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Machine learning-based prediction of breast cancer growth
rate in vivo
Shristi Bhattarai1, Sergey Klimov1, Mohammed A. Aleskandarany2, Helen Burrell3, Anthony Wormall2, Andrew R. Green 2,
Padmashree Rida1, Ian O. Ellis2, Remus M. Osan4, Emad A. Rakha2 and Ritu Aneja1

BACKGROUND: Determining the rate of breast cancer (BC) growth in vivo, which can predict prognosis, has remained elusive
despite its relevance for treatment, screening recommendations and medicolegal practice. We developed a model that predicts the
rate of in vivo tumour growth using a unique study cohort of BC patients who had two serial mammograms wherein the tumour,
visible in the diagnostic mammogram, was missed in the first screen.
METHODS: A serial mammography-derived in vivo growth rate (SM-INVIGOR) index was developed using tumour volumes from
two serial mammograms and time interval between measurements. We then developed a machine learning-based surrogate model
called Surr-INVIGOR using routinely assessed biomarkers to predict in vivo rate of tumour growth and extend the utility of this
approach to a larger patient population. Surr-INVIGOR was validated using an independent cohort.
RESULTS: SM-INVIGOR stratified discovery cohort patients into fast-growing versus slow-growing tumour subgroups, wherein
patients with fast-growing tumours experienced poorer BC-specific survival. Our clinically relevant Surr-INVIGOR stratified tumours
in the discovery cohort and was concordant with SM-INVIGOR. In the validation cohort, Surr-INVIGOR uncovered significant survival
differences between patients with fast-growing and slow-growing tumours.
CONCLUSION: Our Surr-INVIGOR model predicts in vivo BC growth rate during the pre-diagnostic stage and offers several useful
applications.
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BACKGROUND
Breast cancer (BC) is a heterogeneous disease with tumours
exhibiting variable morphology, molecular profiles, behaviour and
response to therapy. Mounting evidence demonstrates that BC
shows variable rates of growth, which has important clinical and
medicolegal implications.1–4 In vivo growth rate is not only a
quantifiable trait of the tumour but can also serve as a tool to plan
and evaluate screening programmes, clinical trials or epidemio-
logic studies. In addition, BC growth rate evaluated using tumour
size from mammograms may predict tumour response to
chemotherapy, and may help in determining the likely time
of tumour initiation and previous tumour size in medicolegal
cases.5–7 BC growth rate is also associated with prognostic
variables, such as lymph node status, stage and vascular
invasion;3,4,8 however, the prognostic and predictive value of BC
growth rate has not been harnessed in routine practice due to the
inherent difficulty in its assessment in the short intervals between
diagnosis and treatment.
Although the growth rate of BC in vivo is strictly regulated, it

appears to be dependent on the balance between several
variables including growth fraction (the tumour cells that are
proliferating and leading directly to the addition of new tumour

cells), the rate of tumour cell loss by apoptosis and/or necrosis,
tumour cells’ doubling-time/kinetics, and the surrounding micro-
environment including angiogenesis, blood supply and host
immune response to the proliferating tumour cells.9–12 The
complexity of the processes controlling BC growth and the
interaction with the tumour microenvironment make assessment
and prediction of BC growth rate a challenging task. Therefore,
serial imaging of BC at different time points is considered as the
best model available for assessing the in vivo growth rate and for
determining associations between potential intrinsic growth rate
determinants and BC behaviour, including response to therapy.
This study utilises a discovery cohort comprising clinically and

molecularly well-characterised data from BC patients who under-
went serial mammography. It is a unique and rare cohort because
the second mammogram illuminated that the tumour was indeed
“missed” during the first mammogram. We find that this one-of-a-
kind cohort can be interrogated to (a) identify predictors of BC
in vivo growth rate, (b) evaluate the impact of BC growth rate on
disease outcome and (c) develop a surrogate model that robustly
predicts pre-diagnosis in vivo growth rate for patients who would
normally not have tumour volume data from two serial
mammograms. In contrast to a matched first-presentation-only
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BC patients’ cohort, BC growth rate in this study is determined by
the changes in tumour volume between sequential mammo-
grams, wherein the first mammogram “mistakenly” reported the
case as normal/benign, and the cancer was identified in the
screening mammogram on a retrospective review subsequent to
the second (diagnostic) mammogram (Fig. 1).

METHODS
Study cohort
The study cohort comprises 114 BC patients aged between 50 and
70 years who were presented at the Nottingham City Hospital
from 1988 to 2008 with BC, and for whom review of the previous
screening mammogram showed a previously undetected tumour
at the same affected site. This may have been due to either a false-
negative screening outcome or due to minimal visible signs of
malignancy on the previous mammogram. Mammographic
abnormalities included measurable soft tissue abnormality (mass,
distortion or asymmetry) on screening and diagnostic films. On
retrospective review of the previous mammogram after the
disease diagnosis, two radiologists (blinded to each other’s
observations) confirmed the “missed” cancer. We selected patients
in whom a soft tissue abnormality was detected (upon retro-
spective review of prior screening mammograms) at the site of the
subsequent cancer. Due to a misdiagnosed mammogram, this
cohort uniquely comes with an earlier screening measurement
with a visible tumour. Clinicopathological data including age,
histological tumour type, primary tumour size, lymph node status,
histological grade, Nottingham Prognostic Index (NPI), vascular
invasion and patients’ outcome data were obtained. BC-specific
survival (BCSS) was defined as the time interval (in months)
between the primary surgeries and death from BC. The mean
survival time of this cohort of patients was 120 months.
Clinicopathological variables were available for 92 cases, and the
BCSS was available in 90 cases; thus, we restricted our study to
these cases (Fig. 1a).

Calculating tumour volumes and growth rates
The two measurements in the screening and diagnostic mammo-
grams were assumed as tumour diameter and tumour height,
which were then used to calculate tumour volumes at the time of
screening and diagnosis. The greater mammogram dimension was
assumed as height corresponding to the diameter of the semi-
major axis, and the other dimension was regarded as diameter of
the semi-minor axis. For tumour volume calculation, we con-
sidered the aforementioned dimensions as volume inputs for a
cylinder, sphere and an oblate spheroid.13 For tumour growth
rates, we tested exponential growth,14,15 the Gompertz model,16

and power law growth with the exponent set to both the classic
value of 2/317,18 and 1/219 as shown in Table S1. For all models, the
initial volume for the growth rate was determined using the
screening mammogram, and the final volume was determined
from the diagnostic mammogram, with the time variable denoted
by the days between the two mammograms.

Selecting optimal tumour volume, growth rate combination and
development of SM-INVIGOR
Multiple tumour volume/three-dimensional shape assumptions
and growth rate functions used in previous studies19 were tested
to find the optimal combination that was prognostic. Growth rate
indices that combined tumour volume (calculated assuming the
tumour to be a sphere, cylinder or spheroid) and individual
growth functions (calculated assuming exponential growth, two
sets of the Power Law function (α= 1/2 or 2/3) or Gompertz
growth) were compared on the basis of their prognostic ability.
Growth rates were used either as a continuous variable or through
a fast/slow growth cut-off determined through optimising the log-
rank statistic.20,21 Both forms of all growth rates were analysed

univariately in a Cox proportional hazard regression model using
10-year breast cancer-specific survival (BCSS), and corresponding
model fits were ranked with the Akaike Information Criterion
(AIC).22 The best-fitting growth rate index was chosen via the
lowest relative AIC and was used in subsequent analyses. The data
related to changes in volume of the lesion between the time of
screening and at diagnosis, as well as the time between screening
and diagnosis, were used to estimate the Serial Mammography-
derived In-vivo Growth Rate (SM-INVIGOR) (Fig. 1b). To control for
common clinicopathological confounders, the growth rate model
was also analysed with multivariate Cox regression alongside
grade, age and oestrogen receptor (ER) status. In addition, the
tumour volumes at the screening and diagnostic time points were
tested prognostically to evaluate the prognostic significance of
the change in tumour volume versus that of the screen- or
diagnostic mammogram-calculated volume individually (Fig. 1c).

Assessing and scoring immunohistochemical staining
For each patient, a representative formalin-fixed paraffin wax-
embedded (FFPE) tumour block of the resected tumour was
obtained from the Nottingham breast tumour bank (Fig. 1d). Full-
face sections 4-μm thick from the representative FFPE tumour
blocks were prepared onto Xtra® Surgipath glass slides, and were
used for immunohistochemical (IHC) assessment of the following
markers: ER, progesterone receptor (PR), human epidermal growth
factor receptor 2 (HER2), the proliferation markers Ki67 and MCM2
(minichromosome maintenance 2), the basal markers CK5/6
(cytokeratin 5/6) and epidermal growth factor receptor (EGFR),
the apoptosis markers BCL2 and cleaved caspase-3. IHC was
performed on tissue sections using the Novolink™ Max Polymer
Detection System (Leica, Newcastle, UK). Briefly, heat-assisted
retrieval of antigen epitopes was performed in citrate buffer (pH 6)
using a microwave for 20 min, followed by immediate cooling. The
slides were rinsed with Tris-buffered saline (TBS, pH 7.6). The
primary antibodies as summarised in Table S2 were applied for 30
min at room temperature, except for cleaved caspase-3 staining.
For cleaved caspase-3, a pre-fabricated detection kit (SignalStain®
Cleaved Caspase-3 (Asp175) IHC Detection Kit #8120, Cell Signaling
Technology) was used following the manufacturer’s instructions.
Other markers were stained using our protocols as previously
published.23,24

Appropriate positive and negative controls were used for each
marker and included in each staining run. Only the invasive
tumour cells were scored independently by two observers (SB and
MA) blinded to each other’s scores and clinicopathological data.
Cases with discordant results were further reviewed by both
observers to achieve scoring consensus. For each marker, the
percent and intensity of staining were assessed, and H-scores
were generated. For ER, PR and HER2, cut-offs according to
published guidelines were used.25,26 Ki67 and cleaved caspase-3
were assessed and scored as previously described.23,24 BC
molecular subtypes were defined based on their IHC expression
profile into (a) luminal (ER+ and/or PR+ /HER2-), (b) HER2+
(HER2-positive), (c) triple-negative (TN; ER-, PR-, HER2-) and (d)
basal-like breast cancer (BLBC: TN+ CK5/6+ ).24 A total of 92
cases were informative for IHC biomarkers, and these comprised
the study cohort in the subsequent analyses including molecular
markers (Fig. 1e).

Development of the machine learning-based surrogate model
(Surr-INVIGOR)
The above-mentioned clinical and molecular variables and
immunohistochemical biomarkers (Table S3) were evaluated
using machine-learning algorithms to identify an optimal
feature set that could serve as a surrogate model for SM-
INVIGOR to predict fast or slow in vivo growth rate for cases
where only a single (diagnostic) mammogram is available
(Fig. 1f–h). The significance of mean differences for all potential
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surrogate variables, between fast-growing and slow-growing
tumours, was first calculated using a two-tailed t test; this was
followed by a ranking of the variables based upon their
discriminating capacity. Multiple classification algorithms (sup-
port vector machines, naive Bayes, decision trees, discriminant
analysis and ensemble) with optimised hyperparameters27,28

were then tested. The machine-learning algorithm and feature
set that resulted in the maximum fivefold cross-validated
accuracy (mean of 100 iterations) were chosen. For each trained
machine-learning model (combination of biomarkers), hyper-
parameters were fit through Bayesian optimisation27,28 over 180
iterations (Table S4). Furthermore, a combination of variables
was used, in an optimised regression model, to identify if the
continuous growth rate value for each patient could be
determined. Finally, the outputs from the machine learning-
based approach were compared with the regression-based
models, which did not yield good R2 values owing to small
sample size.

Validation of Surr-INVIGOR
The prognostic performance of this surrogate model (Surr-
INVIGOR) was tested in an independent, well-characterised large
validation cohort of 1241 BC patients using Kaplan–Meier
survival analysis (Fig. 1i, j). Multivariate Cox regression was used
to control for confounding effects of common clinicopatholo-
gical variables.

Statistical analysis
All statistical analyses were carried out with SAS 9.4® software and
MATLAB version 9.2. Clinicopathological proportion differences
between growth groups were determined using the χ2 test.
Continuous clinicopathological variable differences were evalu-
ated via a two-tailed t test. Prognostic time to event analysis was
performed using Kaplan–Meier and Cox proportional hazard
regression, wherein a death due to BC was considered as
an event and every other outcome was censored. For all analyses,
p < 0.05 was considered significant.

RESULTS
Clinicopathological and molecular features of cases in the study
cohort
Most patients in the study cohort showed features associated with
good prognosis, including lower grade and negative (65%) or
early positive (pN1; 26%) lymph nodes. Age at the time of
diagnosis ranged from 50 to 73 years (mean= 60.3 years,
median= 61.0 years). There was a predominance of the luminal
A subtype with 85% positive for ER, while HER2 overexpression
was identified in only 6% of the patients. Ki67 staining ranged
from 0 to 96%, with a mean expression of 19% (Table 1).
Moreover, there was a significant correlation between the
histological tumour size and the mammogram tumour size at
time of diagnosis (Pearson’s correlation= 0.58870; p < 0.0001).
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Fig. 1 Schematic depicting sequences of steps in our study leading to the calculation of SM-INVIGOR and the development of Surr-INVIGOR
that predicts in vivo tumour growth rate in BC. Briefly, tumour volumes from two serial mammograms and the time interval between
measurements in a unique data set of 92 patients (a) were used to develop a growth rate index SM-INVIGOR (b). The growth index significantly
predicts BCSS and classifies tumours as slow growing or fast growing (c). When the tumours were resected after final diagnosis (d), tumour
sections were immunohistochemically stained for a panel of BC biomarkers (e). A machine-learning algorithm was used to develop a surrogate
model (termed Surr-INVIGOR) for SM-INVIGOR that uses routinely assessed BC clinical biomarkers like Ki67, mitotic index and histological size.
The multivariable model non-linearly combines multiple clinicopathological variables and immunohistochemical biomarkers to predict the
tumour’s in vivo growth rate prior to diagnosis (f, g). Using the same growth rate threshold as SM-INVIGOR, the Surr-INVIGOR model was able to
prognostically stratify patients in study cohort (h). Finally, Surr-INVIGOR was validated using an independent BC validation cohort of 1241
patients and was found to be strongly prognostic in the validation cohort (i, j)
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Development of SM-INVIGOR, a significant predictor of BCSS
Since fast in vivo growth prior to diagnosis is a sign of aggressive
disease and could lead to poor outcomes, we reasoned that the

growth rate model of choice would be the one that is most
prognostic. Thus, we evaluated various combinations of growth
rate functions and assumptions regarding the tumour’s three-
dimensional shape. The best-fitting model of tumour volume and
growth rate was obtained using the assumption that the study
cohort comprises spherical tumours growing at a power law (α=
0.5) rate; this growth rate function (SM-INVIGOR) stratified the
tumours into slow-growing and fast-growing subgroups and
produced a minimum cross-validated AIC of 152.621 (Table S5).
Using these assumptions, tumour volumes at the time of
screening ranged from 53 to 56,115 mm3 (mean of 2742 ± 7619
mm3). This contrasted with tumour volumes at diagnosis, which
ranged from 61 to 61,562 mm3 (mean= 5573 ± 8768mm3). The
mean time difference between date of first screening and that of
second diagnostic screening was 18 months (range 4–37 months,
median= 17.5 months). Tumour growth rate differed considerably
from patient to patient, ranging from 0 to 0.53 mm3/day (mean=
0.08 ± 0.13 mm3).
SM-INVIGOR used a cut-off of 0.045mm3/day to stratify tumours

into slow-growing (n= 53) and fast-growing (n= 37) subgroups.
Faster SM-INVIGOR significantly associated with clinicopathological
factors normally associated with poorer prognoses, such as larger
histological tumour size (p= 0.0023), high grade (Grade 3) (p=
0.0186), more mitotic divisions (p= 0.0134), apparent vascular
invasion (p= 0.0139) and a poor NPI (p= 0.011) (Fig. 2a). SM-
INVIGOR varied significantly between BC molecular subtypes with
the highest rate observed in triple-negative BC (TNBC) compared
with other subtypes (p < 0.05). Among the proliferation/apoptosis-
related biomarkers that were immunohistochemically assessed
(Table S3), only Ki67 showed a significant mean difference (p=
0.0003) between the fast-growing (24%) versus slow-growing
(11%) tumour subgroups. Furthermore, patients with higher
tumour growth rate showed significantly poorer survival (BCSS
= 71.7%) relative to the slow-growing tumours (BCSS= 91.9%) as
shown in Kaplan–Meier’s survival graph (Fig. 2b). SM-INVIGOR
retained prognostic significance (p= 0.0299, high growth rate HR
= 4.605) upon controlling for common clinicopathological vari-
ables, including grade, age and ER status. In fact, SM-INVIGOR was
the only variable significantly associated with BCSS in our
multivariable analysis (Fig. 2c).

Development of a clinically relevant surrogate model (Surr-
INVIGOR) for in vivo growth rate prediction
Unlike the patients in our unique discovery cohort, most begin
therapy at an initial cancer diagnosis, and are therefore unlikely to
have two serial mammograms with two tumour volume
measurements. Because of this difference, SM-INVIGOR is limited
in its utility to derive in vivo tumour growth rate for most BC
patients in routine clinical practice. Therefore, to extend the
benefits of having growth rate data (or estimates) to a much larger
group of patients lacking a second mammogram, we developed a
machine learning-based surrogate growth rate model for SM-
INVIGOR and called it Surr-INVIGOR (described in Supplementary
Data). Surr-INVIGOR non-linearly combines multiple clinicopatho-
logical variables and immunohistochemical biomarkers to predict
in vivo growth rate. First, we evaluated the ability of individual
clinicopathological variables to serve as potential surrogate
features and discriminate between the fast-growing and slow-
growing tumour subgroups of our study cohort (p-values for mean
difference between the subgroups is shown in Table S4). Ki67 (p=
0.000265), mitotic score (MI; p= 0.002479), tumour size (p=
0.003619), NPI (p= 0.004163) and grade (p= 0.021128) differed
significantly between the fast-growing and slow-growing tumours.
The seven variables (Ki67, mitotic score, tumour size, NPI, grade,
stage and tumour size) with p-value < 0.2 were then tested in
multiple machine learning-based classification algorithms via
sequential selection (Fig. S1). The maximised cross-validated
accuracy, which indicates the optimal Surr-INVIGOR model, was

Table 1. Clinicopathological characteristics of cases in the study
cohort and validation cohort

Parameters Study cohort Validation cohort

Number of cases
(N; %)

Number of cases
(N; %)

Age

≤65 75 (81.5) 1057 (85.2)

>65 17 (18.5) 184 (14.8)

Tumour grade

1 16 (17.4) 325 (26.2)

2 42 (45.7) 501 (40.4)

3 34 (36.9) 415 (33.4)

Tumour size

≤15 32 (35.0) 969 (72.31)

>15 60 (65.0) 371 (27.69)

Lymph node

1 60 (65.2) 763 (61.5)

2 24 (26.1) 382 (30.8)

3 8 (8.7) 96 (7.7)

Hormone receptor status

ER positive 78 (84.8) 915 (73.7)

ER negative 14 (15.2) 326 (26.3)

PR positive 59 (64.1) 675 (54.4)

PR negative 33 (35.9) 566 (45.6)

HER2 expression

Positive 5 (5.4) 151 (12.2)

Negative 81 (88.0) 1058 (85.3)

Missing 6 (6.5) 32 (2.6)

Intrinsic molecular subtypes

Luminal A 38 (41.3) 408 (32.9)

Luminal B 28 (30.4) 429 (34.6)

HER2 5 (5.4) 151 (12.2)

BLBC 4 (4.3) 138 (11.1)

Triple negative 11 (12.0) 68 (5.5)

Missing 6 (6.5) 47 (3.8)

Ki67

High 44 (47.8) 667 (53.7)

Low 48 (52.2) 574 (46.3)

Tumour type

Invasive no special type 50 (54.3) 761 (61.3)

Invasive lobular 17 (18.5) 93 (7.5)

Tubular 11 (12.0) 299 (24.1)

Mucinous 2 (2.2) 11 (0.8)

Mixed type 12 (13.0) 77 (6.2)

Coexisting DCIS

None 21 (23.0) NA

Low grade 20 (22.0) NA

Intermediate grade 22 (24.0) NA

High grade 29 (31.0) NA

Lymphovascular invasion

Negative 60 (66.2) 686 (55.3)

Definite 21 (22.8) 397 (32.0)

Probable 11 (11) 158 (12.7)

Outcome status

Alive 62 (67.4) 650 (52.3)

Dead 30 (32.6) 591 (47.6)
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obtained when three features (Ki67, MI and histological tumour
size) were used in a K-nearest neighbour algorithm or KNN
(accuracy or concordance with the classification yielded by SM-
INVIGOR= 0.706). The ensemble also yielded a 70% accurate

classifier, but required four additional features; the more
parsimonious KNN was thus selected for use in Surr-INVIGOR.
Fitting an optimal regression model to predict the growth rate
continuously resulted in a poor R2, peaking at 0.22, as shown in
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Fig. S2, perhaps owing to the small sample size. Thus, our machine
learning-based Surr-INVIGOR model was a clinically relevant,
superior choice compared with regression-based models.

Validation of Surr-INVIGOR in an independent BC case series
demonstrates its robust prognostic value
We then evaluated the prognostic ability of Surr-INVIGOR in an
independent BC case series (n= 1241) from Nottingham Uni-
versity Hospital, UK. Patient age at the time of diagnosis ranged
from 21–71 years (mean= 53.6 years, median= 54 years). Most
patients showed features associated with good prognosis,
including negative lymphovascular invasion (55.3%), and negative
(61%) or showed 1–3 positive (30%) lymph nodes. Patient follow-
up time ranged from 1 to 120 months (mean= 100.237, median
= 120). The clinicopathological features of patients are sum-
marised in Table 1.
The clinicopathological variables that discriminated between

slow-growing and fast-growing tumours are depicted in Fig. 2d.
Applying the previously trained Surr-INVIGOR model, using the
same input parameters on this naive validation cohort resulted in
significant BCSS stratification. Patients in the fast growth rate
group (n= 922, BCSS= 72.9%) had a significantly lower survival
than patients in the slow growth rate group (n= 269, BCSS=
92.3%; Fig. 2e). After accounting for potential clinicopathological
cofounders, Surr-INVIGOR retained prognostic significance (HR=
1.758, p= 0.0361) alongside grade as shown in Fig. 2f.

Surr-INVIGOR can be used to determine tumour age at diagnosis in
a subset of breast tumours
Using the different growth rate groups, we can estimate tumour
age and the time of inception of a subset of tumours. Assuming
the highest (bounded) power law (α= 0.5) growth rate (0.04593
mm3/day) for the slow-growing subgroup, we can estimate the
date after which the tumour was definitely present within the
patients in the slow-growing tumour subgroup. Using these
assumptions, we determined that the average tumour age at
diagnosis of slow-growing tumours was 4.7 years (Fig. S3). Using
this methodology, it may be possible to determine whether a
patient possessing a slow-growing tumour undetected at earlier
screenings had received a true-negative or false-negative (i.e.,
tumour was missed) screening result.

DISCUSSION
Although several studies have investigated variables associated
with pre-diagnosis in vivo BC growth rate, only clinicopathological
variables and a few molecular biomarkers have been studied in
this context, and the available tumour dimensions were limited
due to the measurement of the tumour’s long-axis only.2,5,29,30

This study utilised a unique cohort of cases with tumour volume
measurements (derived using tumour diameter and height data)
available from a pair of serial mammograms to derive their in vivo
growth rates (SM-INVIGOR). We explored the potential association
of a larger number of molecular biomarkers with their in vivo BC
growth rate, reaffirmed that fast tumour growth rate has a
profound impact on prognosis, developed and validated a
surrogate model (Surr-INVIGOR) that can predict a gross scale
(fast versus slow) in vivo growth rate accurately in routine practice,
and its medicolegal consequences.
The success of breast screening lies in the timely detection of

cancer on mammography. False-negative mammography is
among the principal reasons for delayed diagnosis of BC.31–34

Even though some authors quote high sensitivity (>90%) for
diagnostic mammography, such results are not universal.35

Among many factors, age appears to be one of the important
factors underlying false-negative reporting, because the high-
radiographic density of breast in young women makes detection
difficult.6 Mammograms are generally capable of detecting

tumours as small as 2 mm in diameter, which equates to a
tumour of ~107 cells and about 23 tumour doublings.36 In our
study cohort, however, patients with tumours ranging from 4 to
55mm received false-negative diagnoses in their screening
mammograms showing the imperfection associated with this
technology and inherent human limitations associated with
reading radiology films. Whether the spread of a tumour is due
to delays in diagnosis and initiation of treatment, or due to the
inherently more aggressive nature of the tumour cells themselves
(i.e., higher in vivo tumour growth rate) is another highly
controversial matter. Natural fears that the delay in diagnosis
has reduced their chances of survival or of avoiding the life-
sapping effects of chemotherapy, or the feeling that cosmetic
outcomes which would have been better had the tumour been
detected earlier, are frequent causes of patients seeking legal
redress. The importance of breast imaging in BC diagnosis and the
use of mammography in screening has thus pushed breast
radiologists into the frontline for medicolegal actions.37 Cancers
missed at screening but followed by a positive diagnostic
mammogram are not common, yet false-negative mammography
is amongst the principal reasons for delayed diagnosis of BC.31–34

Only few population-screening programmes have reported the
data on this group of cancers, which makes our study cohort
uniquely valuable. This cohort allowed us to develop a model to
predict pre-diagnostic in vivo tumour growth rate, and provide
insights into the potential prognostic consequences of delays in
BC diagnosis.
Our study has yielded several key insights into features and the

prognostic significance of the rate of tumour growth in its early
stages. In our study, we found that SM-INVIGOR varies consider-
ably, and is consistent with findings by Weedon-Fekjaer et al.5

who reported that the time BC takes to grow from 10mm to 20
mm in diameter varied from less than 1.2 months to more than 6.3
years. Our current study also reinforced previous findings that
higher grade and larger tumours with high proliferative activity
are likely to have faster SM-INVIGOR, and that faster pre-diagnosis
growth rate predicted shorter survival.2,5,29,30,38,39 We also found
that the status of lymphovascular invasion (LVI) correlated with
growth rate; with highly proliferative and fast-growing tumours
more likely to develop when there is increased provision of
nutrients to the tumour cells from the leaky invaded blood vessels.
Our results indicated that increasing SM-INVIGOR increases the risk
of mortality of the disease. However, SM-INVIGOR cannot be
included as a prognostic variable in routine clinical practice
because of difficulty in evaluating it in the short interval between
diagnosis and treatment.
Therefore, we developed Surr-INVIGOR to predict the pre-

diagnosis in vivo BC growth rate after testing multiple clinico-
pathological and molecular variables (individually and in combi-
nation) using diverse machine-learning algorithms. The optimal
algorithm, a KNN which used Ki67, MI and size, stratified both the
study and validation cohorts into two subgroups with very distinct
outcomes. Surr-INVIGOR further allowed routine clinical para-
meters to be used in patients with slow-growing tumours to
determine tumour size at various time points before the diagnosis
of the tumour. For fast-growing tumours, immediate surgery is
often recommended, as delays may result in upgrading of clinical
T stage. Surr-INVIGOR may thus have a potential use in
medicolegal cases, and may be used to guide screening and
perhaps even follow-up intervals in selected groups of BC patients.
Consistent with previous studies,40,41 the results from our

validation cohort showed a significant correlation between BC
molecular subtypes and pre-diagnosis tumour growth rate,
wherein a higher growth rate was observed in triple-negative/
basal-like BC patients. Previous studies have indicated that faster-
growing tumours lead to poorer survival.42–45 Our results
compellingly demonstrated that high pre-diagnosis in vivo BC
growth rate increases the risk of mortality from the disease
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regardless of potential clinicopathological cofounders. Some
previous studies did not find such statistically significant
associations,3,4 which might be because in those studies, the
tumour volume was calculated using only one dimension—a
method that can introduce considerable inaccuracy into growth
rate calculations. In this study, we utilised a combination of power
law growth rate and spherical volume, both of which were
significant in a previous study using two-dimensional breast
mammogram data,19 and showed the most significant prognostic
relevance in our data.
Review of previous mammography is carried out as a routine

practice at Nottingham Hospital, and cases that show an abnormality
at the same site as the diagnosed tumours are considered as cancers
potentially missed in the prior screening. Some of these tumours are
only detectable in retrospect with knowledge of the diagnostic
mammograms, and if all such subtle areas were recalled for further
assessment, this would likely increase the false-positive rate beyond
what is regarded as acceptable in the NHS breast screening
programme. The impact of such delay in the diagnosis on the
presentation and outcome of these tumours compared with
matched population of women who presented for the first time as
symptomatic or with screen-detected BC remains to be defined.
Most tumours included in our study (similar to other studies looking
at screen-detected tumours) by their very nature, were small, slow-
growing luminal tumours and infrequently expressed basal markers
or HER2 with similar nodal status.30 This can be explained by the
unique nature of these slow-growing early-stage tumours in this
study. By contrast, aggressive tumours are likely to present without
prior mammographic abnormality.46 In line with these results,
Kalager et al.47 have reported that BCs presenting as interval cancers
were slightly larger than symptomatic BC, but there was no
difference between the two groups regarding lymph node status
or patient outcome. Moreover, our results indicated that the impact
of SM-INVIGOR on disease stage and development of LVI is limited.
However, this study holds a few limitations: due to the unique nature
of the study cohort and the lack of similar missed cancer cohorts, the
SM-INVIGOR growth index could not be readily validated. In addition,
this is a retrospective, single centre study and adjuvant treatment
regimens were not factored in our analyses. Validation of the model
in diverse cohorts is necessary before it can be applied for the
prediction of in vivo growth rate and determination of the likely
tumour initiation date and previous tumour size in clinico-legal cases.
If validated in further studies, the model developed herein could
potentially guide treatment selection, as it prognostically distin-
guishes fast-growing tumours from slow-growing ones. For example,
for fast-growing tumours, immediate treatment in the form of
primary systemic therapy (rather than surgery) may be required.
Moreover, HER2 is known to be related to rapid growth of tumours,
and might be a good marker to add to the Surr-INVIGOR; however,
our study cohort was overwhelmingly HER2 negative and thus its
impact within a prognostic model could not be properly measured.
Further analysis may be required in a diverse cohort.
In conclusion, this study has demonstrated that multiple factors

control BC growth; when considered together Ki67, mitotic index
and tumour size produce a robust prediction model of pre-
diagnostic growth rate and can be used to classify BCs as slow
growing or fast growing. The impact of missing subtle cancers in
screening mammography seems to depend on whether the tumour
was slow growing or fast growing prior to diagnosis, as fast-growing
tumours were associated with poorer outcomes and perhaps
reflected more aggressive tumour biology. Independent validation
of these findings in multiple and more diverse cohorts is warranted.
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