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Systemic MEK inhibition enhances the efficacy of
5-aminolevulinic acid-photodynamic therapy
Vipin Shankar Chelakkot1, Jayoti Som1, Ema Yoshioka1, Chantel P. Rice1, Suzette G. Rutihinda1 and Kensuke Hirasawa 1

BACKGROUND: Protoporphyrin IX (PpIX) gets accumulated preferentially in 5-aminolevulinic acid (5-ALA)-treated cancer cells.
Photodynamic therapy (PDT) utilises the accumulated PpIX to trigger cell death by light-induced generation of reactive oxygen
species (ROS). We previously demonstrated that oncogenic Ras/MEK decreases PpIX accumulation in cancer cells. Here, we
investigated whether combined therapy with a MEK inhibitor would improve 5-ALA-PDT efficacy.
METHODS: Cancer cells and mice models of cancer were treated with 5-ALA-PDT, MEK inhibitor or both MEK inhibitor and 5-ALA-
PDT, and treatment efficacies were evaluated.
RESULTS: Ras/MEK negatively regulates the cellular sensitivity to 5-ALA-PDT as cancer cells pre-treated with a MEK inhibitor were
killed more efficiently by 5-ALA-PDT. MEK inhibition promoted 5-ALA-PDT-induced ROS generation and programmed cell death.
Furthermore, the combination of 5-ALA-PDT and a systemic MEK inhibitor significantly suppressed tumour growth compared with
either monotherapy in mouse models of cancer. Remarkably, 44% of mice bearing human colon tumours showed a complete
response with the combined treatment.
CONCLUSION: We demonstrate a novel strategy to promote 5-ALA-PDT efficacy by targeting a cell signalling pathway regulating
its sensitivity. This preclinical study provides a strong basis for utilising MEK inhibitors, which are approved for treating cancers, to
enhance 5-ALA-PDT efficacy in the clinic.
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BACKGROUND
Photodynamic therapy (PDT) is a cancer treatment modality that
utilises photosensitizers and light exposure to treat different types
of cancers.1,2 Photosensitizers are selectively accumulated in
cancer cells and are activated by exposure to light of specific
wavelengths. This leads to the rapid generation of singlet oxygen
and reactive oxygen species (ROS), resulting in cellular oxidation
and programmed cell death (PCD).3–5 5-Aminolevulinic acid (5-
ALA) is a naturally occurring photosensitizer precursor, which is
metabolically converted to a photosensitizer, protoporphyrin IX
(PpIX), by enzymes of the haem biosynthesis pathway.
PDT utilising 5-ALA (5-ALA-PDT) was introduced into the clinics

in the early 1990s to treat skin cancer,6,7 and has since been
approved for treating other types of cancers, including biliary
tract, bladder, brain, breast, colon, digestive tract, oesophagus,
head and neck, lung, pancreas, prostate and skin cancers.2 As light
exposure activates PpIX locally, 5-ALA-PDT can provide a focal,
non-invasive treatment with less adverse effects compared with
radiotherapy or chemotherapy.1,2,8 In addition, 5-ALA-PDT triggers
cell death through multiple mechanisms involving various
intracellular targets and provides significant tumour selectivity.9,10

However, the long-term recurrence rate for 5-ALA-PDT is relatively
high, which limits its clinical applications.11 Previous studies have
reported 20% and 35–45% disease recurrence in patients with oral
carcinoma and squamous and basal cell carcinoma, respec-
tively.12–14 One of the major causes of this incomplete response

is low or sub-optimal PpIX accumulation in tumours.15 PpIX
accumulation is dependent on the cell type, degree of transfor-
mation and intracellular iron content, resulting in inconsistent
levels of PpIX in tumours.2,16–18 Moreover, PpIX undergoes rapid
photo-bleaching with irradiation, which destroys the photosensi-
tizer (PS) and limits the achievable amount of ROS. Thus, the
treatment response is highly dependent on the initial PpIX
concentration in the tumour.10,19 Therefore, it is essential to
develop strategies to promote PpIX accumulation in tumours to
enhance the therapeutic efficacy of 5-ALA-PDT.
The Ras/mitogen-activated protein kinase (MEK) pathway is one

of the oncogenic signalling pathways that regulate cell prolifera-
tion, growth and death.20,21 Constitutive activation of the Ras/MEK
pathway induced by activating mutations in its signalling
components is common in cancer cells.20–24 Earlier studies have
shown that oncogenic transformation increases 5-ALA-induced
PpIX accumulation.25,26 Therefore, in our previous study, we
investigated the mechanisms underlying Ras/MEK pathway-
mediated regulation of PpIX accumulation in cancer cells.27

Unexpectedly, we observed that MEK lowered 5-ALA-induced
PpIX accumulation in ~60–70% of human cancer cell lines.27 The
increase in PpIX accumulation by MEK inhibition was cancer cell-
specific, and was not observed in non-cancer cell lines. We also
discovered that Ras/MEK activation reduced PpIX accumulation by
increasing PpIX efflux through ATP-binding cassette transporter
B1 (ABCB1), one of the PpIX efflux channels and ferrochelatase
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(FECH)-mediated PpIX conversion to haem. Most importantly, we
demonstrated that treatment with MEK inhibitors could enhance
PpIX fluorescence selectively in tumours, but not in healthy tissues
in mouse models of cancer, suggesting that MEK inhibition
facilitates the preferential enhancement of PpIX accumulation in
tumours. These results indicate that the Ras/MEK pathway has
opposing effects on PpIX accumulation in cancer cells, and its
impact is more significant in reducing intracellular PpIX. Thus, the
Ras/MEK pathway plays an intricate role in the regulation of PpIX
accumulation in cancer cells.
As critical effectors in the Ras/MEK pathway, MEKs have become

therapeutic targets for various cancers, including metastatic
melanoma, pancreatic cancer, biliary tract cancer, non-small cell
lung carcinoma (NSCLC), uveal melanoma and acute myeloid
leukaemia.28,29 Two MEK inhibitors—trametinib and cobimetinib
—have been approved for clinical use in BRAF-positive metastatic
melanoma and NSCLC,28 and several other MEK inhibitors are
currently in clinical development.28 Moreover, apart from mono-
therapy, chemotherapy and radiotherapy in combination with
MEK inhibitors have shown promising results.28,30,31 Our previous
study suggested that MEK inhibitors may also be useful in the
context of 5-ALA-PDT; however, this is yet to be tested.
In this study, we tested the hypothesis that MEK inhibitors could

be an effective partner for combined 5-ALA-PDT to achieve
complete therapeutic responses. Specifically, we sought to
determine the efficacy of 5-ALA-PDT combined with a MEK
inhibitor in vitro and in vivo. The results from our study indicate
that MEK inhibitors are promising candidates for clinical use in
conjunction with 5-ALA-PDT, and should be further evaluated in
preclinical and clinical trials.

METHODS
Cells and reagents
Human glioma cell lines, U-118, U-251; colon cancer cell line DLD-1;
lung cancer cell lines H-1299 and H460 and breast cancer cell
lines Hs 578T and MDA-MB-251 were obtained from the American
Type Culture Collection (Manassas, VA, USA). U-118 is a permanent
cell line derived from a grade IV human glioblastoma—astro-
cytoma, and U-251 was derived from a grade III–IV human
malignant glioblastoma multiforme. DLD-1 was derived from a
Dukes’ type C, colorectal adenocarcinoma, H-1299 is an NSCLC cell
line, H460 is a large cell lung cancer cell line, and Hs 578T and
MDA-MB-231 are triple-negative breast cancer (TNBC) cell lines. All
human cell lines used in the study were authenticated by STR DNA
analysis (DDC Medical, Fairfield, OH, USA; Center for Applied
Genomics, SickKids, Toronto, Canada). Mouse 4T1 mammary
tumour cells were obtained from Dr Jean Marshall (Dalhousie
University, Halifax, Canada). All cell lines were maintained in high
glucose Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen,
ON, Canada), supplemented with 10% foetal bovine serum (FBS)
(Corning, VA, USA) and 1:100 Antibiotic–Antimycotic (×100;
ThermoFisher Scientific). MEK inhibitors U0126 and selumetinib
were purchased from Cell Signaling Technology (Danvers, MA,
USA) and Selleckchem (Houston, TX, USA), respectively; and
5-Aminolevulinic acid from Sigma (Oakville, ON, Canada).

PpIX measurement
Cells (5 × 104/well) plated in 24-well plates were treated with
U0126 or DMSO (control vehicle) for 20 h, and then with 5-ALA for
4 h. The cells were lysed using radioimmunoprecipitation assay
(RIPA) buffer, and PpIX fluorescence in cell lysates was measured
using a Synergy Mx Fluorescence plate reader (BioTek Instruments
Inc. VT) with a 405 nm excitation/630- nm emission filter.

In vitro 5-ALA-PDT
Cells (5000/well) plated in 96-well plates were treated with U0126
or DMSO for 20 h, and then with 5-ALA for 4 h. The cells were

irradiated using a Theralase TLC 3000A modular light source
(Theralase Technologies Inc., Toronto, Canada; λ= 618–630 nm,
fluence rate= 150mW/cm2, energy density (ED)= 27 J/cm2). Cell
viability was measured 24 h after 5-ALA-PDT using the Colori-
metric Cell Viability Kit I (WST-8) (PromoCell GmbH, Germany),
following the manufacturer’s instructions. The pharmacological
interactions between U0126 and 5-ALA-PDT were analysed using
the Chou and Talalay method.32–34 Briefly, the proportion of
cells dead (fraction affected, fa) or viable (fraction unaffected, fu=
1− fa) at concentration D for each drug alone or together was
determined experimentally, and the combination indices (CI) were
calculated using the equation,

CI ¼ Dð Þ1
Dxð Þ1

þ Dð Þ2
Dxð Þ2

where (D)1 and (D)2 are the concentrations of 5-ALA and U0126,
respectively, that together induce x% reduction in cell viability. Dx
is the concentration required for each drug alone that induces x%
inhibition which was calculated using the equation,

Dx ¼ Dm fa= 1� fað Þ½ �1=m;
where m is the slope and Dm is the x-intercept of log[fa/(1− fa)]
plotted against log (D). The CI is a quantitative definition of
synergism (CI < 1), additive effect (CI= 1), or antagonism (CI > 1) in
multidrug interactions.

Biochemical analyses of 5-ALA-PDT-induced cell death
For evaluating changes in cell cycle progression and PCD-
induced DNA fragmentation after PDT, the cells were harvested
4 h after 5-ALA-PDT, fixed and permeabilized with 70% cold
ethanol, and then stained with propidium iodide (PI) solution
(50 µg/ml PI in PBS with 550 U/ml RNaseA; Abcam, USA). Cellular
DNA content was analysed by flow cytometry using a BD
FACSCalibur (BD Biosciences, San Jose, CA, USA).35 The data
were analysed using FlowJo (FlowJo LLC, OR). Western blot
analysis was conducted to detect PCD markers (cleaved PARP,
pro-caspase 3 and cleaved caspase 3) using the apoptosis
western blot cocktail (ab136812, Abcam).36 The amount of
cellular ROS was measured using the OxiSelectTM Intracellular
ROS assay kit (Cell Biolabs Inc. San Diego, CA, USA) following the
manufacturer’s instructions. Briefly, 5-ALA-PDT-treated cells
were incubated with 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA) for 30 min at 37 °C, and the fluorescence was
measured using a Synergy Mx Fluorescence plate reader (BioTek
Instruments Inc., VT) at 480 nm/530 nm. The amount of ROS was
determined by comparison with a 2′,7′-dichlorodihydrofluores-
cein (DCF) standard curve.

Electron microscopy and ultrastructure studies
The cells were fixed in Karnovsky fixative (2% paraformaldehyde
(Canemco-Marivac Inc. PQ, Canada) and 2.5% Glutaraldehyde
(Canemco-Marivac Inc.) in 0.1 M sodium cacodylate buffer
(Canemco-Marivac Inc.)) for 20 min, and post-fixed in 1% osmium
tetroxide (Sigma-Aldrich, St. Louis, MO, USA) in 0.1 M sodium
cacodylate (Canemco-Marivac Inc.) buffer pH 7.4. The fixed cells
were dehydrated in increasing concentrations (70–100%) of
ethanol and in acetone, and then embedded in BEEM resin
capsules (Electron Microscopy Sciences, Hatfield, PA, USA).
Ultrathin sections were mounted on 300 mesh copper grids,
stained with uranyl acetate (Canemco-Marivac Inc.) and lead
citrate (Canemco-Marivac Inc.), and observed using an FEI Tecnai
G2 Spirit transmission electron microscope (FEI, Hillsboro, OR),
operating at 80 KV.37

In vivo 5-ALA-PDT
Female BALB/c mice and male athymic nude mice purchased
from Charles River Laboratories (Montreal, QC, Canada) were
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housed in a barrier unit within the Central Animal Care Facility of
the Health Sciences Center at Memorial University of Newfound-
land. Animal experiment protocols were approved by the
Institutional Animal Care Committee, and were in accordance
with the guidelines of the Canadian Council on Animal Care. As
shown in Supplementary Fig. S1, at 8 weeks of age, BALB/c
female mice or athymic nude mice were injected subcutaneously
into the right hind flanks with mouse mammary carcinoma
4T1 cells or human colon cancer DLD-1 cells suspended in PBS
(2 × 106 cells/100 µL), respectively. After the development of
palpable tumours (3–5 mm in diameter), the mice were randomly
assigned to one of the following four groups: (1) control, (2)
selumetinib, (3) 5-ALA -PDT and (4) selumetinib/5-ALA-PDT (n=
15 per group for the 4T1 model and n= 9 per group for the DLD-
1 model). The mice were orally (p.o.) administered a control
vehicle (0.5% propyl methylcellulose in PBS) or selumetinib
(150 mg/kg body weight (BW)). Six hours later, Groups 3 and 4
received 5-ALA (200 mg/kg BW) by intraperitoneal (i.p.) injections
and were housed in the dark. Two hours after i.p. ALA, the mice
were irradiated (ED= 40 J/cm2) using a LuxX 633-100 laser
(Omicron Laserage, Germany) coupled with a frontal diffusor,
FD1 (Medlight S.A, Switzerland). To ensure precise irradiation, the
mice were anaesthetised by isoflurane inhalation and positioned
horizontally on a heat mat, and the fibre was fixed vertically
above the tumour. After irradiation, the mice were housed in the
dark for 24 h. The tumours were measured every day to monitor
tumour progression up to 60 days or until the endpoint (tumour
measuring 15 mm on any one axis) was reached. The mice were
sacrificed by carbon dioxide inhalation on reaching the end-
point. For histological studies, three mice from each group were
sacrificed by carbon dioxide inhalation at 12 and 24 h after
5-ALA-PDT, and the tumours were resected.

Histological evaluation
Formalin-fixed paraffin-embedded tumour sections were stained
with haematoxylin and eosin (H&E) to observe morphological
changes. PCD in the tumours was detected by TUNEL staining
using the TUNEL Assay Kit (ab66110, Abcam), following the
manufacturer’s instructions. The sections were counterstained
with 4′,6-diamidino-2-phenylindole (DAPI) for observing the
nuclei. Quantitative analysis of TUNEL-positive cells was per-
formed on five randomly selected images from each mouse (three
mice/group) using Fiji (NIH).

Statistical analyses
Statistical analyses were performed using Prism 7.0 (GraphPad).
One-way or two-way ANOVA was performed for multiple data sets.
Median survival comparison was performed using the log-rank
test. p < 0.01 and p < 0.05 were considered statistically significant
for in vitro and in vivo experiments, respectively.

RESULTS
Different human cancer cell lines have distinct 5-ALA-PDT-
sensitivities
We tested seven human cancer cell lines, including human breast
cancer (Hs 578T and MDA-MB-231), colon cancer (DLD-1),
glioblastoma (U-118 and U-251) and lung cancer (H-1299 and
H460), for their sensitivities to 5-ALA-PDT (Fig. 1). The cell lines
were treated with different concentrations of 5-ALA (0, 0.2, 1 and
5mM) for 4 h and then irradiated with a red laser. Cell viability
was measured 24 h after 5-ALA-PDT. No cell death was observed
in non-irradiated cells, suggesting that 5-ALA did not have any
toxicity even at higher concentrations. 5-ALA-PDT effectively
killed human glioblastoma cell lines (U-118 and U-215) at all 5-
ALA concentrations that were tested (0.2, 1 and 5 mM) and were
classified as 5-ALA-PDT-sensitive cell lines. The viabilities of DLD-
1, H-1299, Hs 578T and MDA-MB-231 were significantly reduced

by 5-ALA-PDT when treated with higher concentrations of 5-ALA
(1 and 5 mM), but not with the low concentration (0.2 mM), and
were classified as moderately sensitive cell lines. Finally, H460 was
not responsive to 5-ALA-PDT at any concentrations we tested.
This was the only cell line, which was classified as the least
sensitive cell line.
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Fig. 1 Sensitivity of human cancer cell lines to 5-ALA-PDT. Human
cancer cells were treated with or without 5-ALA for 4 h and then
irradiated. Mean ± SD of % cell viability at 24 h after PDT relative to
controls (no 5-ALA, black bars) from three independent experiments
is presented. *p < 0.01 vs. 0 mM 5-ALA by one-way ANOVA with
Turkey’s post hoc test. Cell lines that were significantly killed by
5-ALA-PDT were classified as Sensitive cell lines. Cell lines that
were significantly killed by 5-ALA-PDT at the highest tested 5-ALA
concentration (5mM) but not at the lowest concentration (0.2 mM)
were classified as Moderately sensitive cell lines. A cell line that was
not sensitive to any 5-ALA concentrations tested was classified as
Least sensitive line
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MEK inhibition promotes 5-ALA-PDT efficacy in vitro
Previously, we demonstrated that MEK inhibition increases PpIX
accumulation in different cancer cell lines treated with 5-ALA.27 As
sufficient accumulation of PpIX is essential for effective cancer cell
killing by 5-ALA-PDT,3–5 we sought to determine whether MEK
inhibition would enhance 5-ALA-PDT efficacy. We used the MEK
inhibitor U0126 to inhibit oncogenic Ras/MEK in the moderately
sensitive (DLD-1 and Hs 578T) and the least sensitive (H460) cell
lines. MEK inhibition significantly increased PpIX accumulation, as
measured by its fluorescence, in all cell lines in a concentration-
dependent manner (Fig. 2a). When cells pre-treated with U0126
were subjected to 5-ALA-PDT, we observed significantly increased
cell death in the moderately sensitive cell lines (DLD-1 and Hs
578T) at 5-ALA concentrations of 1 and 5mM (Fig. 2b).
Furthermore, 5-ALA-PDT sensitivity of the least sensitive H460
cell line was also increased by U0126 pre-treatment (Fig. 2b).
These results suggest that an active MEK pathway decreases 5-
ALA-PDT efficacy in certain cancer cell lines.
To further characterise the effect of MEK inhibition on the

efficacy of 5-ALA-PDT, we examined 5-ALA-PDT sensitivity of the
moderately sensitive DLD-1 cell line to different concentrations
of 5-ALA and U0126 (Fig. 3). PpIX accumulation and 5-ALA-PDT-
induced cell death increased in a concentration-dependent
manner when DLD-1 cells were treated with increasing
concentrations of 5-ALA (0.5‒5 mM), as expected (Fig. 3a).
Treatment with MEK inhibitor, U0126 (2.5–200 µM), did not
affect the cellular PpIX fluorescence in DLD-1 cells. Furthermore,
no cell death was observed in cells that were treated solely with
low concentrations of U0126 (0–20 µM), while increasing the

concentration of U0126 beyond 25 µM induced significant death
in DLD-1 cells (Fig. 3b). Next, we determined the efficacy of
different sub-lethal concentrations of U0126 combined with
0.5 mM 5-ALA, a sub-effective concentration for 5-ALA-PDT, in
DLD-1 cells (Fig. 3a, right). U0126-pre-treatment increased 5-ALA-
induced PpIX accumulation in a concentration-dependent
manner (Fig. 3c). Furthermore, while cell death was not observed
with lower concentrations of U0126 (2.5 and 5 µM), combined
treatment with higher concentrations of U0126 (10 and 20 µM)
significantly promoted the efficacy of 5-ALA-PDT. Similar effects
of U0126 pre-treatment were observed with a higher concentra-
tion of 5-ALA (5 mM). 5-ALA-PDT killed 98% of DLD-1 cells pre-
treated with 20 µM U0126 (Fig. 3d).
To determine whether the increased efficacy of the combined

treatment is through synergistic or additive drug interactions, we
analysed our results shown in Fig. 3 using the Chou and Talalay
method. The CI of all combinations of MEK inhibitor and 5-ALA
concentrations tested was less than one (Supplementary Table 1),
indicating that MEK inhibition synergistically enhanced the
efficacy of 5-ALA-PDT.

MEK inhibition promotes 5-ALA-PDT-induced ROS generation and
PCD
5-ALA-PDT induces PCD in cancer cells through the generation of
ROS.5 To determine whether MEK inhibition increases ROS
generation after 5-ALA-PDT, we monitored the conversion of
DCFH-DA to DCF in DLD-1 cells treated with control vehicle,
U0126, 5-ALA-PDT or U0126/5-ALA-PDT (Fig. 4a). Cellular
esterases deacetylate DCFH-DA to non-fluorescent-DCFH, which
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Fig. 2 MEK inhibition increases 5-ALA-PDT sensitivity of moderately and least sensitive cell lines. a Cellular fluorescence in relative
fluorescence unit (RFU) in moderately sensitive DLD-1 and Hs 578 T cells, and least sensitive H460 cells. b% Cell viability 24 h after PDT relative
to controls (DMSO, no 5-ALA). The data presented as mean ± SD from three independent experiments. *p < 0.01 by two-way ANOVA with
Turkey’s post hoc test
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is rapidly oxidised to highly fluorescent DCF by ROS. Higher
fluorescence was observed in 5-ALA-PDT-treated cells than in
control or U0126-treated cells, indicating that 5-ALA-PDT-induced
ROS generation. Moreover, combined 5-ALA-PDT with
U0126 significantly increased ROS generation compared with
that in cells treated with 5-ALA-PDT alone.
To determine whether MEK inhibition promotes PCD induction

by 5-ALA-PDT, we first examined the activation of PCD markers by
western blot analysis (Fig. 4b). An increase in cleaved PARP, pro-
caspase 3 and caspase 3 was observed in cells treated with U0126
+5-ALA-PDT compared with those in cells treated solely with 5-
ALA-PDT at both 4 and 10 h after treatment, indicating that the
activation of the cellular PCD pathways by 5-ALA-PDT was
promoted by MEK inhibition. Reduced ERK phosphorylation (p-
ERK) was observed in cells treated with U0126, demonstrating that
U0126 inhibited the activation of the Ras/MEK pathway effectively.
We next assessed DNA fragmentation, a hallmark of PCD, by

flow cytometry. Cells undergoing PCD have low-molecular-weight
DNA fragments and cluster as the sub-G0 population. No
significant G0 population was observed in the control group
(0.4%) or the U0126-treated group (0.5%) (Fig. 4c). In contrast, the
5-ALA-PDT group showed a significant sub-G0 cell population
(55%), which was further increased by combined 5-ALA-PDT with
U0126 (70%) (Fig. 4c, d).
Lastly, the ultrastructure of the cells was examined by electron

microscopy to find morphological changes typical of cells
undergoing PCD (Fig. 5). Salient features of PCD, including
nuclear condensation, mitochondrial swelling and cell mem-
brane blebbing were not observed in either control DLD-1 cells
or those treated with U0126. In contrast, these features were
evident in DLD-1 cells 12 h after 5-ALA-PDT, and were more
pronounced in cells treated with the combined treatment.
Furthermore, cells subjected to the combined treatment showed
extensive cell lysis with the disruption of the cell and nuclear
membranes, mitochondrial pyknosis and the release of intracel-
lular content, including membrane-bound organelles at 12 h
post irradiation.

Taken together, these results suggest that MEK inhibition
increases ROS generation, which in turn promotes PCD induction
in cells treated with 5-ALA-PDT. This increase in PCD was evident
from drastic changes in cell morphology (Fig. 5), and the
increased sub-G0 population (Fig. 4c, d) in the combined
treatment group.

MEK inhibition promoted 5-ALA-PDT efficacy in vivo
To determine whether these in vitro findings were also true
in vivo, we examined the effectiveness of the combined 5-ALA-
PDT with a MEK inhibitor in animal models of cancer. For in vivo
experiments, we chose selumetinib instead of U0126 as this MEK
inhibitor is currently under phase II clinical trial for various cancers
and is more suitable for animal studies.28,38 We first tested the 5-
ALA-PDT sensitivity of mouse 4T1 mammary carcinoma cell line
in vitro and found that MEK inhibition increased 5-ALA-PDT
efficacy in 4T1 murine cells similar to the effect seen in human
cancer cell lines (Supplementary Fig. S2). We also confirmed the
in vitro efficacy of combined treatment with selumetinib and 5-
ALA-PDT in 4T1 and DLD-1 cells (Supplementary Fig. S2). Next,
BALB/c mice-bearing 4T1 tumours were randomly divided into
four groups—vehicle control, selumetinib, 5-ALA-PDT and selu-
metinib/5-ALA-PDT. Selumetinib or 5-ALA-PDT monotherapy did
not affect tumour growth (Fig. 6a). However, tumour growth in the
combined selumetinib/5-ALA-PDT group was significantly slower
than those in the vehicle control, selumetinib, or 5-ALA-PDT
groups up to 8 days post treatment (Fig. 6a). We did not observe
any significant differences after 8 days post treatment as 4T1
mammary tumours grow aggressively and have a high-
proliferation rate obscuring the antitumor effects of selumetinib/
5-ALA-PDT. H&E staining of tumour tissues revealed higher
numbers of dead and non-nucleated cells in the selumetinib/5-
ALA-PDT group compared with those in other groups (Fig. 6b).
TUNEL staining, which detects DNA fragmentation, revealed a
significant increase in TUNEL-positive cells, indicating that PCD
was more actively induced in the selumetinib/5-ALA-PDT group,
compared with either of the monotherapies (Fig. 6b, c).
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We also determined the efficacy of combined 5-ALA-PDT with
selumetinib on human colon DLD-1 tumours in a mouse
xenograft model. Mice were divided into four experimental
groups, as previously indicated (Fig. 6d). All mice in the vehicle
control group attained the maximum tumour size and were
killed by day 17. Although the growth of tumours in mice treated
with selumetinib or 5-ALA-PDT monotherapy was slower
compared with those treated with the control vehicle, no mice
survived after day 23. In contrast, three of the nine mice that
received combined 5-ALA-PDT with selumetinib showed com-
plete remission, and no tumour was observed at 60 days after
treatment. In addition, another mouse carried a very small
tumour (<10 mm3), which did not show any further growth. The
overall survival rate of the selumetinib/5-ALA-PDT group was
44% (four out of nine mice) (Fig. 6e), and the tumour-free
survival was 33% (three out of nine mice) (Fig. 6f). Kaplan–Meier
survival analyses demonstrated that combined 5-ALA-PDT with
selumetinib significantly promoted the overall and tumour-free
survival compared with treatment with selumetinib or 5-ALA-
PDT alone.
These results from animal models of mouse mammary and

human colon cancers demonstrate that systemic inhibition of the
Ras/MEK pathway significantly improves the in vivo therapeutic
efficacy of 5-ALA-PDT.

DISCUSSION
While 5-ALA-PDT is an attractive therapeutic option for localised
tumours due to its specificity and limited side effects, low PpIX
accumulation in the tumour results in a high rate of incomplete
treatment response and disease relapse.12–15,39,40 Thus, a tumour-
specific increase in PpIX accumulation should improve the efficacy
and utility of 5-ALA-PDT. Based on our previous study demon-
strating that MEK inhibition increases PpIX accumulation in cancer
cells,27 this study sought to determine whether MEK inhibition
would increase 5-ALA-PDT efficacy in vitro and in vivo. We found
that MEK inhibition increased the sensitivity of various cancer cell
lines to 5-ALA-PDT in vitro. Furthermore, we demonstrated that 5-
ALA-PDT combined with a MEK inhibitor was more effective than
5-ALA-PDT monotherapy in animal models of breast and colon
cancer.
Most importantly, a complete response was achieved in 44% of

the human colon cancer xenograft model mice that received the
combined 5-ALA-PDT and MEK inhibitor. These results are directly
relevant for improving the efficacy of 5-ALA-PDT in clinical
settings. MEK inhibitors such as trametinib and cobimetinib are
approved for clinical use for different types of cancers,28 and are
considered relatively safe with manageable side effects such as
rashes, diarrhoea, peripheral oedema, fatigue and mild
retinopathy.41,42 Therefore, it would be feasible to combine a
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MEK inhibitor with 5-ALA-PDT to reduce incomplete treatment
responses and disease relapse in patients.
One of the critical findings of this study is that Ras/MEK

activation regulates the 5-ALA-PDT sensitivity of tumours. Activat-
ing mutations of Ras protein are found in ~30% of all human
tumours.21 Even in cancers where an activating mutation of Ras
protein is absent, the upstream or downstream signalling
components of the Ras/MEK pathway are often inappropriately
activated. Owing to this, >80% of cancer cells are considered to
have a constitutively activated Ras/MEK pathway.20,22–24 This
suggests that the Ras/MEK pathway plays a critical role in defining
the cancer cell sensitivity to 5-ALA-PDT in a broad range of
tumours regardless of their type or origin. The Ras/MEK pathway
has multiple downstream elements that regulate signalling
modifications and translational and transcriptional activities. It
remains to be identified which downstream elements are involved
in the regulation of PpIX accumulation. Once identified, these
downstream elements may be used as novel biomarkers for
accurately predicting 5-ALA-PDT sensitivity in clinical settings.
Furthermore, targeting these downstream elements instead of
Ras/MEK may be a better therapeutic strategy, as the effect would
probably be more specific and have fewer off-target effects.
Although the increase in PpIX accumulation is likely the main

factor contributing to the enhancement of 5-ALA-PDT efficacy by
MEK inhibition, other effects of MEK inhibitors may also be
involved. The Ras/MEK pathway plays critical roles in cancer cell
death.21,23,24 Accordingly, the activated Ras pathway protects cells
from ROS-induced cellular oxidation by increasing the expression
of several antioxidant proteins.43 Interestingly, 5-ALA-PDT also
activates the Ras/MEK pathway, which in turn reduces the
induction of PCD in squamous carcinoma cells treated with 5-
ALA-PDT.44 Therefore, MEK inhibition may reduce the expression
of antioxidant proteins and promote cancer cell death induced by
5-ALA-PDT. Moreover, as oncogenic activation of Ras/MEK
promotes cellular proliferation via transcriptional and translational

regulation,20 MEK inhibition may also directly suppress in vivo
tumour growth. Finally, treatment with a MEK inhibitor promotes
antitumor immunity by modulating the expression of pro-
grammed death-ligand 1 (PD-L1),45 which might contribute to
the increased efficacy of 5-ALA-PDT combined with the MEK
inhibitor in an immunocompetent tumour model.
In moderately and least sensitive cell lines, we found that MEK

inhibition increased the 5-ALA-PDT sensitivity to a certain extent;
however, a complete sensitisation to the level of the sensitive cell
lines was not achieved. This suggests that other cellular
mechanisms independent from oncogenic Ras/MEK may be
involved in regulating 5-ALA-PDT sensitivity of cancer cells.
Various membrane transporters such as ABCB1, ABCB6 and ABCG2
have been shown to regulate cellular PpIX levels.46,47 In our
previous study, we found that Ras/MEK regulates the expression of
ABCB1, but not ABCB6 or ABCG2.27 Therefore, it is likely that other
membrane transporters contribute to 5-ALA-PDT sensitivity
independently of Ras/MEK. The subcellular localisation of the PS
also contributes to the cellular sensitivity to PDT, as PDT-resistant
cells have been shown to accumulate low amounts of PS in the
mitochondria.48 Furthermore, some cancer cells develop resis-
tance against PCD initiated by PDT-induced cellular oxidation.49,50

How these factors add to or interact with the Ras/MEK-dependent
mechanisms and affect the cellular sensitivity to 5-ALA-PDT
requires further investigation.
Since 5-ALA-PDT as a monotherapy often fails to achieve

satisfactory clinical outcomes for treating cancer patients,
combination therapies with distinct modes of action may provide
better treatment efficacy and disease management. Several
combination strategies have been tested thus far to enhance 5-
ALA-PDT efficacy, such as treatment with ABC transporter
inhibitors, FECH inhibitors, chemotherapy agents and vitamin
D.40,46,51–54 In this study, we demonstrate an improved efficacy of
5-ALA-PDT combined with MEK inhibitors using preclinical
models. As MEK inhibitors increase the PpIX accumulation in
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tumours by downregulation of both ABCB1 and FECH,27 they may
be superior to inhibitors of ABC transporters or FECH in enhancing
5-ALA-PDT. Furthermore, MEK inhibitors can be expected to have
additional inhibitory effects on cancer. Therefore, our results

warrant a clinical trial for the combined MEK inhibitor/5-ALA-PDT
as a safe and effective strategy for improving cancer treatment.
As there are several MEK inhibitors approved for human use,

there would be minimal regulatory hurdles for a clinical trial. Since
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PDT is a treatment modality that involves several components,
including the PS, PS dose, light source, light energy,
drug–light–interval and irradiation protocols, it is critical to
optimise all variables and establish a treatment plan for obtaining
maximal disease clearance.9 Furthermore, the interaction between
the MEK inhibitor and pre-existing conditions and/or medications
of patients should be considered. It is also essential to establish
clear advantages of this novel treatment over conventional
strategies in large controlled comparative randomised clinical
trials. With the establishment of optimal protocols, MEK inhibition
combined with 5-ALA-PDT can prove to be an ideal treatment
strategy that is minimally invasive and effective for various
cancers.
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