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Hsp60 and IL-8 axis promotes apoptosis resistance in cancer
Sandeep Kumar1,2, Jordan O’Malley1, Ajay Kumar Chaudhary1, Joseph R. Inigo1, Neelu Yadav1, Rahul Kumar1 and Dhyan Chandra1

BACKGROUND: Interleukin-8 (IL-8) and heat shock protein 60 (Hsp60) play crucial roles in cell survival and maintenance of cellular
homoeostasis. However, cross talks between these two proteins are not defined.
METHODS: IL-8 expression in tumour tissue sections was analysed by immunohistochemistry. IL-8 expression and release in cancer
cells was quantified using enzyme-linked immunosorbent assay (ELISA). Apoptosis was quantified using caspase activity and
Annexin-V/PI staining.
RESULTS: We observed IL-8 release from cancer cells in response to histone deacetylase inhibitor, apicidin (Api), and non-
competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase, thapsigargin (TG). IL-8 release was increased upon TG-
treatment. TG-induced IL-8 expression was reduced in the presence of Api in Bax-dependent manner. Increased apoptosis was
associated with decreased IL-8 expression in response to combined treatment of TG and Api. TG and Api combination induced
caspase-8 and caspase-9 dependent apoptosis. Hsp60 knockdown abrogated IL-8 expression induced by Api, TG, and their
combination. The level of TGF-β, an upstream regulator of IL-8, was decreased upon Hsp60-silencing. Knocking down Hsp60
decreased IL-8 expression and its release in prostate cancer cell xenograft tumours in SCID mice.
CONCLUSION: This study describes the underlying mechanism associated with apoptosis resistance mediated via Hsp60-IL-8 axis in
cancer.
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BACKGROUND
Drug resistance in malignant diseases is frequently observed and
is an important concern for cancer treatment in the clinics. One
of the main contributing factors for drug resistance is the evasion
of apoptosis by tumour cells. Resistance to apoptosis is an
accumulative outcome of several factors present within tumour
microenvironment (TME). Cytokines and chemokines are impor-
tant components of TME.1 Interleukin-8 (IL-8) or CXCL8 (C-X-C
motif ligand 8) is a member of the chemokine family and
associates with angiogenesis and endothelial cell migration.2,3 IL-8
participates in various cellular processes in cancer causing
increased tumour progression and angiogenesis. Considering the
important role of IL-8, it has been suggested as a biomarker to
predict recurrence and overall survival of patients with non-small-
cell lung cancer.4 Indeed, overexpression of IL-8 has been
associated with many human tumours, including colorectal cancer
(CRC) leading to poor prognosis.5,6 Since IL-8 promotes tumour
growth, metastasis and angiogenesis, IL-8 could be an important
therapeutic target in CRC.7 Overexpression of IL-8 renders colon
cancer cells resistant to oxaliplatin while IL-8 silencing sensitises
colon cancer cells to oxaliplatin.7 IL-8 is produced by activated
endothelial cells in varieties of cancer types.8 In gastric carcinoma
cells, IL-8 expression is associated with growth and vascularity of
tumours.9,10 In colon cancer, constitutive expression of IL-8
correlates with metastatic potential and development of distant
metastases.11,12 Pronounced release of IL-8 and CXC-family
chemokines is reported from various types of cancer cell lines

including prostate cancer cells.13 Transforming growth factor-β
(TGF-β), a multifunctional cytokine acts upstream of IL-8 and
regulates its function in prostate cancer.14 However, mechanisms
of IL-8 mediated cellular signalling and its implication in cancer
cell survival needs further characterisation.
In addition to IL-8, heat shock proteins (Hsps) or stress proteins

have also been associated with TME and poor prognosis in various
types of cancer.15 Heat shock protein 60 (Hsp60) expression levels
correlates with cervix and colon carcinogenesis.16,17 Hsp60 is a key
chaperonin, plays an essential role in the transport and folding of
mitochondrial proteins, and is increased in different types of
cancer. Hsp60 is overexpressed in prostate tumours and is
strongly associated with prognostic clinical parameters.18 Hsp60
expression in prostate cancer was correlated with biochemical
recurrence.19 Similarly, Hsp60 expression associates with tumour
differentiation and stages in colorectal cancer.20 Exposure to
extracellular Hsp60 renders the human lymphoma cell line U937
resistant to oxidative damage-induced apoptosis.21 Hsp60 also
restrains p53 function by stabilising the antiapoptotic protein
survivin, thus promoting cell proliferation.22 These findings
provide strong relevance that the overexpression of IL-8 and
Hsp60 could play critical role in maintaining TME, growth and
invasion of cancer cells. Thus, we propose that inhibition of IL-8
and Hsp60 axis may attenuate cancer cell growth and survival.
For the first time, we report that Hsp60 regulates IL-8

production and release both in vitro cell culture and in vivo
tumour xenografts models. We observed that thapsigargin (TG), a
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non-competitive inhibitor of the sarco/endoplasmic reticulum
Ca2+ ATPase, induced robust expression of IL-8, which can be
associated with IL-8 mediated cancer cell survival. A nanomolar
combination of TG with histone deacetylase inhibitor apicidin
(Api) downregulated IL-8 expression and induced apoptosis in
colon and prostate cancer cells. Knockdown of caspase-8 and
caspase-9 significantly decreased effector caspase-3 activity
induced by combined treatment of TG and Api. Interestingly,
reconstitution of Bax in cancer cells decreased IL-8 levels and
knockout of Bax in cancer cells upregulated IL-8 expression and its
release. IL-8 release was drastically reduced upon Hsp60 knock-
down. The PC-3 prostate cancer cell xenograft study utilising
Hsp60-knockdown and mock PC-3 cells in SCID mice demon-
strated down-regulation of IL-8 in serum in Hsp60 knock-
down xenografts. Collectively, our results provide a novel insight
on IL-8 regulation by Hsp60 in cancer cells.

MATERIALS AND METHODS
Cell lines and reagents
Cell lines HCT116 wild type (WT) and HCT116 Bax−/−, androgen-
dependent LNCaP cells and androgen-independent cell lines
(DU145 Mock, DU145 Bax reconstituted and PC-3 cells) were either
provided by Drs B. Vogelstein and Peter Daniel or purchased from
American type culture collection.23,24 All cells were cultured using
their respective medium and maintained at 37 °C in a humidified
atmosphere in the presence of 5% CO2. Antibodies and sources
are: IL-8 (Santa Cruz Biotechnology, Inc. Dallas, TX, USA, Cat # sc-
8427); Caspase-8 (Enzo Life Sciences, Inc., Farmingdale, NY, USA,
Cat # ALX-804-242-C100); Caspase-9 (Cell Signaling Technology,
Danvers, MA, USA, Cat # 9502), beta actin (Santa Cruz
Biotechnology, Inc., Cat # sc-47778 HRP) and Hsp60 (Millipore-
Sigma, Burlington, MA, USA, Cat # MAB3514). All reagents used in
this study were of highest grade of purity.

Treatment
Apicidin (Api) and Thapsigargin (TG) were purchased from Enzo
Life Sciences, Inc. All cell lines were treated with either 200 nM Api
or 500 nM TG alone or in combination. Cells (2.0 × 105 cells/ml)
were seeded on to six-well cell culture plate for 24 h and treated
with different drugs alone or in combination.

TCGA analysis
The TCGA colon adenocarcinoma (COAD) and colorectal adeno-
carcinoma (COREAD) datasets (version 2016-08-16) were retrieved
from the UCSC Xena Browser. The polyA+ IlluminaHiSeq gene
expression dataset was downloaded in its normalised format.
RNA-seq values were grouped between primary tumour (PT) and
matched non-tumour (MN) samples. The average transcript reads
were calculated for each group. The RPKM method was used to
quantify gene expression from RNA sequencing data by normal-
ising for total read length and the number of sequencing reads. A
student’s t-test was performed between matched normal and
primary tumour groups.

Isolation of whole cell lysate
These processes were carried out according to the protocol
described earlier.25

Western blotting
Whole-cell lysate (WCL) was prepared using NP-40-HEPES lysis
buffer. WCL was separated by precast 26 well, 4–20% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
procured from Bio-Rad (Hercules, CA, USA) and transferred on to
nitrocellulose membrane (Bio-Rad, Hercules, CA). Membranes were
blocked in 5% non-fat milk for 30 min and washed with PBS-T (1X
PBS and 0.1% Tween 20) and further incubated with respective
primary antibody. Anti-mouse or anti-rabbit horseradish

peroxidase-conjugated antibodies (Amersham Pharmacia Biotech,
Piscataway, NJ, USA) were used as secondary antibody. After
washing with PBS-T, proteins were detected using Clarity
chemiluminescent reagent (Bio-Rad) and X-Ray films (ASI, Fort
Lauderdale, FL, USA). Membranes were stripped using stripping
buffer and probed with HRP conjugated beta-actin antibody.

Caspase-8, caspase-9, Hsp60 and IL-8 knockdown using lentiviral
shRNAs
Lentiviral shRNAs were procured from the Gene Modulation
Services Resource (GMSR) core of Roswell Park Comprehensive
Cancer Center, for knocking down expression of various genes in
cancer cells. The shRNA sequences were: caspase-8 (5′-GACTT
CAGCAGAAATCTTT-3′), caspase-9 (5′-CCAGGCAGCTGATCATA
GA-3′), Hsp60 or HSPD1 (5′-GCTATATTTCTCCATACTTTA-3′), and
CXCL8 or IL-8 (5′-TGCTATTTGTATATTCTCC-3′). Briefly, cells were
seeded (5 × 104 cells) per well of 6-well plates. After 24 h,
polybrene (8 µg/ml) was added to the media. After 1 h, mock
shRNA or gene specific shRNA (caspase-8, caspase-9, IL-8 and
Hsp60) lentiviral particles were added at MOI of 3. After 48 h of
transduction, media was replaced with fresh media containing 1
µg/ml puromycin for selection of transduced cells. Knockdown of
targeted gene was confirmed using immunoblotting or ELISA.

Bright field microscopy
Cellular morphological changes induced by treatment as well as in
untreated control were assessed by bright field microscopy.
Images were captured without refreshing medium by an inverted
microscope (Olympus, Waltham, MA, USA).

ELISA assay
Estimation of IL-8 and TGF-β1 levels was carried out using
commercially available kits (eBiosciences, San Diego, CA, USA, and
Ray Biotech, Peachtree Corners, GA, USA respectively). For data
normalisation, the value of cytokines in lysates or supernatant was
divided by protein concentration of lysates.

Caspase-3 activities
Caspase-3 activity was quantified using a fluorometric method
described earlier.26 In a 96-well plate, cell lysates prepared in NP-
40-HEPES lysis buffer were incubated with DEVD-AFC (caspase-
3 substrate) at 37 °C for 90 min in caspase activity assay buffer (50
mM HEPES pH 7.4, 150mM NaCl, 0.5% CHAPS, 1 mM EDTA, 1mM
DTT, 25% glycerol). Fluorescence intensity was detected using a
Synergy microplate reader at excitation and emission wavelengths
of 400 nm and 508 nm, respectively. Arbitrary fluorescence units
were normalised with protein content of cell lysates and
represented as fold change compared to control groups. Protein
concentration of WCL was determined by microBCA kit (Thermo
Fisher Scientific, Grand Island, NY, USA) where bovine serum
albumin (BSA) was taken as a standard. The fluorescence obtained
for caspase-3 was normalised by their respective protein
concentration. The results were presented in the fold change
when compared to control.

Annexin/PI staining
Cells were treated with various anticancer agents or with vehicle
for various time periods followed by staining with annexin-V-Alexa
flour 488/PI kit (Invitrogen, Waltham, MA, USA) according to the
manufacturer’s instructions. The stained cells were analysed by
flow cytometry (LSRIIA, BD Biosciences, San Jose, CA, USA)
collecting 10 000 events. Data were analysed using Win List 3D
7.1 software.

Mice and PC-3 xenograft study
Male SCID (C.B-Igh-1b/IcrTac-Prkdcscid) mice (6-weeks-old; ~25 g
body weight) were purchased from an in-house breeding colony
maintained by Roswell Park Comprehensive Cancer Center
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Laboratory Animal Shared Resource. Mice were housed in standard
ventilated cages, up to five animals per cage, with commercially
available laboratory animal cages bedding at 24 ± 1 °C in a light-
controlled room (light: 6:00–18:00 h, dark: 18:00–6:00 h) and a
relative humidity of 55% ± 5%. Mice were given an ad libitum
supply of filtered pathogen-free air, food, and water. Mice were
acclimatised for a week and prior to implantation of tumours
during evening hours. Animals were anaesthetised by inhalation
of isoflurane mixed with oxygen using an isoflurane vaporiser.
Mock or Hsp60 knockdown PC-3 cells (1 × 106 cells) were re-
suspended in ice cold PBS and mixed with matrigel (50:50 v/v) and
injected subcutaneously in both flanks of SCID mice (five mice/
group) under anaesthesia using 27G needle inside a biosafety
cabinet. Isoflurane inhalation anaesthesia was chosen because of
its faster induction and recovery, minimal effect on cardiovascular
function and negligible metabolism. Animals were monitored
daily after implantation of tumour. Tumours size in animals were
measured twice weekly using callipers. Body weight of animals
were measured twice a week. Once mock PC-3 xenografts reached
2 cm in cumulative diameter, mice were killed by carbon dioxide
inhalation followed by cardiac puncture for exsanguination of
blood for serum and serum kept at −80 °C until further use.
Tumours were harvested, cut into small pieces and fixed in 10%
formalin (at least for 48 h) followed by 70% ethanol for a week.
After fixation, tumours were placed into cassettes for processing
and embedding in paraffin blocks. For immunohistochemistry,

paraffin-embedded tumour tissues were sectioned (3–5 μm) and
stained with haematoxylin and eosin (H&E). To determine IL-8
expression in xenograft tissues, we performed immunohistochem-
istry and viewed under a microscope (Olympus, Waltham, MA,
USA). Serum IL-8 levels were determined by human IL-8
specific ELISA.

Immunohistochemistry
For tissue section staining, following de-paraffinisation and
dehydration, slides were incubated in 3% hydrogen peroxide to
block endogenous peroxidase activity. For antigen retrieval, slides
were incubated in 10 mM citrate buffer, pH 6.0, for 15 min in a
microwave oven. Then slides were sequentially incubated in
blocking solution (10% goat serum in PBS, 30 min), primary
antibody (anti-IL-8; 1:1,000 for overnight at 4 °C), and secondary
antibody (goat anti-rabbit IgG conjugated to HRP; 1:4,000 for 1 h
at RT). Slides were developed with DAB peroxidase substrate kit
(Vector Labs, Burlingame, CA, USA).

Statistical analysis
Significant differences between means of presented data
including studies related to PC-3 cell xenografts were assessed
using two groups Student’s t-test and multiple groups
Bonferroni multiple comparison test by Graph Pad Prism 5.0.
Significance was denoted as compared to control, unless
otherwise indicated.
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Fig. 1 IL-8 is overexpressed in colon cancers. a Immunohistochemistry (IHC) analysis of IL-8 expression in normal colon, human colorectal
adenocarcinoma, and colorectal carcinoma tissue samples using tissue microarray (TMA) sections. Images were scanned using Aperio
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RESULTS
IL-8 is overexpressed in colorectal cancers
The chemokine, IL-8 plays an important role in tumour growth,
angiogenesis, and metastasis.27,28 To understand the expression
level of IL-8 in human cancer, we used tumour microarray (TMA) of
multiple cancers and performed immunohistochemistry (IHC)

staining. The multi-cancer TMA showed increased expression of
IL-8 in various cancers including colorectal adenocarcinoma (CAC-
1 and CAC-2), and colorectal carcinoma compared to normal colon
tissue (Fig. 1a). We further estimated IL-8 mRNA expression in
TCGA-colon and TCGA-colorectal cancer database and observed
overexpression of IL-8 levels in both cancer types compared to

3

Annexin V

P
ro

pi
di

um
 io

di
de

 (
P

I)

P
ro

pi
di

um
 io

di
de

 (
P

I)

15

LNCaPa
24 h

Control

1.02% 1.35%

3

R2
R2

R2

R2

R2 R2

R2 R2

R2
R2

R2 R2

R2

R2

R2

R2

2

54

32

54

32

54

32

54

3

54

32

54

32

54

32

54

95.78% 1.85%

0.57% 0.68% 4.10% 1.08% 2.14% 1.40%

95.43% 1.03%

3.24% 9.69%

73.03% 14.03%

8.37% 5.32%

77.96% 8.31%

8.02% 29.06%

38.89% 24.03%

93.64% 1.14%

1.95% 1.92%

90.05% 6.02%

1.61% 0.95%

95.02% 2.38%

2.90% 1.68%

88.04% 7.31%

93.64% 5.11%

0.99% 2.50%

90.17% 6.33%

1.37% 2.53%

71.23% 24.86%

1.09% 0.56%

95.12% 3.22%

6.60% 29.25%

19.18% 44.98%

2.37% 1.378%

91.69% 4.57%

1.97% 17.33%

4.55% 76.15%

105

105

104

104

103

103

102

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

105

104

103

102

101

0

Api

TG

24 h
HCT116

Control

48 h

Control

48 h

Control

2

1

0
–

–

–

–

+

+

+

+

Api

TG

–

–

–

–

+

+

+

+

Api

TG

–

–

–

–

+

+

+

+

Api

TG

–

–

–

–

+

+

+

+

Api

TG

E
ar

ly
 a

po
pt

os
is

 a
t 2

4 
h

(f
ol

d 
ch

an
ge

)

E
ar

ly
 a

po
pt

os
is

 a
t 2

4 
h

(f
ol

d 
ch

an
ge

)

E
ar

ly
 a

po
pt

os
is

 a
t 4

8 
h

(f
ol

d 
ch

an
ge

)

E
ar

ly
 a

po
pt

os
is

 a
t 4

8 
h

(f
ol

d 
ch

an
ge

)10

5

0

6

4

2

0

20

15

10

5

0

Annexin V

Api Api Api

TG TG TG

Api+TG Api+TG Api+TG Api+TG

b

1010 1051041031021010 1051041031021010 1051041031021010

1051041031021010 1051041031021010

1051041031021010 1051041031021010

1051041031021010 1051041031021010

1051041031021010 1051041031021010

1051041031021010 1051041031021010

1051041031021010 1051041031021010

* 

* 

* 

* 

* 

* 

* 

* 

* 

Fig. 2 Combination of Api and TG induces apoptosis. a, b Flow cytometry analysis of apoptosis in LNCaP and HCT-116 cells using Annexin-V
and PI staining. A total 10,000 events were captured, and result was analysed by Win List software. Data are mean ± SD (n= 3). *p < 0.05 vs
respective controls

Hsp60 and IL-8 axis promotes apoptosis resistance in cancer
S Kumar et al.

937



matched non-tumour specimens (Fig. 1b, c). Together, IHC and
TCGA database analysis suggests that IL-8 is overexpressed in
colorectal cancer.

Combination of Api and TG enhances apoptosis and reduces IL-8
expression in cancer cells
Since we observed that IL-8 is overexpressed in cancer, we next
determined whether/how IL-8 is involved in apoptosis resistance
in colon and prostate cancer cells. Thus, we selected two
pharmacological inhibitors, Api and TG, which are known to
induce autocrine release of IL-8 from cells.29,30 Drug-induced IL-
8 signalling promotes resistance to apoptosis in LNCaP and PC-3
prostate cancer cells.31 To determine the importance of IL-8
release on apoptosis, we treated cancer cells with Api and TG
alone or in a combination. Annexin/PI staining suggests increased
cell death in a time-dependent manner induced by Api and TG in
prostate and colon cancer cells (Fig. 2a, b). We have used very low
doses of Api, or TG as compared to earlier studies32–34 in
concluding that this combination does not show overt toxicity.

Anticancer activities in response to the exposure of these drugs
were more effective at later time points (48 h) in both cancer cell
types. Apoptosis is mediated by several factors including
activation of caspases.25,35 Caspases are involved in apoptosis
and have been sub classified by their mechanism of action as
initiator caspases such as caspase-8 and -9 or executioner
caspases such as caspase-3, -6, and -7.36 To determine whether
IL-8 mediated apoptosis requires caspases, we treated mock,
caspase-8 and caspase-9 knockdown HCT116 colon cancer cells
with TG and Api alone or their combination. We observed that
combination treatment of Api and TG significantly induced
caspase-3 activity in mock HCT116 cells (Fig. 3a, b). Caspase-8
and caspase-9 knockdown in HCT116 cells inhibited caspase-3
activity confirming the involvement of both of the initiator
caspases in Api and TG combination treatment-induced apoptotic
cell death in cancer cells (Fig. 3a, b). Since Api and TG are known
to induce IL-8, we determined expression of IL-8 upon treatment
of TG and Api alone or in a combination in cancer cells.
We observed that treatment of TG induces robust IL-8 production
and release whereas Api-induced IL-8 level and release was not
as prominent as TG (Fig. 4a, b). Interestingly, combination of Api
with TG abrogates IL-8 production and release induced by TG.
Taken together, our results suggest that increased autocrine
release of IL-8 is associated with decreased caspase activation and
apoptosis.

Bax downregulates IL-8 expression and release
Pro-apoptotic protein Bax plays a critical role in the permeabilisa-
tion of outer mitochondrial membrane leading to cytochrome c
release, caspase activation and apoptosis.37 To address the
importance of Bax in IL-8 mediated apoptosis, we used isogenic
colon cancer cell lines HCT116 wild type (WT) and Bax−/− as well
as isogenic prostate cancer cell line DU145 mock and Bax
reconstituted (DU145 Bax+/+) cells. We observed that Bax
reconstitution induced a higher level of cell death in response
to Api and TG combination (Fig. 4c). It has been reported that
endothelial cells incubated with IL-8 promotes higher levels of Bcl-
2:Bax ratios,2 and therefore, we determined interrelation of Bax
and IL-8 in prostate and colon cancer cells. We observed that IL-8
expression was significantly decreased upon reconstitution of Bax
(Fig. 4d). We further studied the effect of Bax knockout on IL-8
expression in WT and Bax−/− HCT116 cells. IL-8 expression was
increased in the absence of Bax (Fig. 4e) in response to combined
exposure of TG and Api. Collectively, Bax and IL-8 expression are
inversely regulated in prostate and colon cancer cells.

Hsp60 knockdown inhibits TGF-β expression, an upstream
regulator of IL-8
Acute ablation of Hsp60 destabilises mitochondrial functions
leading to increased expression of proapoptotic Bax and Bax-
dependent apoptosis.22 Since IL-8 and Hsp60 inversely associate
with Bax, we next determined effect of Hsp60 knockdown on IL-8
expression. A robust decrease in IL-8 expression was observed
upon Hsp60-silencing in LNCaP prostate cancer cells (Fig. 5a). TGF-
β plays a central role in tumour management and regulates
expressions of cytokines including IL-8.14 We determined the
effect of IL-8 knockdown on TGF-β expression and observed that
IL-8 knockdown promotes TGF-β expression (Fig. 5b, c). Since
Hsp60 promotes IL-8 expression and TGF-β also regulates IL-8
levels, we next asked the question, whether Hsp60 is critical
for TGF-β expression. We used mock and Hsp60 knockdown
LNCaP prostate cancer cells and treated with Api or TG alone or
in combination. Decreased expression of TGF-β in TG alone or
in combination of Api and TG was observed in control (mock)
LNCaP cells, whereas TGF-β was not detectable in Hsp60
knocked down LNCaP cells (Fig. 5d). Taken together, Hsp60
regulates IL-8 expression as well as its upstream regulator TGF-β in
cancer cells.
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Hsp60 knockdown inhibits IL-8 expression and release in vivo
The overexpression of Hsp60 associates with increased expression
of anti-apoptotic proteins Bcl-xl and Bcl-2, and decreased
expression of the pro-apoptotic protein, Bax.38 To understand
the physiological relevance of our study, we next performed
in vivo experiments to determine whether Hsp60 regulates IL-8
production and release in tumour cells in vivo. We subcutaneously
grafted mock and Hsp60 knockdown PC-3 prostate cancer cells in

SCID mice. Human IL-8 levels in mouse serum of mock and Hsp60
knockdown groups were subsequently estimated by human IL-8
specific ELISA. The levels of IL-8 in mouse serum were significantly
decreased in Hsp60 knockdown group compared to mock group
(Fig. 6a). In the mock group (n= 5), levels of IL-8 in serum were
108.5, 83.0, 107.3, 52.0 and 52.0 pg/ml, respectively while in Hsp60
knockdown group (n= 5), IL-8 levels were 1.01, 5.15, 19.25, 18.55
and 31.24 pg/ml, respectively (Fig. 6a). We also determined IL-8
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expression in tumours by IHC staining using human anti-IL-8
antibody. Concurrent with serum IL-8 results, expression of IL-8
was drastically downregulated in Hsp60 knock down tumours
(Fig. 6b). Taken together, these findings clearly indicate that Hsp60
regulates the IL-8 expression and its release in tumour cells.

DISCUSSION
Deregulated cytokine expression and signalling play a crucial role
in developing drug resistance in cancer.39 Aberrant cytokine
signalling induces proliferation of tumour cells and facilitates
formation of stromal blood vessel networks, which promotes
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tumour progression and growth.39,40 We report that Hsp60
regulates IL-8 expression and release in colon and prostate
cancer. Increased levels of IL-8 and Hsp60 are associated with
enhanced resistance to apoptosis in cancer cells. Hsp60 either
directly or via TGF-β upregulates IL-8 expression, which inhibits
apoptosis leading to cancer cell survival. The combined treatment
of Api and TG downregulates IL-8 expression causing increased
caspase activation and cancer cell death (Fig. 6c).
Most of the chemotherapeutic drugs fail to induce effi-

cient apoptosis in cancer cells. Our study provides the underlying

mechanism on how autocrine release of IL-8 contributes to
tumour growth and apoptosis resistance in cancer cells. Since, Api
and TG are reported to induce autocrine release of IL-8,29,30 we
used these two drugs alone or in combination to study the effect
of IL-8 release on apoptosis in prostate and colon cancer cells.
Drug-induced IL-8 upregulation has also been reported in
dacarbazine treated melanoma cells, etoposide and mitomycin C
treated human epithelial carcinoma cells, and doxorubicin treated
human small cell lung cancer cells.40 Chemotherapy-induced IL-
8 signalling promotes resistance in cancer cells via upregulation of
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prosurvival protein such as cellular FLICE-inhibitory protein (c-
FLIP).31 Abrogation of TG-induced IL-8 expression and increased
apoptosis in presence of Api suggests that, the combination of
these two drugs may overcome IL-8-mediated cell survival and
resistance. Apoptosis is an outcome of a diverse cascade of cellular
events mediated by several molecules including caspases and pro-
apoptotic proteins.41,42 The combination of TG and Api promotes
caspase-8, caspase-9, and Bax mediated apoptosis. Cytokine-
mediated Bax deficiency and consequent delayed apoptosis has
already been reported in neutrophils.43 Our findings provide
evidence that Bax downregulates IL-8 expression in colon and
prostate cancer cells.
The anti-apoptotic mechanism of mitochondrial chaperone

Hsp60 involves sequestration of Bax-containing complexes that
may lead to the inhibition of apoptotic cell death.22 We
observed a new role of Hsp60 in regulating IL-8 and cell survival
in colon and prostate cancer. Api and TG combination disrupts
Hsp60-IL-8 axis, and therefore, may overcome apoptosis
resistance. Similar to our study, knockdown of IL-8 has also
been reported to increase sensitivity to cisplatin in platinum-
sensitive cells and reversed platinum resistance in resistant cell
lines.44 We demonstrated regulation of IL-8 production and
release by Hsp60 in vitro and in vivo. To validate IL-8 release by
tumour cells, we used immune deficient SCID mice to study
regulation of IL-8 by Hsp60. Since we used PC-3 human prostate
cancer cells for xenograft studies and determined IL-8 produc-
tion by using anti-human IL-8 antibody, our results confirmed
production and release of IL-8 by cancer cells (and not from
murine cells) and its regulation by Hsp60. Increased IL-8 in
serum associates with poor response to cancer therapeutics.45

IL-8 recruits pro-tumorigenic factors to remodel TME.46 IL-8
expression in cancer-associated fibroblasts (CAFs) also mod-
ulates TME leading increased NF-κB activation and chemoresis-
tance in human gastric cancer.47 Thus, downregulation of IL-8
release in serum and decreased expression in tumour sections
upon Hsp60 knockdown PC-3 xenograft suggest that Hsp60
promotes tumour progression via IL-8-mediated TME remodel-
ling. TGF-β signalling regulates IL-8 expression in cancer cells
including human prostate cancer cells.14 Although regulation of
IL-8 is contributed by TGF- β, exposure of Hsp60 causes elevated
TGF-β expression in diseased conditions.48,49 Api-induced TGF-β
was diminished by TG, suggesting that the combined exposure
of Api and TG may overcome apoptotic resistance mediated by
the IL-8-TGF-β axis. Interestingly, Hsp60 regulates both IL-8 and
TGF-β pro-survival interleukins and acts as an upstream
regulator of IL-8-TGF-β signalling axis.
In summary, we report that Hsp60 regulates IL-8 and TGF-β

production and their release in cancer cells. Hsp60-mediated
upregulation of IL-8 and TGF-β correlates with downregulation of
caspase activities and inhibition of apoptotic cell death. Combined
exposure of Api and TG may abrogate Hsp60-IL-8-TGF-β axis to
overcome apoptotic resistance in cancer cells. IL-8 is an autocrine
growth factor remodels TME and associates with disease
recurrence in many types of cancer including in prostate and
colon cancer.13,50,51 Increased expression of Hsp60 contributes
tumour progression, apoptosis inhibition, modulation of TME,
therapy resistance, and recurrence of many types of cancer.19,52–58

This study provides strong evidence of Hsp60 regulation of IL-8
expression and release, which plays critical role TME remodelling
and therapeutic resistance in cancer. Therefore, targeting Hsp60-
IL-8 axis could have a potential therapeutic outcome in colorectal
and prostate malignancies.
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