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Anti-angiogenic effects of crenolanib are mediated by mitotic
modulation independently of PDGFR expression
Robert H. Berndsen1,2, Cédric Castrogiovanni3, Andrea Weiss1, Magdalena Rausch1, Marchien G. Dallinga4, Marijana Miljkovic-Licina5,
Ingeborg Klaassen4, Patrick Meraldi3,6, Judy R. van Beijnum2 and Patrycja Nowak-Sliwinska1,6

BACKGROUND: Crenolanib is a tyrosine kinase inhibitor targeting PDGFR-α, PDGFR-β and Fms related tyrosine kinase-3 (FLT3) that
is currently evaluated in several clinical trials. Although platelet-derived growth factor receptor (PDGFR) signalling pathway is
believed to play an important role in angiogenesis and maintenance of functional vasculature, we here demonstrate a direct
angiostatic activity of crenolanib independently of PDGFR signalling.
METHODS: The activity of crenolanib on cell viability, migration, sprouting, apoptosis and mitosis was assessed in endothelial cells,
tumour cells and fibroblasts. Alterations in cell morphology were determined by immunofluorescence experiments. Flow-cytometry
analysis and mRNA expression profiles were used to investigate cell differentiation. In vivo efficacy was investigated in human
ovarian carcinoma implanted on the chicken chorioallantoic membrane (CAM).
RESULTS: Crenolanib was found to inhibit endothelial cell viability, migration and sprout length, and induced apoptosis
independently of PDGFR expression. Treated cells showed altered actin arrangement and nuclear aberrations. Mitosis was affected
at several levels including mitosis entry and centrosome clustering. Crenolanib suppressed human ovarian carcinoma tumour
growth and angiogenesis in the CAM model.
CONCLUSIONS: The PDGFR/FLT3 inhibitor crenolanib targets angiogenesis and inhibits tumour growth in vivo unrelated to PDGFR
expression. Based on our findings, we suggest a broad mechanism of action of crenolanib.
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BACKGROUND
Targeting angiogenesis currently is a well-established approach in
cancer therapy. Key players in the process of angiogenesis include
vascular endothelial growth factor receptor (VEGFR)-, fibroblast
growth factor receptor (FGFR)- and TIE2 receptor signalling.1 The
role of platelet-derived growth factor receptor (PDGFR) signalling
in angiogenesis is not fully defined although it has been reported
to contribute to angiogenesis and other mechanisms including
cell growth, differentiation and migration.2,3 Studies on the effects
of PDGFR signalling on angiogenesis in both in vivo and in vitro
models, as well as its contribution to the recruitment of pericytes
in tumours,4 suggest an important role in the development and
maintenance of functional vasculature.5

In order to improve anti-angiogenic therapy, it is important to
identify drugs that target angiogenesis. For instance, combination
of specific drugs that target angiogenesis via non-parallel path-
ways may increase clinical efficacy.6 Furthermore, detailed knowl-
edge of the mechanism of action and identification of cell types
that are affected by specific drugs can help design more effective
treatment approaches. Although most tyrosine kinase inhibitors

(TKIs) have been developed to target either one or a small number
of signalling pathways it is becoming more clear that such drugs
have a significant amount of off-target interactions.7 This may
result in unexpected efficacy in less obvious tumour types on the
one hand and insight in mechanisms of drug toxicities on the
other hand.
Crenolanib was designed as a specific and selective PDGFR

inhibitor,8 though more recently it was shown to also target FLT3.9

It was first clinically tested in a phase I dose escalation study in
patients with advanced solid tumours in 2009 and was considered
safe and well tolerated.8 Currently, the efficacy of crenolanib is
being evaluated in clinical trials for several indications including
gliomas with PDGFR-α amplifications (NCT02626364), oesophageal
cancers (NCT03193918), relapsed/refractory FLT3 mutated-positive
acute myeloid leukaemia (AML; NCT02298166) and gastrointest-
inal stromal tumours (GIST; NCT02847429).
Given the proposed importance of PDGF(R) in vascular

homoeostasis, in this study we set out to investigate the effects
of crenolanib on endothelial cells (EC) in comparison to tumour
cells and fibroblasts. We show that crenolanib strongly affects EC
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migration and sprout length, partly by differentially affecting
endothelial tip cells. In addition, crenolanib affects mitosis and
induces apoptosis. In silico approaches provided supporting
evidence for alternative pathways that crenolanib may act on to
induce these effects. We further show that crenolanib inhibits
pericyte recruitment that hampers formation of capillary-like
networks. In vivo, this resulted in tumour growth inhibition,
accompanied by a significant reduction in microvessel
density (MVD).

MATERIALS AND METHODS
Compounds
Crenolanib was purchased from Selleck Chemicals (Houston,
Texas, USA) and was dissolved in sterile DMSO at a concentration
of 10 mg/ml. Aliquots were stored in −80 °C and thawed prior to
each experiment. The maximum DMSO percentage was 0.1% and
showed negligible activity in the performed assays and was used
as control (CTRL).

Cells
Immortalised human vascular endothelial cells (ECRF24) were
cultured in flasks coated with 0.2% gelatine and grown in medium
containing 50% DMEM and 50% RPMI-1640 (Life Technologies,
Carlsbad, CA, USA), supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (Life Technologies). Human
ovarian carcinoma cells (A2780) and adult human dermal
fibroblasts (HDFa) were cultured in DMEM supplemented as
described above. Human umbilical vein endothelial cells (HUVEC)
were harvested from umbilical cords and cultured in RPMI-1640
medium supplemented with 10% human serum, 10% FBS, 1%
penicillin/streptomycin and 2 mM L-glutamine.10

Cell viability and endothelial cell sprouting assay
For cell viability experiments, cells were seeded in 96-well cell
culture plates at a density of 5 × 103 cells/well (HUVEC) or 10 × 103

cells/well (ECRF24 and A2780) and grown for 24 h.11 After the
administration of test compounds, cells were allowed to grow for
72 h. After that cell viability was assessed with the CellTiter-Glo
luminescence assay (Promega, Madison, WI, USA). Cell response to
drug treatment was determined based on normalising the
luminescence signal in the treated wells as compared to controls.
For the 3D sprouting assay, HUVEC were mixed in methylcellu-

lose containing medium (70% RPMI, 20% MethocelTM/RPMI-1640
(Sigma-Aldrich, St. Louis, MO, USA) and 10% human serum).12

Drops of 1000 cells in 25 µl were deposited on the lid of a petri
dish, which was then flipped to allow spheroid formation in
hanging drops, and incubated overnight. After 24 h, a collagen gel
mixture was prepared using PureCol® (Sigma), 0.2 M NaOH and
M199 medium (Sigma), new-born calf serum (NBCS), heparin and
bFGF (50 ng/ml;). Spheroids were collected by flushing the lid with
PBS, spun (400 g for 5′), gently mixed with the collagen gel
solution and placed in pre-warmed Ibidi (Martinsreid, Germany)
culture slides. Images of spheroids were taken after overnight
incubation using a Leica DMI3000 microscope (Leica, Rijswijk,
Netherlands). Image-based quantification was performed using
ImageJ software.12

Cell migration assay
ECRF24 (30 × 103 cells/well) or HUVEC (15 × 103 cells/well) were
seeded in 96-well cell culture plates and grown overnight to
confluency. A uniform scratch was made using a sterile scratch
tool (Peira Scientific Instruments, Beerse, Belgium) and treatment
was administered immediately after. The wells were imaged using
a Leica DMI3000 microscope (Leica) at ×5 magnification using
Universal Grab 6.3 software (DCILabs, Keerbergen, Belgium).
Imaging was performed immediately (T= 0) and 6 h (T= 6) after
scratching. The size of the scratch was automatically quantified

and analysed using Scratch Assay 6.2 (DCILabs) by calculating the
absolute wound closure (initial minus final scratch surface) and
values were presented as the percentage normalised to the CTRL
(0.1% DMSO in cell culture medium).

Endothelial–Pericyte co-culture network formation assay
Adherent HUVEC and primary pericytes were labelled with 1 μM
CellTracker Orange CMRA548 (Thermo Fisher Scientific, Waltham,
MA, USA) and 1 μM CellTracker Green CMFDA488 (Thermo Fisher
Scientific) dyes, respectively, in serum-free M199 medium for
30min at 37 °C. When premixed with growth factor-reduced
Matrigel (Corning, New York, NY, USA) both HUVEC and pericytes
were then harvested by trypsinisation and counted. 2.5 × 103

HUVEC and 5 × 103 pericytes were added to the polymerised
Matrigel in each well and cultured in complete M199 for up to 10 h.
The co-cultures were analysed by live-cell time-lapse imaging using
Nikon A1R confocal microscope (see Supplementary Methods).

Flow cytometry
Analysis of cellular DNA content using propidium iodide (PI) was
performed using flow cytometry.11 Cells were seeded at 20–40 ×
103 cells/well and incubated for 24 h. Medium with or without or
crenolanib was applied and cells were incubated for an additional
72 h. Cells were harvested by trypsinisation and fixated in 70%
ethanol for 2 h at −20 °C. Cell pellets were then resuspended in
DNA extraction buffer (90 parts 0.05 M Na2HPO4, 10 parts 0.025 M
citric acid, 1 part 10% Triton-X100, pH 7.4) and incubated for
20min at 37 °C. Propidium iodide (PI, 20 μg/ml) was added and
cells were analysed with a FACSCalibur flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA). DNA content was quantified
with CellQuest Pro software (BD Biosciences).

Mitosis live-cell imaging
To visualise the effect of crenolanib on mitosis, live-cell imaging
was performed for 24 h at 37 °C on a Ti widefield microscope
(Nikon) equipped with an environmental chamber (5% CO2) using
a 60 × 1.3 NA oil objective, a Cy5 filter, a CoolSNAP HQ camera
(Roper Scientific, Vianen, Netherlands) at a sampling rate of 3 min,
recording at each time point 9 z-stacks separated by 2 µm. ECRF24
were maintained as described above. HUVECs were maintained in
M199 medium (Thermo Fisher Scientific) supplemented with 10%
fetal calf serum (FCS), 1% penicillin/streptomycin (Thermo Fisher
Scientific), 1% endothelial cell growth supplement (Millipore),
0.1 mg/mL heparin sodium salt (Sigma), 0.1 µM hydrocortisone
(Sigma), and 10 µg/mL L-ascorbic acid (Sigma). The day before, the
cells were seeded in an Ibidi µ-Slide 8 Well culture plate (Vitaris,
Baar, Switzerland). 4 h prior to the start of imaging, 50 nM SiR-
Tubulin (SpiroChrome AG, Switzerland) was added on the cells to
stain microtubules in addition with 10 µM Verapamil (Spiro-
Chrome AG, Stein am Rein, Switzerland) to keep the dye inside the
cells. None of these compounds affected mitosis, nor the efficacy
of crenolanib. Crenolanib was added just before the start of image
acquisition. Time-lapse movies were analysed using NIS Elements
AR Software.

Immunofluorescence
In ECRF24, HUVEC, A2780 and HDFa F-actin and cell nuclei were
visualised by a combination of phalloidin-Alexa488 (A12379,
Invitrogen) and DAPI (D9542, Sigma). Separately, HUVEC were
stained for VE-cadherin and DAPI (detailed in Supplementary
Material).

Human ovarian carcinoma grown and photodynamic therapy on
the chicken chorioallantoic membrane
Fertilised chicken eggs were incubated in a hatching incubator
(relative humidity 65%, 37oC). On embryo development day (EDD)
8, 25 μL hanging drops containing 106 A2780 cells in 20%
MethocelTM (Sigma) and 80% serum free RPMI-1640 medium were
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prepared. Three hours later the spheroids were transplanted onto
the surface of the chicken chorioallantoic membrane (CAM).11,13

Vascularised three-dimensional tumours were visible and eggs
were randomised on EDD 11. Crenolanib, freshly dissolved in 0.9%
NaCl, was administered on EDD 11 and 12 (referred to as
treatment day 1 and 2) in 100 µl i.v. injections. The injected doses
(52 μg/kg/day and 260 μg/kg/day) were adjusted to the normal-
ised embryo weight at EDD 11 and 12. Control tumours were
treated with vehicle (0.1% DMSO in 0.9% NaCl). Tumours were
monitored daily for 8 days and tumour size was calculated with
the formula: volume= [large diameter] × [perpendicular dia-
meter]2 × 0.52. At the last experiment day, embryos were
sacrificed and weighed. Tumours were resected and fixed in
zinc-fixative for additional analysis. In vivo angiogenic sprouting
on the CAM was induced by photodynamic therapy (PDT) and
visualised on EDD 11.14 Directly after PDT, 20 μl crenolanib at a
dose of 25 μM (corresponding to 63.5 μg/kg) was administered
intravenously. Fluorescence images were taken 24 h later using a
pco.1300 12-bit CCD camera (Gloor Instruments AG, Usler,
Switzerland) run by Micro-Manager 1.4 (NIH, Bethesda, MD,
USA).11,15

Immunohistochemistry
Immunohistochemical staining of A2780 CAM tumours was
performed to detect blood vessels (CD31) and proliferating cells
(Ki67; Supplementary Methods). Microvessel density (MVD; num-
ber of CD31+ structures per microscopic field) and the frequency
of Ki67 positive cells in CAM tumours was assessed by ImageJ
quantification of representative images (×20 objective) using the
colour deconvolution plugin, as previously described.16

In silico analysis of crenolanib target proteins
Crenolanib target proteins were retrieved from proteomicsDB
(www.proteomicsdb.org), an online repository on the human
proteome. Using the ‘Analytics Toolbox’ function, dose-dependent
protein-drug interactions can be mined. We used a concentration
of 5 μM crenolanib to search for target proteins, and proteins
reported with an effective inhibition of ≥50% with this concentra-
tion of crenolanib were subsequently included for further analysis.
More details are provided in Supplementary Methods.

Statistics and data correction
The data are presented as the mean of multiple independent
experiments (±SEM). In the MVD analysis, statistical outliers were
removed from the dataset using the modified thompson Tau test.
Statistical significance was determined using the one-way or two-
way ANOVA test with post hoc Dunnett’s multiple comparison test
or an unpaired t-test (Graphpad Prism). *P values lower than 0.05
and **P lower than 0.01 were considered statistically significant
and are indicated versus the control unless noted otherwise.

RESULTS
Crenolanib inhibits cell viability, cell migration and sprouting
in vitro
The activity of crenolanib was investigated in immortalised human
endothelial cells (ECRF24), freshly isolated primary human
umbilical vein endothelial cells (HUVEC), human ovarian carci-
noma cells (A2780) and adult human dermal fibroblasts (HDFa).
Cell viability was dose-dependently and significantly (ECRF24
2–10 µM; HUVEC 7.5–10 µM and A2780 5–10 µM) inhibited in
ECRF24, HUVEC and A2780 cells after exposure to crenolanib for
72 h, with comparable IC50 values (i.e. 5.1 µM for A2780, 4.6 µM for
ECRF24 and 8.4 µM for HUVEC, Fig. 1a). In contrast, crenolanib did
not affect HDFa cell viability.
Cell migration, evaluated using the scratch assay, was

significantly and dose-dependently inhibited in ECRF24, HUVEC
and HDFa (Fig. 1b). Interestingly, crenolanib administered at lower

doses (0.5–2 μM) tended to stimulate (not significantly) rather
than inhibit EC migration, particularly in HUVEC (Fig. 1b). Of note,
the inability of A2780 cells to form confluent monolayers
precluded us to investigate this trait in these cells. Furthermore,
we confirmed absence of viability inhibition during the time frame
of the assay, indicating that a direct effect on cell migration was
found (data no shown).
Strikingly, when we addressed the expression of the main

targets of crenolanib, i.e. PDGFR-α and PDGFR-β, we noted that
their expression was almost undetectable in A2780, ECRF24 and
HUVEC (Fig. 1c and Supplementary Fig. 1), whereas HDFa showed
marked expression. This seemingly counterintuitive observation
urged us to further investigate the mode of action of crenolanib in
these different cells.
In the next step, the activity of crenolanib was investigated in a

collagen-based three-dimensional endothelial cell sprouting
model (Fig. 1d). Average sprout length and total sprout length
were decreased dose-dependently by crenolanib, whereas the
number of sprouts was only minimally affected and decreased
only at a dose of 2 µM (16 ± 2.7% as compared to CRTL). These
results suggest that a reduced sprout length is due to inhibition of
endothelial cell proliferation and sprout elongation. To further
investigate this, we analysed the effect of crenolanib on the
percentage of tip cells by flow cytometry using CD34 as a marker
in HUVEC.17,18 Crenolanib administered at 5 μM for 72 h resulted in
a significant increase in the number of CD34+ tip cells
(Supplementary Fig. 2A). Next, to assess whether crenolanib acts
differentially on CD34+ tip cells versus non-tip cells, we
immunolabeled cells with antibodies for Annexin-V (for apoptotic
cells) and CD34 (for tip cells) and analysed the cells by FACS. No
differences were found in the percentage of apoptotic cells
between CD34+ and CD34- cells (Supplementary Fig. 2B).
To investigate further the anti-angiogenic mechanism of action

of crenolanib, qPCR analysis was performed in HUVEC after
crenolanib treatment (Supplementary Fig. 2C). A panel of tip cell
genes was included in the analysis to test if crenolanib stimulates
the expression of genes corresponding to the observed increase in
tip cells. This panel included CD34, vascular endothelial cell
growth factor receptors (VEGFR2–3), the endothelial cell Notch
ligand Dll4, angiopoietin 2 (ANGPT2), CXC chemokine receptor 4
(CXCR4), netrin receptor UNC5B and insulin like growth factor 2
(IGF2).18 Administration of crenolanib at 5 μM in HUVEC resulted in
an increase in mRNA levels of three out of eight tip cell specific
genes, including CD34 mRNA. This indicates that the effect of
crenolanib may not be tip cell specific. Expression of VEGFR2 and
is significantly decreased as a result of crenolanib treatment,
whereas VEGFR3 mRNA levels are not affected.

Crenolanib regulates pericyte recruitment in vitro and affects cell
morphology
In angiogenesis, endothelial cells of newly formed blood vessels
produce PDGF to attract pericytes, a process that results in vessel
stabilisation and maturation.19 In order to assess the role of
crenolanib in pericyte recruitment, an in vitro endothelial–pericyte
co-culture assay was applied to mimic pericyte recruitment and
attachment to endothelial cells in vivo.20,21 Human pericytes
(labelled with red cell tracker) were cultured with or without
HUVEC (labelled with green cell tracker) on Matrigel (Fig. 1f and
Supplementary Fig. 3). During a 10 h incubation, HUVEC alone
aligned to form capillary-like cords in the control condition while
they did not efficiently align in the presence of crenolanib (5 µM)
(Suppl. Figure 3A and Supplementary Videos 1, 2). Pericytes alone
were not able to align to form capillary-like cords in either control
or crenolanib conditions (Supplementary Fig. 3B and Supplemen-
tary Videos 3, 4). Time-lapse imaging of capillary-like assembly
revealed that after 10 h of co-culture, pericytes were tightly
associated with endothelial cells in the control conditions (Fig. 1e
and Supplementary Video 5). Strikingly, pericytes that were co-
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cultured with HUVEC in the presence of crenolanib did not closely
associate and extended away from the cords in certain regions
(Fig. 1e and Supplementary Video 6). Measurement of the length
of the capillary-like networks confirmed the observed differences
between cultures of HUVEC and/or pericytes in the presence or
absence of crenolanib (Fig. 1f).
To further investigate the cellular morphology and integrity in

response to crenolanib treatment, ECRF24, HUVEC, A2780 and
HDFa were stained for F-actin (phalloidin) and DNA (DAPI;
Supplementary Fig. 4A). The actin cytoskeleton consists of a
membrane supporting component, a cortical actin rim and
actomyosin based stress fibres.22 In non-treated cells, especially
in ECRF24 and HUVEC, the stress fibres and cortical rim can clearly

be observed. Treatment with crenolanib 5 µM results in cell border
retraction and gap formation. In all cell lines, treatment with
increasing crenolanib dose led to the formation of micronuclei
which may be indicative of genomic instability and chromosomal
damage (Fig. 2a).23 In addition, undivided cell nucleus doublets
can be observed that may imply a halt in cell division and thus cell
proliferation (Fig. 2a). Quantification revealed a significant increase
of the total number of micronuclei and undivided cell nucleus
doublets (Fig. 2b, c). Interestingly, this result was most profound in
A2780 cells.
Next, HUVEC were also stained for the adherens junction

molecule VE-cadherin (VE-cad) and DNA (DAPI). Treatment with
crenolanib resulted in a decrease of adherens junctions that have
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a ruffled appearance and formation of intercellular gaps (indicated
by white arrowheads; Supplementary Fig. 4B) in accordance to the
activity observed in F-actin staining that suggests cell border
retraction (Supplementary Fig. 4A).

Crenolanib induces apoptosis in both endothelial and ovarian
cancer cells before mitotic entry
To study the mechanism of crenolanib-induced suppression of cell
viability in EC and ovarian cancer cells, DNA profiles of crenolanib
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treated cells were assessed by flow cytometry analysis of
sub-diploid cells, after staining with propidium iodide. Sunitinib
(10 μM) was used as a positive control in these assays.11

Crenolanib-induced apoptosis in ECRF24, HUVEC and A2780
(Fig. 2d, e and Supplementary Fig. 5). Ovarian cancer cells were
more sensitive to apoptosis induction by crenolanib than EC.
To investigate in more detail how crenolanib affects cell

proliferation and induces apoptosis in endothelial cells, we
performed live-cell imaging of ECRF24 and HUVEC cells treated
with increasing doses of crenolanib. To monitor mitotic events in
particular, and the behaviour of the mitotic spindle, cells were

stained with the live-cell dye SiR-tubulin that stains microtu-
bules.24 Our analysis revealed that crenolanib affected the cell
cycle and mitosis at several levels. First, crenolanib prevented
mitotic entry, as with increasing doses a smaller percentage of
ECRF24 and HUVEC entered mitosis over the period of 24 h
(Fig. 3a). In particular, at 5 µM crenolanib, mitotic entry was
completely blocked in both cell types. Second, crenolanib
significantly increased the duration between mitotic entry and
mitotic exit (mitotic timing) in both cell types (Fig. 3b, c). Since
mitotic timing is mostly determined by the ability of cells to attach
all chromosomes on kinetochores and satisfy the spindle assembly
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checkpoint,25 this implied that crenolanib partially impairs
chromosome attachment by the mitotic spindle. Third, crenolanib
has been previously reported to prevent the clustering of spindle
poles (centrosome clustering) in cancer cells in the presence of
multipolar spindles.26 Consistent with this study, 2 µM crenolanib
prevented centrosome clustering in ECRF24 cells, as we observed
an increased percentage of mitotic cells with multipolar spindles;
HUVEC cells had much fewer multipolar spindles to start with and
we did not see a significant increase after crenolanib treatment
(Fig. 3d). Finally, despite these mitotic defects, we observed that
crenolanib induced cell death mostly independently of mitosis, as
the occurrence of cell death did not correlate with any mitotic
outcome. In particular, 5 µM crenolanib-induced massive cell
death in ECRF24 cells (0 µM= 4.5% ± 2.0 vs. 5 µM= 46.5% ±
15.6%) despite the absence of mitosis (Fig. 3a). We further note

that in this assay, HUVEC cells appeared to be less sensitive to
crenolanib-induced cell-death (Fig. 3a).
Taken together, we show that crenolanib induces apoptosis at

increasing dose levels. Furthermore, despite partial impairment of
mitotic progression, crenolanib mostly affects ECRF24 and HUVEC
cells before cell division by preventing mitotic entry and inducing
a cell division-independent cell death.

Crenolanib inhibits tumour growth, microvessel density and
vascular sprouting in the CAM model
Finally, the vascular and anti-tumour activity of crenolanib was
investigated in the CAM model. First, the activity of crenolanib was
assessed on human A2780 ovarian carcinoma grown on the CAM.
Crenolanib treatment was performed once daily for two days
(EDD 11–12) at doses of 52 μg/kg/day and 260 μg/kg/day
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(corresponding to 5 μM and 25 μM of crenolanib in 100 μL saline,
respectively). Daily injections were performed mimicking the
clinical use of crenolanib considering its short in vivo half-life of 8
h.27 A 2-day treatment of i.v. administration of crenolanib resulted
in significant tumour growth inhibition up to 57.4 ± 9.4% (260 μg/
kg/day; Fig. 4a, b).
During tumour growth of A2780 ovarian carcinoma on the CAM,

the endothelial mRNA levels of PDGFR-α and β were considerably
increased (Supplementary Fig. 6), consistent with ongoing
angiogenesis. To investigate the effect of crenolanib treatment
on the tumour vasculature, microvessel density (MVD) was
quantified by staining for the endothelial cell marker CD31 in
tumour sections (Fig. 4e). Administration of crenolanib (260 μg/kg/
day) resulted in a significant decrease in MVD up to 55.6 ± 7.0%.
Additionally, tumour sections were also stained for the prolifera-
tion marker Ki67. Quantification revealed a significant decrease in
the amount of Ki67 positive cell nuclei in crenolanib (260 μg/kg/
day) treated tumours (Fig. 4f).
Next, in vivo vascular sprouting was assessed following vaso-

occlusive VisudyneTM-PDT.14 Application of PDT to the CAM
vasculature leads to occlusion of blood vessels, which subse-
quently induces an angiogenic switch leading to the revascular-
isation of the treated CAM areas.14 The administration of
crenolanib directly after PDT on EDD 11 resulted in a decrease
of the average sprout length, but not the number of sprouts, 24 h
after PDT as compared to the control (Fig. 4g). Strikingly, this result
strongly resembles the effect of crenolanib seen in EC sprouting
in vitro where the number of sprouts was not affected in contrast
to the average sprout length (Fig. 1c).
In summary, crenolanib inhibits tumour growth in a dose-

dependent manner, which, at least in part, is caused by MVD
inhibition. Furthermore, a decrease in the length of vascular
sprouts is observed while the number of sprouts is not affected.
These results in the CAM model confirm the strong anti-
angiogenic activity observed in previous experiments.

In silico analysis of alternative mechanism of action of crenolanib
In order to explain the observed phenotypic effects of crenolanib
in cells that do not express the target receptors, we mined
ProteomicsDB repository for additional protein targets of creno-
lanib. Using a drug concentration of 5 μM and an effective
inhibition score of ≥50%, 63 proteins were retrieved. Pathway
enrichment analysis of these proteins clearly demonstrated their
involvement in cell division organisation (Fig. 5a and Supplemen-
tary Fig 7). Furthermore, protein interaction analysis using STRING
identified tight clustering and multi-level interactions between cell
cycle related proteins, whereas the main targets of crenolanib (i.e.
PDGFR-β and FLT3) are present in an unconnected cluster (Fig. 5b).
As such, these data support and explain our observations on the
predominant effects on mitosis and apoptosis by crenolanib.

DISCUSSION
Angiogenesis inhibition currently is a widely used treatment
strategy for patients with cancer. Although many angiogenesis-
targeted drugs are limited in their ability to prolong overall patient
survival, many novel therapeutic targets and combination-based
strategies are being developed with the aim of improving
angiogenesis suppression and overcoming limitations associated
with angiogenesis inhibition, such as toxicity and resistance.28,29

The results presented in this study show that crenolanib exerts
strong anti-angiogenic activity in both in vitro and in vivo
angiogenesis models, as well as direct anti-cancer activity. Analysis
of PDGFR expression in the included cell lines (ECRF24, HUVEC,
A2780) revealed that PDGFR expression barely exceeded detec-
tion levels as compared to positive control cell line HDFa. Thus,
crenolanib appears to act on both endothelial cells and cancer
cells independent of PDGFR expression. It should be noted that

crenolanib is a type I inhibitor which means the drug only acts on
active receptor conformations (i.e. binding of PDGF to its
receptor). Consequently, PDGF ligand must be present for
crenolanib to exert its effect. In our assays, however, we did not
evaluate conditions with excess PDGF ligand.
Since the activity of crenolanib cannot be explained as a result

of PDGFR receptor targeting in EC, it is likely that there are other
mechanisms at play that account for the activity of crenolanib.
First, we showed that crenolanib reduces cell viability and cell
migration of HUVEC and ECRF24 cells in a dose-dependent
manner (Fig. 1a, b). Studying the effect of crenolanib on HUVEC
sprouting in a 3D collagen-based model revealed that only the
sprout length was affected and not the number of sprouts
(Fig. 1d). This was confirmed by analysis of vascular sprouting in
the CAM model after PDT-induced angiogenesis (Fig. 4g). In our
previous work we have demonstrated that the PDT CAM
angiogenesis is much more sensitive (10-fold as compared to
the angiogenesis inhibitors used in the cited study) than the
developmental CAM model and resembles better the tumour
microenvironment.14

The observation that EC viability, migration and sprout length,
but not sprout initiation was inhibited prompted us to study
variable activity of crenolanib on different EC phenotypes.
Specifically, ECs can differentiate into tip cells and non-tip cells
(mainly existing of stalk cells, but also phalanx cells and quiescent
cells). The EC tip cell phenotype is characterised by long filopodia
and migratory activity whereas the stalk cell phenotype is
characterised by proliferative activity and sprout stabilisation.30

Thus, the strong anti-proliferative effect of crenolanib may be
primarily due to activity on the proliferative stalk cells, accounting
for a significant decrease in sprout length without a reduction in
the overall number of sprouts.17

Studying cell morphology in response to crenolanib revealed
that crenolanib significantly affects the actin cytoskeleton result-
ing in cell contraction and ultimately gap formation (Supplemen-
tary Fig. 4a). Staining for adherens junction molecule VE-cadherin
revealed a decrease and loosening of adherens junctions which
may contribute to the observed gap formation (Supplementary
Fig. 4b). Both a loss of adherens junctions and actin cytoskeleton
structure may lead to increased vascular permeability.31 Further-
more, after visualisation of cell nuclei with DAPI we observed the
appearance of micronuclei and undivided doublets. The appear-
ance of micronuclei may be indicative of genomic instability,
chromosomal damage and apoptosis (Fig. 2b, c).23 We described
this phenomenon previously as a result of an angiostatic
combination therapy.32

Due to the observation of micronuclei and undivided doublets
we hypothesised that crenolanib may halt or affect mitosis.
Crenolanib was found to increase mitotic timing in ECRF24 and
HUVEC and to prevent centrosome clustering in ECRF24 cells
(Fig. 3). Crenolanib was previously described to prevent centro-
some clustering in cancer cells but this has not been described for
other cell types.26 The authors demonstrated that crenolanib
induced ‘activation of the actin-severing protein cofilin, leading to
destabilisation of the cortical actin network’ and found that this
activity was unrelated to PDGFR-β expression.26 Nevertheless, here
we found that crenolanib mostly affected cell viability and cell
proliferation of endothelial cells before or independently of cell
division, as we observed a dose-dependent block in mitotic entry,
and an increase in apoptosis independent of mitotic events.
To further assess the mechanism of action of crenolanib we

searched for crenolanib target proteins in an online proteomics
database and found a total of 63 proteins (Supplementary Table 1)
that were reported to have an effective inhibition of ≥50% by
5 μM of crenolanib. Subsequent gene ontology analysis showed
considerable enrichment for cell cycle and cell division related
proteins, in line with the results presented here (Fig. 5b and
Supplementary Fig. 7). Various proteins of the Hippo pathway
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were also identified as targets of crenolanib. Together, these data
point to a more complex mechanism of action of crenolanib that is
not only mediated by inhibition of PDGFR and FLT3, but which is
also heavily relying on disruption of normal cellular proliferation.
The anti-angiogenic activity of crenolanib observed in various

in vitro assays was confirmed in vivo in tumours grown on the CAM.
Here we report that crenolanib inhibits tumour growth at doses of
52 μg/kg/day and 260 μg/kg/day (Fig. 4a, b). Tumour growth
inhibition was found to correlate to a decrease in MVD based on
CD31 staining (Fig. 4e) and to a decrease in the density of
proliferating cells, assessed by quantification of Ki67 staining (Fig. 4f).
In summary, we present a thorough analysis of the anti-

angiogenic activity of the crenolanib. Since the effects of
crenolanib presented in this study appear unrelated to PDGFR
expression, we propose several other mechanisms that account
for the observed activity. Based on our findings, we propose
crenolanib for further investigations in other solid tumour types
and clinical evaluation in patients with solid tumours.
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