and microsatellite
instability-high or mismatch repair-deficient colorectal cancer and
are currently under development as therapy in the field of
oesophageal squamous cell carcinoma (ESCC), the standard
therapy for which has remained unchanged for more than a
decade.2 PD-L1 expression is correlated with higher efficacy of
therapy with immune checkpoint inhibitors in several cancer
types, and pembrolizumab shows promising efficacy in patients
with PD-L1+ ESCC.3,4 Furthermore, PD-L1 expression is related to
the number of tumour-infiltrating immune cells (TIICs) as well as
survival outcomes, according to recent reports, including our
previous one on ESCC; this suggests that PD-L1 expression reflects
an inflamed state of the tumour microenvironment.5–7 Therefore,
it is important to determine the status of PD-L1 expression as a
prognostic biomarker as well as a predictive biomarker for
immune checkpoint inhibitors in clinical trials and future clinical
practice.

The surface of the oesophageal lumen is exposed to various
stimuli that may cause inflammation, such as oral intake of
substances including alcohol, oral microbiota, and gastroesopha-
geal reflux. In addition, gastrointestinal cancers originate from the
mucosal epithelial layer and invade into deeper layers, such as the
submucosa, muscle and further, as they progress.8 Analysis of
gene alteration in separate areas of the same primary tumour has
revealed that intratumoural genetic and epigenetic heterogeneity
is common in ESCC, indicating clonal evolution in tumours.9,10

Therefore, the immune status of the tumour microenvironment
may differ according to the location, even in a primary tumour.
However, to the best of our knowledge, no studies have
investigated intratumoural heterogeneity in terms of the immune
status of the tumour microenvironment, including PD-L1 expres-
sion as well as the infiltration of immune cells, in ESCC. Besides,
the relationship between such a difference in the immune status
of the tumour microenvironment based on location and its clinical
impact is unknown.
Pathological assessment in patients with ESCC is often

performed using tumour samples obtained from the surface of
primary tumours in the oesophagus with forceps, as a biopsy
through an endoscope, which is also applied to assess the PD-L1
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expression status immunohistochemically. The heterogeneity of
PD-L1 expression in primary tumours has been studied by several
methods in lung cancer, for which inconsistent results have been
obtained.11,12 Elucidating intratumoural heterogeneity of the
immune status of the tumour microenvironment could be helpful
when considering the appropriateness of using endoscopically
obtained biopsy samples for PD-L1 assessment in ESCC.
We conducted this retrospective immune-related biomarker

study to elucidate intratumoural heterogeneity in terms of
infiltration of immune cells and PD-L1 expression in different
locations in primary tumours of ESCC and investigated the
relationships between the immune microenvironment according
to the intratumoural location and survival outcome.

MATERIALS AND METHODS
Patients
Among the 318 patients who underwent curative surgical
resection of ESCC with no prior therapy between 2000 and 2011
at the National Cancer Center Hospital East, Kashiwa, Japan, 192
were consecutively enrolled in this study based on the following
selection criteria: (i) pathological T factor of at least T2 according
to the TNM classification8 for evaluating the difference of the
three locations described below and (ii) a sufficient amount of
formalin-fixed paraffin-embedded surgically resected tissue sam-
ple available for PD-L1 immunohistochemistry (IHC) evaluation for
all of the three locations described below. Clinical and patholo-
gical information, including the pathological report for each
subject, was collected from medical records. The study protocol
was approved by the institutional review board of the National
Cancer Center and was conducted in accordance with ethical
guidelines, including the Declaration of Helsinki. The study was
also conducted in accordance with the guidelines of the REporting
recommendations for tumour MARKer prognostic studies
(REMARK).13 Written informed consent was obtained from all
participants included in this study.

Immunohistochemistry
We first examined haematoxylin and eosin (H&E) stained slides of
the archived primary tumours. Then, using a manual tissue arrayer
(Azumaya Ika Kikai, Tokyo, Japan), we obtained 2.0-mm-diameter
tumour cores from the surface (Surf), which is just below the
surface of the tumour without necrotic tissue; the centre (Cent),
which is an area within 3 mm of the vertical centre of the tumour;
and the invasive front (Inv), which is within 3 mm from the
invasive margin of the tumour side. These cores were assembled
in a tissue microarray (TMA) format, and paraffin-embedded TMA
blocks were then cut into 4-µm sections and placed on silicon-
coated slides for IHC staining.
To assess PD-L1 expression on tumour cells (PD-L1TC), clone

E1L3N, which was reported to show staining concordant to that of
FDA-approved companion diagnostics for PD-L1 expression, was
used.14 CD8 and PD-1 expression on TIICs were assessed based on
our previous report, which demonstrated the significance of those
types of TIICs for survival.7 In Supplementary Table 1, the primary
antibodies used for IHC are described. For CD8 antibodies, which
were optimised for autostainers, IHC was performed using ready-
to-use antibodies and the fully automated Ventana Benchmark
ULTRA platform (Ventana, Tucson, AZ, USA), in accordance with
the manufacturer’s instructions. For PD-1 and PD-L1, IHC was
performed manually. Briefly, for PD-1 and PD-L1, the slides were
dewaxed and rehydrated in distilled water, and endogenous
peroxidase activity was then blocked by immersion in 3%
hydrogen peroxide in methanol for 10 min. After antigen retrieval,
the slides were incubated overnight at 4 °C with the primary
antibody. The slides were then further incubated with anti-mouse
secondary antibodies (EnVision+ System-HRP Labeled Polymer
Anti-mouse, Dako, Tokyo, Japan) for PD-1 or anti-rabbit secondary

antibodies (EnVision+ System-HRP Labeled Polymer Anti-rabbit,
Dako) for PD-L1, and staining was detected using a standard
diaminobenzidine procedure with a fixed revelation time of five
minutes. Finally, the sections were counterstained with
haematoxylin.

Evaluation of protein expression using IHC
After IHC, the slides were scanned with ×40 resolution, and the
microscopic images were imported as digital photo files (NDPI
format) using the NanoZoomer Digital Pathology (NDP) system
(NanoZoomer2.0-HT C9600-02, Hamamatsu Photonics, Hama-
matsu, Japan). The pathological evaluations were performed by
two observers (including a gastrointestinal expert pathologist)
who were blinded to clinical data. PD-L1TC was defined as the
presence of ≥1% tumour cells detected with membrane staining,
as reported previously.7

To quantitatively evaluate each TIIC type, the entire tumour core
was reviewed using the NDP view at a magnification of ×20, and
four independent areas with a size of 0.0625mm2, containing the
highest number of TIICs in the tumour nest, were selected.15,16 The
tumour areas were determined based on the IHC slides and the
corresponding H&E staining of the adjacent serial section. After
identifying the number of TIICs in each selected area by manual
eye counting using the NDP view at a magnification of ×40, the
numbers of respective TIICs per square millimetre were calculated
from the total number in the four selected areas.

Statistical analysis
For CD8 and PD-1, the numbers of TIICs in each intratumoural
location were compared using the Mann–Whitney U test, and the
correlation according to each location was evaluated using
Spearman’s correlation coefficient ρ. For PD-L1, the positive rate
in each intratumoural location was compared using McNemar’s
test. Using the Kaplan–Meier method, we estimated overall
survival (OS), and using the log-rank test, we categorised them
according to positivity or negativity for PD-L1TC. Then, we
compared OS levels of two groups divided by the median for
TIICs. Hazard ratios (HRs) adjusted for clinicopathological char-
acteristics, described in Table 1, were also reported using the
multivariate Cox proportional hazard model (adjusted HR). IBM
SPSS Statistics 20 (IBM Japan Ltd., Tokyo, Japan) was used to
perform all statistical analyses. All P values are two-sided, with a
significance level of 0.05. Because this study was performed for
exploratory purposes, statistical tests were not predefined, and
multiple testing was not performed.

RESULTS
Patient characteristics
The process of patient selection is described in Supplementary
Fig. 1. Data from a total of 192 patients were included in the
analysis. Table 1 details the clinicopathological characteristics. The
median age of the patients was 66 (range, 42–87) years, and
majority of the patients were male (81.3%). Although most of the
patients had pStage II or III disease, 17 patients (8.9%) with pStage
IV disease who did not have any distant organ metastases but had
resectable non-regional lymph node metastases were included.
None of the patients in the present study were treated with
immune checkpoint inhibitors during follow-up.

TIICs and PD-L1 expression of tumour cells
Representative macroscopic views of the cores and representative
microscopic views of each stained sample and H&E stained serial
sections are presented in Supplementary Fig. 2.
The number of CD8+ and PD-1+ TIICs counted by the method

used in the present study was compared to that of nine randomly
selected regions of interest (3 by 3) in cores from Surf, Cent, and
Inv in the five initial cases. Although there was variation in the
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number of TIICs in the cores, particularly in those with abundant
TIICs, the density of TIICs calculated based on the numbers of TIICs
evaluated by these two methods were highly correlated regard-
less of the types of TIICs: the ρ correlation coefficients were 0.953
(P < 0.001) for CD8 and 0.977 (P < 0.001) for PD-1 (Supplementary
Fig. 3).
The mean numbers of CD8+ TIICs were 236.6/mm2 in Surf,

236.8/mm2 in Cent, and 234.0/mm2 in Inv; no significant
difference in this variable was observed among each intratu-
moural location. The mean numbers of PD-1+ TIICs were
172.7/mm2 in Surf, 162.1/mm2 in Cent, and 155.7/mm2 in Inv;
again, no significant difference was observed among each
intratumoural location (Fig. 1a, b). Although patients with Grade
3 tumours showed a tendency toward higher TIIC counts for both
CD8 and PD-1 compared with patients with Grade 1 and Grade 2
tumours without a statistical significance regardless of its location,
no significant difference was observed among the intratumoural
locations in all the subgroups according to histological grade for
both CD8 and PD-1 (Supplementary Fig. 4).
Figure 2 describes the correlation in the number of TIICs

between each intratumoural location for CD8 and PD-1. For CD8+

TIICs, the correlation coefficients ρ were 0.682 (between Surf
and Cent), 0.758 (between Cent and Inv), and 0.669 (between
Inv and Surf). For PD-1+ TIICs, they were 0.617 (between Surf
and Cent), 0.753 (between Cent and Inv) and 0.611 (between Inv
and Surf).

The PD-L1+ rates were 14.6% in Surf, 18.2% in Cent, and 12.0%
in Inv. Upon comparing the PD-L1+ rates among each intratu-
moural location, that in Inv was found to be significantly lower
than that in Cent (P= 0.012) (Table 2). The numbers of CD8+ TIICs
and PD-1+ TIICs were significantly higher in PD-L1+ tumours than
in PD-L1− ones in all of the intratumoural locations (Fig. 1c, d).

Survival analysis
The median follow-up time of the censored cases was 5.5 (range,
0.7–10.6) years from the date of surgery. Figure 3 describes the OS
curves in terms of the numbers of CD8+ TIICs and PD-1+ TIICs and
PD-L1TC in each intratumoural location. Regarding CD8+ TIICs and
PD-1+ TIICs, patients with high numbers of TIICs demonstrated
significantly better OS than those with low numbers of TIICs in
Surf and Cent, but this was not observed in comparison with those
with low numbers of TIICs in Inv [CD8+ TIICs: adjusted HR= 0.594
(P= 0.012) in Surf, adjusted HR= 0.624 (P= 0.018) in Cent, and
adjusted HR= 0.753 (P= 0.165) in Inv and PD-1+ TIICs: adjusted
HR= 0.624 (P= 0.028) in Surf, adjusted HR= 0.596 (P= 0.021) in
Cent, and adjusted HR= 0.793 (P= 0.208) in Inv]. Similarly,
regarding PD-L1TC, patients with positivity for PD-L1TC demon-
strated significantly better OS than those with negativity for it in
Surf and Cent, but this was not observed in comparison with those
with negativity for it in Inv [adjusted HR= 0.439 (P= 0.044) in Surf,
adjusted HR= 0.517 (P= 0.026) in Cent, and adjusted HR= 0.989
(P= 0.718) in Inv]. Patients with high and low TIICs in Inv were
classified into four groups according to the number of TIICs in Inv
and Surf/Cent as follows and investigated further (Supplementary
Fig. 5): low in Surf and Cent and low in Inv (Surf/CentlowInvlow), low
in Surf and Cent but high in Inv (Surf/CentlowInvhigh), high in Surf
or Cent but low in Inv (Surf/CenthighInvlow), and high in Surf or
Cent and high in Inv (Surf/CenthighInvhigh). As a result, for both
CD8+ TIICs and PD-1+ TIICs, the five-year OS rate of Surf/
CentlowInvhigh (25.4% for CD8 and 18.2% for PD-1) was much lower
than that of Surf/CenthighInvhigh (54.3% for CD8 and 53.1% for PD-
1). In contrast, the five-year OS rate of Surf/CenthighInvlow (47.4%
for CD8 and 49.4% for PD-1) was higher than that of Surf/
CentlowInvlow (35.7% for CD8 and 36.8% for PD-1) and rather
similar to that of Surf/CenthighInvhigh.
The relationship between OS and PD-L1TC in each intratumoural

location was investigated further (Fig. 4). Patients with positivity
for PD-L1TC in at least one intratumoural location (43 patients)
demonstrated significantly better OS than those with negativity
for it in all of the three intratumoural locations [adjusted HR=
0.474 (P= 0.013)], and the 5-year OS rate of patients with
positivity for PD-L1TC in at least one intratumoural location
(66.8%) was comparable with that of patients with positivity for it
in Surf (67.0%) and Cent (67.8%), but was higher than that of
patients with positivity for it in Inv (52.2%). Among patients with
positivity for PD-L1TC in at least one location, there was no
tendency for OS to be improved according to the increasing
number of intratumoural locations with positivity for PD-L1TC.
Among the 43 patients with positivity for PD-L1TC in at least one
intratumoural location, 20 patients with positivity for it in Surf and/
or Cent but not in Inv demonstrated a strong tendency for better
OS than 23 patients with positivity for it in Inv [adjusted HR=
0.410 (P= 0.053)].
We conducted survival analyses for a combination of CD8+ TIICs

or PD-1+ TIICs with positivity for PD-L1TC according to intratu-
moural locations (Supplementary Fig. 6). Only Surf demonstrated
significantly better OS for both CD8hithPD-L1+ [adjusted HR=
0.394 (P= 0.013)] and PD-1hithPD-L1+ [adjusted HR= 0.390 (P=
0.012)]. Cent showed a trend for better OS for CD8hithPD-L1+ and
PD-1hithPD-L1+; however, because of the small number of patients
in each group, this was not statistically significant [CD8hithPD-L1+:
adjusted HR= 0.657 (P= 0.196) and PD-1hithPD-L1+: adjusted
HR= 0.608 (P= 0.141)]. Inv showed no statistical significance for
OS and had the largest adjusted HR among the three

Table 1. Clinicopathological characteristics.

Characteristics Number %

Age

Median (range) 66 (42–87)

Gender

Male 156 81.3

Female 36 18.8

Location

Upper 24 12.5

Middle 76 39.6

Lower 92 47.9

pT

2 30 15.6

3 156 81.3

4 6 3.1

pN

0 50 26.0

1 59 30.7

2 61 31.8

3 22 11.5

pM

0 175 91.1

1 17 8.9

TNM stage

I 7 3.6

II 50 26.0

III 118 61.5

IV 17 8.9

Histological grade

Grade 1 46 24.0

Grade 2 126 65.6

Grade 3 20 10.4

Relationship between the immune microenvironment of different locations. . .
K Hatogai et al.

415



intratumoural locations for both CD8hithPD-L1+ [adjusted HR=
0.749 (P= 0.392)] and PD-1hithPD-L1+ [adjusted HR= 0.675 (P=
0.267)].

DISCUSSION
Here we describe the similarities and differences in the immune
status of the tumour microenvironment and its prognostic effect
in different intratumoural locations in primary tumours of ESCC by
assessing the numbers of TIICs and PD-L1TC. No standard method
has been established to evaluate intratumoural heterogeneity of
the immune status of tumour microenvironment although several
methods, such as TMA using multiple cores from the same
tumour, step sections of the same block, assessment of multiple
blocks, and spiral-typed tissue cores, have been reported.11,12,17,18

Some studies evaluated intratumoural heterogeneity by compar-
ing Cent and Inv irrespective of the cancer type.17,19–21 Based on
the characteristics of gastrointestinal cancers that are present at
the inside of the gastrointestinal tract, in the present study, Surf as
well as Cent and Inv were evaluated.
CD8+ TIICs are the immune cells most frequently counted to

characterise the tumour microenvironment, and abundant infiltra-
tion has repeatedly shown to be robustly related to better survival
outcomes across tumour types. However, some of these cells may
be inactive because of immune escape or tolerance; therefore,
using activation markers or inhibitory co-stimulatory markers,
including PD-1 and PD-L1, has been proposed from a functional
perspective.22 In addition, according to several recent reports, the
spatial distribution of immune cells or the spatial structure of the

tumour microenvironment differs according to tumour types and
molecular subtypes.23,24 Therefore, it is important to focus on
single tumour types and conduct detailed evaluations, particularly
with regard to intratumoural heterogeneity of the immune status,
in addition to conducting research on multiple cancer types.
In this study, the numbers of CD8+ TIICs and PD-1+ TIICs were

comparable with those reported in a previous study that
examined multiple cancer types, including ESCC.24 As CD8+

lymphocytes are activated and trafficked to the tumour from the
tumour-draining lymph node via antigen-presenting cells reacting
to tumour-associated antigens,25 the comparable numbers of
CD8+ TIICs among the three locations indicate that the immune
system of the host responded similarly regardless of the location
in the primary tumour. To date, discordant results regarding the
distribution of CD8+ TIICs in the primary tumour have been
reported.18,20,26,27 Differences in the tumour type or methodology
may have contributed to this. However, in the present study,
comparable infiltration of activated T cells in the tumour
regardless of the location was also observed through the
assessment of PD-1+ TIICs, a receptor of PD-L1 expressed on
activated T cells,28 reproducing the results observed for CD8+

TIICs. In terms of OS according to CD8+ TIICs and PD-1+ TIICs, the
similar relationship observed in Surf and Cent was not observed in
Inv, although the numbers of TIICs were generally correlated
among these intratumoural locations. This relationship seems to
have occurred because of the existence of cases showing
discordant immune cell infiltration between Surf/Cent and Inv.
Furthermore, the number of TIICs in Surf and Cent was the
determinant of OS regardless of the number in Inv.
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The tumour microenvironment had different effects on PD-L1
expression and survival outcomes in this study. The PD-L1-positive
rate was significantly lower in Inv than in Cent, whereas the
numbers of TIICs were comparable and correlated between these
intratumoural locations. This indicates several possibilities with
regard to factors affecting PD-L1TC. As PD-L1TC is induced by pro-
inflammatory cytokines, such as IFNγ and TNFα produced by
activated T cells,29–31 the reaction of tumour cells to the anti-
tumour immune response of the host may not always be
concordant among intratumoural locations. Besides, T-cell func-
tion is affected by metabolites as well as hypoxia and angiogen-
esis.32 Conversely, PD-L1TC is partly regulated by an alteration of
the genes of tumour cells.33,34 Therefore, comprehensive assess-
ment including genomic and metabolic intratumoural hetero-
geneity is warranted.
Phenotypes reflecting anti-tumour response, such as abundant

CD8+ TIICs and PD-1+ TIICs, and positivity for PD-L1TC were related
to significantly better OS in Surf and Cent, but not in Inv. Inv

represents the most external portion of the tumour that is in
contact with the tissue of the host, and as mentioned above, PD-
L1TC reflects a negative feedback reaction of tumour cells against
the anti-tumour immune response. We speculate that in tumours
with positivity for PD-L1TC in Surf and/or Cent but not in Inv, the
anti-tumour immune response acts on the tumour and the
external portion has already been diminished to some extent by
the attack of TIICs, as observed by a lack of PD-L1TC, by the time of
surgery and this results in a better prognosis. Conversely, even if
the PD-L1-positivity rate itself was lower in Inv, the presence of
tumours with positive PD-L1TC in Inv seems to be related to
resistance to anti-tumour immunity of the host and implied a
poorer prognosis. In the present study, a static evaluation of the
immune microenvironment of the tumour was performed at only
one time point using surgically resected specimens. Therefore,
there is a need to study the changes in the microenvironment
over time to analyse its dynamicity. Meanwhile, considering the
similarity in the number of TIICs, presence of PD-L1TC, and
prognosis between Surf and Cent, it would be appropriate to
evaluate the immune status of the tumour microenvironment
using endoscopically obtained biopsy samples from Surf. Also,
during examination of surgically resected samples, the focus
should be on Surf and Cent and not on Inv.
The present study has some limitations. First, although PD-L1TC

was used to assess the response of the tumour cells to anti-
tumour immunity, the optimal PD-L1 assessment method has not
been established yet. Several methods, such as assessing the
expression of tumour cells, stromal cells, and both tumour and
stromal cells or using different thresholds for positivity, have been
tested in clinical trials.35–37 Second, we focused on the expression
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Table 2. PD-L1 positive expression rate in each intratumoral location.

Total Positive %

Surf 192 28 14.6

Cent 192 35 18.2

Inv 192 23 12.0

P= 0.189 (Surf vs. Cent), 0.267 (Surf vs. Inv), 0.012 (Cent vs. Inv)
Surf surface, Cent center, Inv invasive front

Relationship between the immune microenvironment of different locations. . .
K Hatogai et al.

417



of PD-L1 as an inhibitory reaction of tumour cells to anti-tumour
immune function and cytotoxic T cells, which attack tumour cells
directly. However, there are multiple types of immune cells, such
as regulatory T cells, dendritic cells, and myeloid cells, in the
tumour microenvironment, and the relationship between these
cells and clinical outcomes was not addressed in this study. Third,
TIICs in the four areas containing the highest number of TIICs were
quantified manually in this study. Although this method has been
used as a standard method15,16,38 and we confirmed that this
method could represent the number of TIICs in each core, with
recent advances in digital quantification, a new technology can be
applied in future studies for the digital quantification of entire
cores.24,39 Lastly, although the different survival impact of the

tumour microenvironment in different intratumoural locations
was consistent with regard to multiple factors, such as PD-L1TC
and numbers of CD8+ and PD-1+ TIICs, evaluation—preferably a
prospective study—in a different cohort that includes other
biomarkers for comprehensive analysis is warranted to confirm
the results of this study.

CONCLUSION
Despite the comparable numbers of TIICs and their correlated
degrees of infiltration in different intratumoural locations, PD-L1
expression and the relationship between the immune microenvir-
onment and survival outcomes differed according to the
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intratumoural location of ESCC. This study shows that the immune
microenvironments of Surf and Cent have clinical impact.
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