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Improved relapse-free survival on aromatase inhibitors in
breast cancer is associated with interaction between oestrogen
receptor-α and progesterone receptor-b
Cameron E. Snell 1,2, Madeline Gough1,2, Cheng Liu2, Kathryn Middleton3,5, Christopher Pyke4,5, Catherine Shannon3,5,
Natasha Woodward3,5, Theresa E. Hickey6, Jane E. Armes2 and Wayne D. Tilley6

BACKGROUND: Recent pre-clinical studies indicate that activated progesterone receptor (PR) (particularly the PR-B isoform) binds
to oestrogen receptor-α (ER) and reprogrammes transcription toward better breast cancer outcomes. We investigated whether ER
and PR-B interactions were present in breast tumours and associated with clinical parameters including response to aromatase
inhibitors.
METHODS: We developed a proximity ligation assay to detect ER and PR-B (ER:PR-B) interactions in formalin-fixed paraffin-
embedded tissues. The assay was validated in a cell line and patient-derived breast cancer explants and applied to a cohort of 229
patients with ER-positive and HER2-negative breast cancer with axillary nodal disease.
RESULTS: Higher frequency of ER:PR-B interaction correlated with increasing patient age, lower tumour grade and mitotic index.
A low frequency of ER:PR-B interaction was associated with higher risk of relapse. In multivariate analysis, ER:PR-B interaction
frequency was an independent predictive factor for relapse, whereas PR expression was not. In subset analysis, low frequency of ER:
PR-B interaction was predictive of relapse on adjuvant aromatase inhibitor (HR 4.831, p= 0.001), but not on tamoxifen (HR 1.043,
p= 0.939).
CONCLUSIONS: This study demonstrates that ER:PR-B interactions have utility in predicting patient response to adjuvant AI
therapy.
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BACKGROUND
Approximately 80% of breast cancers express oestrogen receptor-
α (ER)1,2 and are considered to be driven by the trophic effects of
oestrogen. Expression of ER by immunohistochemistry remains
the only clinical biomarker predictive of benefit to adjuvant anti-
oestrogen therapies, which include two broad classes of drugs;
non-steroidal aromatase inhibitors (AIs) and the selective ER
modulator, tamoxifen. Progesterone receptors (PR, comprising A
and B isoforms) are upregulated in response to ER signalling in
normal and malignant breast tissues.3 Antibodies used to detect
PR for clinical and investigative purposes largely detect both PR
isoforms and using these, PR has been established as a biomarker
of good prognosis in breast cancer.4 Higher levels of PR expression
are associated with a good response to tamoxifen,4,5 which until
the development of aromatase inhibitors (AIs) was the major first-
line adjuvant endocrine therapy for all cases of ER-positive (ER+)
breast cancer. Currently, tamoxifen is mainly prescribed to pre-
menopausal women and AIs to postmenopausal women, with

some exceptions.6–8 In general, AIs may confer a survival
advantage compared to tamoxifen.9 However, PR expression does
not predict therapeutic benefit of AIs.6–8

Pre-clinical studies have shown that ER and PR form a physical
interaction in the presence of their cognate hormones and that
this activity may promote better disease outcomes.10–14 In the
presence of oestrogen and a progestogen, including endogenous
progesterone (P4), PR alters the interaction between ER and
chromatin to change the transcriptional output of ER+ breast
cancer cells.12–14 Ligand-activated PR redirects ER chromatin
binding to sites enriched for progesterone response motifs12

and distal enhancers enriched for BRCA1 motifs.13 Moreover,
expression of a gene signature associated with PR-mediated
reprogramming of ER binding is associated with good prognosis
in primary breast cancer cohorts.12 Consistent with these findings,
progestogen treatment inhibits oestrogen-dependent growth in
various preclinical models of breast cancer (e.g. breast cancer cell
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lines, ex-vivo culture of clinical breast cancer tissues and patient-
derived xenografts).12–14

Two progesterone receptor isoforms, PR-A and PR-B, are
transcribed from a single gene, the PGR.15 The two isoforms are
identical apart from an additional 165 amino acids present in the
N-terminus of PR-B. In the presence of both ER and PR agonist
ligands, immunoprecipitation of ER shows a specific increase in
PR-B interaction in the ER+, PR+ breast cancer cell line T47D.13

However, in the presence of activated ER, unliganded PR
promotes expression of a subset of ER target genes and enhances
proliferation,11 highlighting the importance of ligand activation of
PR. Up to 29% of ER+ breast cancers have a heterozygous or
homozygous deletion of PGR, which occurs more often in the
luminal B subtype of breast cancers.12 Therefore, it is not
surprising that the luminal B breast cancer subtype is associated
with a higher proliferation rate and poorer prognosis than luminal
A cancers.16 Loss of PGR is a mechanism by which ER+ tumours
may evade the antagonistic effect of PR signalling on ER-mediated
oncogenesis. In support of this, loss of PGR in ER+ cancers is
associated with poor prognosis.12 In ER+PR+ tumours, lack of
adequate PR activation could also feasibly be a cause of
unrestrained ER activity.
The ratio of PR-A to PR-B has been investigated by immunoblot

analysis and varies between breast cancers.17–20 Patients with PR+
tumours that have a lower proportion of PR-B have a worse
prognosis and are more likely to relapse on tamoxifen,18 while
tumours with a higher proportion of PR-A responded to the
antiprogesterone mifepristone in ex vivo models.19 Patients whose
tumours expressed a gene signature associated with a high PR-A
to PR-B ratio also have a poorer survival outcome.21 The two
isoforms differentially reprogramme ER-binding: PR-B predomi-
nantly acts to redistribute ER genomic recruitment while PR-A
predominantly inhibits ER chromatin binding.21 In T47D cells
engineered to express a single isoform, only PR-B decreased
oestrogen-induced invasion.21 These findings suggest PR-
mediated reprogramming of ER is dependent on PR isoform-
specific expression.
Oestrogen is present at sufficient levels in post-menopausal

women to promote ER+ breast cancer and these patients benefit
from treatment with aromatase inhibitors.7 The majority of
oestrogen production in postmenopausal women occurs in
peripheral tissues that express aromatase, including the breast.22

Since circulating progesterone is present at very low levels in
postmenopausal women,23 exogenous treatment with a PR
agonist may be a therapeutic strategy to benefit patients with
ER+ breast cancer by exploiting cross-talk between ER and PR.24 In
advanced ER+ breast cancer, trials of progestins such as
megesterol acetate or medroxyprogesterone acetate have con-
sistently shown significant clinical benefit, including in women
who had previously relapsed on either an AI25 or tamoxifen.26,27

Clinical trials are underway to test efficacy of progestogens in the
neoadjuvant setting.28 Although the abovementioned studies
propose that induction of ER:PR-B interaction would be ther-
apeutically beneficial, such interactions have not yet been shown
to occur in clinical specimens. The aim of our study was to validate
a proximity ligation assay (PLA) to detect an interaction between
ER and PR-B (ER:PR-B) in formalin-fixed, paraffin embedded (FFPE)
tissues and investigate whether this interaction was predictive of
relapse in a cohort of women with ER+ breast cancer treated with
adjuvant endocrine therapy.

METHODS
Cell culture
The T47D breast cancer cell line was acquired from the ATCC and
cultured in DMEM supplemented with 10% FBS. The cells were
regularly tested for mycoplasma infection. To stimulate ER and PR
interactions, the cells were first cultured in phenol red-free DMEM

supplemented with charcoal stripped FBS (Gibco, no. 12676011)
for 48 h, then the media was supplemented with vehicle (ethanol),
oestradiol (E2) (Sigma, no. E2758), progesterone (Sigma, no. P6149)
or the combination of E2 and progesterone both at a final
concentration of 10 nM for 24 h. Cells were mechanically lifted,
fixed in 10% neutral buffer formalin for 24 h then resuspended in
2% molten agarose dissolved in 10% formalin. The cells and
agarose suspension were centrifuged to form a pellet. Cell pellets
were processed in tissue cassettes at Mater Pathology as per
clinical specimens.

Patient-derived tumour explants (PDEs)
Tumour samples were obtained following informed consent from
women undergoing surgery for breast cancer at the Burnside War
Memorial Hospital, Adelaide. This study was approved by the
University of Adelaide Human Research Ethics Committee
(approval numbers: H-065-2005; H-169-2011). Excised tissue
samples were cultured ex vivo as previously described.12,29 Briefly,
PDEs were cultured on gelatine sponges for 36 h then treated with
the following conditions: vehicle (ethanol), E2 (10 nM), a synthetic
progestin R5020 (10 nM) or the combination of E2 and R5020
(both at 10 nM) with treatment for 48 h. Explants were fixed in
10% neutral buffered formalin overnight and processed as per
clinical specimens.

Proximity-ligation assays
The proximity-ligation assay (PLA) can be used to detect proteins,
interactions and modifications with high sensitivity and specifi-
city.30 PLA requires protein recognition by pairs of antibody
conjugates and improves specificity of protein detection over
immunohistochemical assays.31 FFPE tissues were sectioned at 6
µM, deparaffinised and antigen retrieved in citrate buffer at pH 6
using a Decloaking Chamber (Biocare Medical). Sections were
blocked, and primary antibodies were diluted in antibody diluent
(Roche, no. 251-018) and incubated overnight at 4 °C. To detect ER
and PR-B interactions, antibodies from two different species were
used; monoclonal rabbit anti-ER (Thermo Scientific, clone SP1) and
monoclonal mouse anti-PR (Sigma, clone 3E11 – raised against an
immunogen specific to the amino-terminus of the PR-B isoform),
both used at 1:100 dilution. For expression of PR-B, the same
mouse anti-PR-B was incubated with rabbit anti-PR (Ventana,
clone 1E2, detecting both PR A and B isoforms32). This was
followed by incubation with the PLA-probes Duolink in Situ PLA
Probe Anti-Mouse PLUS (Sigma, no. DUO92001-100RXN) and Anti-
Rabbit MINUS (Sigma, no. DUO92005-100RXN) for 60min at 37 °C
in a pre-heated humidity chamber. Ligation took place for 30 min
and amplification for 120min at 37 °C using Duolink in Situ
Detection reagents brightfield (Sigma, no. DUO92012-100RXN). To
detect the rolling circle amplification product, horse radish
peroxidase-conjugated probe was incubated for 60 min at room
temperature and substrate solution was applied for 10 min also at
room temperature. Slides were counterstained with haematoxylin.
Staining was independently scored by two breast histopatholo-
gists (CS, CL) by counting the number of signals per nucleus in 20
cells in the areas of tumour with greatest numbers of signals, a
similar method to that used to score HER2 detected by in situ
hybridisation assays. Scores were averaged to determine a final
score. The interactions detected by this assay are referred to as
“ER:PR-B” and the signals detected by the PR-B PLA are referred to
as “PR-B”.

Immunohistochemistry
ER and PR immunohistochemistry was performed with anti-ER
(Ventana, clone SP1) and anti-PR (Ventana, clone 1E2) using the
Ventana BenchMark ULTRA automated slide stainer (Roche). The
Ventana anti-PR antibody clone 1E2 used widely by diagnostic
pathology laboratories recognises both the PR A and B isoforms.32

ER and PR immunohistochemistry was scored by two breast
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histopathologists (CS, CL) using the ‘Allred score’ on a scale of
0–8.33 In brief, the proportion of positive cells was evaluated as
0= no positive cells, 1= 0– <1% positive cells, 2= 1– <10%
positive cells, 3= 10– <33% positive cells, 4= 33– <66% positive
cells and 5= >66% positive cells. Additionally, the average
intensity of staining was scored as 0= negative, 1=weak,
2=moderate or 3= strong. The intensity and proportion scores
were added to obtain the ‘Allred score’. A cut-off of >2 was
considered positive (weak positive staining in >1% of tumour cell
nuclei) which is the cut-off used clinically.34

Study population
A cohort comprising a consecutive series of 229 patients who had
surgery with curative intent for ER+, human epidermal growth
factor receptor 2-negative (HER2-negative) node-positive breast
cancer (supplementary material Table S1) was analysed. All
patients had lymph node metastatic deposits of at least 2.0 mm
in size resected with curative intent (at least N1, all patients were
stage II and III35). Patients had their tumours resected at the Mater
Hospital Brisbane between January 2005 and December 2014. No
patients had endocrine therapy prior to surgery. HER2 negativity
was defined by negative immunohistochemistry and lacking
amplification by in situ hybridisation of the ERBB2 gene.
Recommendations for adjuvant treatment were made at the
breast multidisciplinary meeting according to international guide-
lines and treatment decisions were made by patients in
conjunction with their treating specialists. The median age of
patients was 54 years at resection (range 27–88 years) and 71.2%
were postmenopausal. 86.0% of patients had adjuvant chemother-
apy, 81.7% adjuvant radiation and 94.8% adjuvant endocrine
therapy. Of those that had endocrine therapy, 69.6% were treated
with an aromatase inhibitor and 29.0% with tamoxifen. The
median follow-up time was 5.1 years (range 0.9–11.3 years).
Relapse was defined as either clinically or radiologically detected
locoregional or distant metastatic disease. Relapse occurred in 48
patients (21%) and the mean estimated relapse-free survival time
was 8.8 years (SD 3.7 years). All patients were recommended
adjuvant endocrine therapy post-surgery and patients were
considered not to have taken adjuvant endocrine therapy if they
took a total of <2 months treatment. The use of clinical
information and tumour blocks was approved by the Mater
Health Services Human Research Ethics Committee (approval
number: HREC/15/MHS/123). Cores of the primary tumour from
each patient were assembled into tissue microarrays (four cores
per patient, each measuring 1.0 mm in diameter)36 using a semi-
automated arrayer (Beecher Instruments). Four 1.0 mm cores have
previously demonstrated spatial heterogeneity for ER in only 2%
of cases and PR in 7% of cases.37 The study was designed to meet
the REMARK guidelines for reporting tumour marker prognostic
studies.38

Statistical design and analysis
Statistical analysis was performed using SPSS V.22.0 (IBM) and
GraphPad Prism V.7.03 (GraphPad Software, Inc). Correlations
between ER:PR-B interactions, PR-B expression and clinical and
pathological factors were determined using the 2-tailed Spear-
man’s rank correlation coefficient (r) as ER:PR-B interactions were
not normally distributed. The Mann–Whitney U test was used to
compare test whether number of ER:PR-B interactions differed
between PR− and PR+ groups. Receiver operating characteristic
(ROC) curves were used to determine the optimum cut-off of
signals per cell with respect to relapse. Relapse-free survival
analyses were carried out using Kaplan–Meier curves and
significance determined by log-rank test. Univariate and multi-
variate Cox regression analyses were used to determine significant
dependent and independent variables. Factors significant in the
univariate analysis were included in the multivariate analysis.
Associations for 2 × 2 tables were carried out using a Fisher’s exact

test, due to small numbers in some subgroups. The 3 × 2 table for
association of tumour histologic type was tested for significance
using a Fisher’s exact test. All other 3 × 2 tables and 4 × 2 tables
were tested for significance using the Cochran-Armitage test for
trend, due to the variables being ordinal.

RESULTS
Visualisation of ER and PR interactions in FFPE tissue
We applied an ER:PR-B proximity ligation assay (PLA) to three
ER+, PR+ PDEs treated with vehicle, E2, the synthetic progestin
R5020 or the combination of E2 and R5020. An interaction
between ER and PR-B was observed in all three of the untreated
(baseline) PDEs to a varying degree (Fig. 1a, b). In treated explant
tissues, ER:PR-B interactions were only detected in the presence
of both hormones (E2+ R5020) (Fig. 1a, b). There was no
detectable difference in levels of ER and PR among explants
by immunohistochemistry in the four treatment groups for any
case. In T47D cells, ER and PR have been previously shown to
interact in the presence of E2 and progestogen using co-
immunoprecipitation technologies.10–12 To show this in situ,
T47D cells were treated for 24 h with vehicle, E2, progesterone or
the combination of E2 and progesterone under steroid-depleted
conditions. As observed in the treated PDEs, ER:PR-B interactions
were only detected in FFPE cell pellets of T47D cells treated with
the combination of E2 and progesterone (Fig. 1c). Again, there
was no detectable change in ER and PR by immunohistochem-
istry among treatments. Collectively these data show that ER:PR-B
interactions only occur in PDEs when both receptors are acutely
ligand-activated.

Association between ER:PR-B interactions, PR-B expression by PLA
and ER and PR immunohistochemistry in breast cancers
The ER:PR-B PLA was applied to 229 primary tumours arranged in
quadruplicate on a TMA and scored by counting the number of
signals per tumour cell nucleus. The vast majority of interactions
were intranuclear and very occasional cases demonstrated
cytoplasmic interactions. All cases had detectable ER by immuno-
histochemistry at a clinically relevant level (>1% positive tumour
nuclei).34 There was a significant positive correlation between ER:
PR-B interactions and PR expression (p= 0.003) (Table 1). Similarly,
ER:PR-B interactions and ER expression were positively correlated
(p= 0.001) (Table 1). In 44 tumours that were negative for PR by
immunohistochemistry (Allred score 0–2; representing weak
positive staining in less than 1% of tumour cells), the median
number of ER:PR-B interactions was 2.28 (inter-quartile range
1.8–10.3), significantly lower than the number of interactions in
cases with a PR Allred score of 3 or more (median 6.45 signals per
cell, inter-quartile range 0.26–7.99, p= 0.001) (Fig. 2b). However,
the number of ER:PR-B interactions detected was not absolutely
dependent on relative expression of PR by IHC; many cases with
high levels of PR expression showed very few detectable ER:PR-B
interactions, and conversely there were cases with significant
numbers of ER:PR-B interactions in the absence of detectable PR
expression by IHC (Fig. 2a).
We postulated that detection of ER:PR-B interactions in the

absence of PR immunostaining was due to the increased
sensitivity of the PLA over the immunohistochemical assay for
PR. To investigate this, we developed a PLA to determine specific
expression of the PR-B isoform (Fig. 2a). PR-B expression was
highly correlated with PR (A/B) expression by IHC (r= 0.807; p= <
0.001) (Fig. 2c). There was a significant correlation between PR-B
expression and ER:PR-B interactions (r= 0.352; p= < 0.001)
(Fig. 2d). In the 44 patients that were negative for PR by IHC,
there was significant positive correlation between ER:PR-B
interactions and PR-B expression by PLA (r= 0.608; p= < 0.001)
(Fig. 2e), demonstrating that detection of PR-B by PLA is more
sensitive than detecting PR by IHC.
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Correlations between ER:PR-B interactions and clinical and
pathological variables
There was a positive correlation between ER:PR-B interactions and
age (p= 0.001), with a higher number of interactions in post-
menopausal women (Table 1). Higher ER:PR-B interactions were
correlated with lower tumour grade (p= 0.030) and lower mitotic
score (p= 0.003). There was no significant correlation with T-stage,
N-stage, the presence of multiple tumours, or type of surgical or
adjuvant treatment.

Association of ER and PR immunohistochemistry and ER:PR-B
interactions with relapse-free survival
In the cohort as a whole, absent PR immunohistochemistry was
associated with poorer relapse free survival (log-rank p= 0.021)
(Fig. 3a). ROC curve analysis was used to determine an optimal
cut-off for the number of ER:PR-B interactions per cell in patients
who had received adjuvant tamoxifen or an AI using relapse
status as the dependent variable (supplementary material,
Figure S1). In AI-treated patients, the area under the curve was
0.701 (p= 0.0013) with a cut-off of 5 signals per cell. The
sensitivity for detecting relapse was 76.9% and specificity was
63.4%. Similar ROC curve analysis for ER expression (Allred
Score) showed no significant association with relapse (supple-
mentary material, Figure S2). When the whole cohort of patients
was dichotomised into low (≤5) and high ER:PR-B interactions,
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Fig. 1 Development of a proximity ligation assay to detect interactions between the oestrogen receptor-α and progesterone receptor-B (ER:
PR-B) in patient derived breast cancer explants and T47D cells. a Breast cancer explants were treated with either Vehicle, oestradiol (E2), R5020
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Table 1. Correlations between ER:PR-B interactions (signals/cell) and
clinicopathological variables

Variable Spearman’s r p N

Age 0.229 0.001 227

Post-menopausal 0.133 0.045 227

T-stage 0.056 0.405 227

N-stage –0.077 0.247 227

Grade –0.144 0.030 227

Mitotic score –0.198 0.003 227

Multiple tumours –0.039 0.555 227

Mastectomy –0.056 0.402 227

Axillary clearance −0.020 0.769 227

Adjuvant chemotherapy −0.058 0.382 226

Adjuvant radiation 0.019 0.778 224

Adjuvant endocrine therapy −0.044 0.511 226

ER expression (allred score) 0.567 0.001 227

PR expression (allred score) 0.199 0.003 227

PR-B expression (PLA signals) 0.352 0.001 227

The p value quoted is the result of a 2-tailed Spearman’s correlation. N is
the number of patients with pairwise non-missing values
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those with low ER:PR-B interactions had significantly poorer
relapse free survival (log-rank p= 0.003) (Fig. 3a).

Univariate and multivariate Cox regression analyses of variables
affecting relapse
In an analysis of the whole cohort of patients, higher pathological
T-stage and N-stage were significantly associated with relapse in
univariate analysis (Table 2). Patients that underwent chemother-
apy and took prescribed endocrine therapy had a significantly
reduced risk of relapse. Absent PR expression was significantly
associated with relapse (HR 2.028, CI 1.100–3.731, p= 0.024) and
low levels of ER:PR-B interactions had a higher risk of relapse (HR
2.463, CI 1.333–4.545, p= 0.004). There was no significant
prognostic effect of age, grade, mitotic score, histologic type,
multiple tumours, type of surgery, adjuvant radiotherapy or class
of endocrine agent taken.
ROC analysis was used to determine an optimal cut-off for the

number of PR-B signals per cell in patients who had received
adjuvant tamoxifen or an AI using relapse status as the dependent
variable (supplementary material, Figure S3). Using dichotomised
expression with a cut-off of 13.5 signals per cell, sensitivity for
detecting relapse was 57.1% and specificity was 92.9% for

tamoxifen treated patients and 43.1% and 84.6% respectively for
AI-treated patients. Low PR-B expression was significantly
associated with relapse (HR 3.636, CI 1.543–8.621, p= 0.003).
In a multivariate model that included dichomised levels of ER:

PR-B interactions (low ≤5; high >5) and other standard clinical
factors significant in univariate analysis, only low levels of ER:PR-B
interaction (HR 2.475, CI 1.297–4.717, p= 0.006), higher T-stage
(HR 3.031, CI 1.063–8.649, p= 0.038) and endocrine therapy (HR
0.335, CI 0.121–0.926, p= 0.035) were independent prognostic
factors associated with relapse (second column, Table 2). Absent
PR expression, N-stage and having adjuvant chemotherapy were
not significant independent prognostic factors for relapse. In a
multivariate model that included both ER:PR-B interactions and
PR-B expression, both ER:PR-B interactions and PR-B expression
were independent prognostic factors associated with relapse
(third column, Table 2).

Prognostic effect of ER:PR-B interactions and PR-B expression
stratified by type of adjuvant endocrine agent
In an exploratory analysis of ER:PR-B interactions stratified by type
of endocrine agent, a low frequency of ER:PR-B interaction was
associated with relapse in patients taking AIs as adjuvant therapy
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(log-rank p= 0.0002), but not with those taking tamoxifen (log-
rank p= 0.939) (Fig. 3b). This equated to a hazard ratio of 4.831 (CI
1.942–12.048, p= 0.001) for patients with low ER:PR-B interactions
taking an AI (Table 3). A test for interaction was significant (p=
0.031). Patients taking adjuvant endocrine therapy had significant
clinical and pathological differences depending on the type of
agent (supplementary material, Table S2). Patients on tamoxifen
were younger, more likely to be pre-menopausal, had lower T-
stage and a higher proportion had tumours with the histology ‘no
special type’. In patients taking adjuvant tamoxifen, there was a
trend towards a greater proportion of tumours with low levels of
ER:PR-B interactions (p= 0.051).
When levels of PR-B were stratified by type of endocrine agent

taken, low PR-B expression was only significantly associated with
relapse in women taking adjuvant tamoxifen (HR 8.929, CI
1.164–66.667, p= 0.035) (Table 3). A test for interaction was not
significant (p= 0.355) There was no significant association
between PR expression stratified by type of adjuvant endocrine
agent and relapse in patients either taking an AI or tamoxifen
(supplementary material, Table S3).

DISCUSSION
Herein we report the development and application of a novel ER:
PR-B interaction assay using PLA that can be used in FFPE breast
cancer tissue sections and show that the frequency of these
interactions is able to predict response to adjuvant AI therapy. In
breast cancer cells in vitro and in treated PDEs, the interaction

between ER and PR-B was dependent on ligand-activation of both
ER and PR-B by E2 and progestogen, respectively. No interactions
were detected in the presence of a single agonist ligand. This
finding is consistent with ligand activation of both steroid
receptors being required to promote the formation of a functional
ER:PR-B complex.12,13 In multivariate analysis, we found that PR
expression determined by an accredited diagnostic laboratory was
not an independent predictive factor for relapse following
adjuvant AI therapy, consistent with previous studies.6–8 However,
low levels of ER:PR-B interactions were predictive of relapse in the
AI setting. These findings suggest that ER-PR interactions are a
major determinant of the prognostic value of PR expression.
PR-B expression determined by PLA strongly correlated with the

levels of total PR by immunohistochemistry, consistent with
previous reports.18,20 In the 44 cases negative for PR by
immunohistochemistry, there was a correlation between PR-B
expression determined by PLA and ER:PR-B interactions suggest-
ing the presence of low levels of PR-B in the tumours was
sufficient to interact with ER. Lower levels of PR-B were associated
with a significantly increased risk of relapse, which in sub-group
analysis was limited to patients on adjuvant tamoxifen. This is
consistent with previous reports showing lower PR-A to PR-B ratios
were associated with poorer survival on tamoxifen.18,39 In the
cohort analysed as a whole, multivariate analysis demonstrated
PR-B expression and ER:PR-B interactions were both independent
predictors of relapse, and in a sub-group analysis they differen-
tially predict risk dependent on type of adjuvant therapy. ER:PR-B
interactions were not associated with relapse in tamoxifen treated

PR expression
100

a

80

60
R

el
ap

se
 fr

ee
 s

ur
vi

va
l (

%
)

40

20

0
0

Number at risk

PR+ 183 173 115 47 18 3 0

2

p = 0.021

4 6
Years

8 10

PR–

PR+

12

ER:PR-B interactions
100

80

60

R
el

ap
se

 fr
ee

 s
ur

vi
va

l (
%

)

40

20

0

Number at risk

118 113 75 31 12 3 0

p = 0.003

Low
ER:PR-B

High
ER:PR-B

PR– 45 38 30 9 3 0 0 109 96 26 9 3 070
Low
ER-PR

High
ER-PR

0 2 4 6
Years

8 10 12

Aromatase inhibitors

p = 0.0002

Low
ER:PR-B

High
ER:PR-B

Number at risk

84 80 55 23 10 2 0

109 96 26 9 3 070
Low
ER-PR

High
ER-PR

100

80

60

R
el

ap
se

 fr
ee

 s
ur

vi
va

l (
%

)
40

20

0

Years

0 2 4 6 8 10 12

b Tamoxifen

p = 0.939

Low
ER:PR-B

High
ER:PR-B

Number at risk

26 25 13 4 1 0 0

37 35 9 5 0 025
Low
ER-PR

High
ER-PR

100

80

60

R
el

ap
se

 fr
ee

 s
ur

vi
va

l (
%

)

40

20

0

Years

0 2 4 6 8 10 12

Fig. 3 Kaplan–Meier curves by PR expression and ER:PR-B interactions (a) and ER:PR-B interactions stratified by type of adjuvant endocrine
agent taken (b). P values quoted are the result of the log-rank test
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patients. This may be due to the small numbers of tamoxifen-
treated patients in this cohort or the mechanism of action of
tamoxifen. Tamoxifen directly binds ER and promotes interactions
with corepressors,40 possibly disrupting interactions with PR-B.
A higher frequency of ER:PR-B interactions was detected in

post-menopausal women. Whilst circulating levels of oestrogen
and progesterone both dramatically decline with the onset of
menopause,24 peripheral conversion of circulating androgens to
oestrogen increases in many tissues, including the breast.41,42

Indeed, tissue levels of oestrogen in the post-menopausal breast
are sufficient to promote the development of ER+ breast cancer,
which forms the basis of clinical benefit from AIs.43 However,
peripheral production of progestogens within post-menopausal
tissues is not well characterised. Progesterone is detectable in the
breast tissue of post-menopausal women with breast cancer using
highly sensitive mass-spectrometry methodology and has been
recently reported to represent 2.1% of total steroids extracted,
about twice the percentage represented by oestrogen (1%).41

Since there is no known mechanism of local production of
progesterone in breast tissue, the major difference in ER:PR-B
interactions between postmenopausal tumours in our study is
most likely due to differences in the circulating levels of
progesterone and the level of progesterone metabolising
enzymes expressed by the tumour or cells in the microenviron-
ment. In both normal and malignant breast tissues, progesterone
can be metabolised into 5α-pregnanes and 4-pregnenes by 5α-
reductase and 3α-hydroxysteroidoxidoreductase enzymes.44 Inter-
estingly, we observed some tumours with detectable ER by
immunohistochemistry and PR-B by PLA that showed no evidence
of interaction by PLA. This finding likely reflects the degree of
interaction between ER and PR-B being more dependent on the
availability of agonist ligands than the receptor levels in the
individual tumours. Ligand-activated PR-B promotes interaction

with ER to reprogram the ER-associated cistrome and induce a
transcriptome associated with good clinical outcome12; herein we
demonstrate that this interaction exists in clinical tissues and is
associated with increased relapse-free survival. These findings
support the concept currently being tested in clinical trials that
promoting ER:PR-B interactions by therapeutic administration of a
progestogen may be an effective adjuvant treatment strategy for
ER+ breast cancer.28,45,46 Indeed, assessment of ER:PR-B interac-
tions using our new assay may be a means of monitoring
treatment response in those trials.
Low levels of ER:PR-B interactions were observed in tumours

with more aggressive features (higher tumour grade and
increased numbers of mitotic figures). This is consistent with ER:
PR-B interactions being associated with PR-B reprogramming of ER
chromatin binding to promote a transcriptional output associated
with tumour-suppressive processes including differentiation and
cell death.12–14 One variable affecting ER:PR-B interactions in
breast tumours is that the PR gene is often lost in ER+ tumours
due to deletion12,47–49 or its expression is reduced due to
hypermethylation of the PGR gene locus.50 In particular, PR
expression typically is lost or reduced in more aggressive luminal B
breast cancers,12,13 which like all ER+ cancers are more common
in postmenopausal women.16 In this situation, PR-B reprograming
of ER signalling would not occur, leading to maintenance of a
growth stimulatory state and a poor disease outcome. In our study
we do not know the status of the PR gene in tumours that did not
have detectable PR by immunohistochemistry. However, we found
that some of these tumours had detectable ER:PR-B interactions
and PR-B expression by PLA, indicating an intact PR gene. In
current trials involving progestogen therapy, tumours that lack PR
by IHC would be deemed ineligible for treatment. Use of our PR-B
and ER:PR-B PLA could represent a more sensitive assay to
determine eligibility criteria for such trials.

Table 2. Univariate and multivariate Cox regression analysis of clinicopathological factors influencing relapse-free survival in ER+, HER2−, node
positive breast cancer patients

Variable Univariate analysis Multivariate analysis including
ER:PR-B interactions

Multivariate analysis including
ER:PR-B interactions and PR-B
expression

HR 95% CI p Value HR 95% CI p Value HR 95% CI p Value

Age 1.002 0.979–1.026 0.835

T-stage pT2/3/4 vs pT1 3.383 1.214–9.427 0.020 3.031 1.063–8.649 0.038 3.209 1.128–9.130 0.029

N-stage pN2/3 vs pN1 1.999 1.122–3.561 0.019 1.623 0.890–2.961 0.114 1.536 0.842–2.802 0.162

Grade 2 vs 1 3.080 0.735–12.897 0.124

Grade 3 vs 1 1.804 0.862–3.774 0.117

Mitotic score 2 vs 1 1.139 0.574–2.261 0.710

Mitotic score 3 vs 1 1.175 0.801–1.724 0.408

Histology Lobular vs NST 1.448 0.678–3.091 0.339

Histology Other vs NST 1.433 0.722–2.841 0.304

Tumour number ≥2 vs 1 1.602 0.735–3.495 0.236

Mastectomy vs conservation 0.792 0.421–1.488 0.468

Axillary clearance vs sentinel node only 2.610 0.627–10.853 0.187

Adjuvant chemotherapy vs not 0.376 0.171–0.827 0.015 0.624 0.280–1.391 0.249 0.530 0.236–1.187 0.123

Adjuvant radiation vs not 0.740 0.3501.564 0.431

Adjuvant endocrine therapy vs not 0.305 0.129–0.720 0.007 0.299 0.116–0.767 0.012 0.374 0.146–0.954 0.040

Aromatase inhibitor vs tamoxifen 0.803 0.3861.669 0.557

PR expression Negative vs positive 2.028 1.100–3.731 0.024 1.543 0.789–3.021 0.205 1.220 0.619–2.404 0.566

PR-B expression Low vs high 3.636 1.543–8.621 0.003 2.841 1.134–7.143 0.026

ER:PR-B interactions low vs high 2.463 1.333–4.545 0.004 2.475 1.297–4.717 0.006 2.101 1.092–4.049 0.026

Clinical factors significant in the univariate analysis are included in the multivariate model. Bold indicates significant p values
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Patients with PR-negative tumours consistently have a poorer
prognosis than those with PR+ tumours,51 regardless of adjuvant
endocrine agent taken.6–8 We also found that patients with
tumours that were PR-negative by immunohistochemistry had a
poorer prognosis, but the level of ER:PR-B interactions was more
prognostic for relapse. ER levels were not associated with relapse.
The outcomes of patients in our cohort, which only included
node-positive patients with ER+ breast cancer, are highly
dependent on the efficacy of systemic adjuvant treatments,
including chemotherapy and endocrine therapy. Non-compliance
with endocrine therapy is well-recognised as being associated
with adverse disease outcomes.52 Effective adjuvant endocrine
therapy is clearly critical in preventing relapse in node-positive ER
+ breast cancer.
When stratified by type of endocrine agent taken, the

prognostic effect of ER:PR-B interactions was limited to patients
on AIs, predominantly in post-menopausal women. The low
numbers of patients in the tamoxifen treated group, most of
whom were pre-menopausal, may be partially responsible for
the lack of prognostic significance of ER:PR-B interactions. A
significant test for interaction indicated that ER:PR-B interactions
may be predictive of AI efficacy. These findings need to be
replicated in prospective randomised controlled trials to
determine whether ER:PR-B interactions or PR-B expression by
PLA may be used to select for adjuvant endocrine treatment.
There are several large phase III trials of cyclin-dependent kinase
(CDK) 4/6 inhibitors in combination with endocrine therapy for
ER-positive (ER+) early stage breast cancer.53–55 ER:PR-B inter-
actions may also serve as predictors of benefit to CDK4/6
inhibitors by identifying patients likely to relapse on standard
adjuvant endocrine therapy.
In conclusion, while there is abundant clinical data showing that

PR agonists are beneficial in postmenopausal patients with
advanced ER+ breast cancer,56–59 their use as an adjuvant therapy
is not established and trials are in progress.28 Several recent pre-
clinical studies provide compelling evidence that the key to
effective progestogen therapy is the ability of activated PR
(specifically PR-B) to reprogram the genomic activity of activated
ER. Herein, we describePLA assays which can detect the
interaction of ER and PR-B and expression of PR-B in FFPE tissues
that could feasibly be automated to facilitate use in diagnostic
histopathology laboratories. We further show that assessment of

these interactions could have clinical value and propose that
measuring the level of ER:PR-B interactions may predict benefit
from progestogen treatment and aid patient selection in future
randomised clinical trials of progestogens. Quantifying PR-B levels
by PLA appears to be a refinement on PR IHC, which may explain
why it is more prognostic for relapse in patients on adjuvant
tamoxifen. Finally, we find that ER:PR-B interactions are associated
with relapse in patients taking adjuvant AIs, suggesting that ER:PR-
B interactions may have utility in predicting efficacy of AIs as well
as response to progestogen therapy.
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