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Loss of GAS5 tumour suppressor lncRNA: an independent
molecular cancer biomarker for short-term relapse and
progression in bladder cancer patients
Margaritis Avgeris1, Anastasia Tsilimantou1, Panagiotis K. Levis2, Theodoros Tokas2, Diamantis C. Sideris1, Konstantinos Stravodimos2,
Alexandros Ardavanis3 and Andreas Scorilas 1

BACKGROUND: Bladder cancer (BlCa) heterogeneity and the lack of personalised prognosis lead to patients’ highly variable
treatment outcomes. Here, we have analysed the utility of the GAS5 tumour-suppressor lncRNA in improving BlCa prognosis.
METHODS: GAS5 was quantified in a screening cohort of 176 patients. Hedegaard et al. (2016) (n= 476) and TCGA provisional (n=
413) were used as validation cohorts. Survival analysis was performed using recurrence and progression for NMIBC, or death for
MIBC. Internal validation was performed by bootstrap analysis, and decision curve analysis was used to evaluate the clinical benefit
on disease prognosis.
RESULTS: GAS5 levels were significantly downregulated in BlCa and associated with invasive high-grade tumours, and high EORTC-
risk NMIBC patients. GAS5 loss was strongly and independently correlated with higher risk for NMIBC early relapse (HR= 2.680, p=
0.011) and progression (HR= 6.362, p= 0.035). Hedegaard et al. and TCGA validation cohorts’ analysis clearly confirmed the
association of GAS5 loss with NMIBC worse prognosis. Finally, multivariate models incorporating GAS5 with disease established
markers resulted in higher clinical benefit for NMIBC prognosis.
CONCLUSIONS: GAS5 loss is associated with adverse outcome of NMIBC and results in improved positive prediction of NMIBC
patients at higher risk for short-term relapse and progression, supporting personalised prognosis and treatment decisions.
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BACKGROUND
Bladder cancer (BlCa) represents the second most common
urologic cancer and the fourth most commonly diagnosed
malignancy among the male population in developed countries,1,2

with the majority of the tumours (90%) originating in the bladder
urothelium. Urothelial bladder carcinoma is a disease spectrum
classified into two main clinical groups, depending on the invasion
into the detrusor muscle. Approximately 75% of urothelial bladder
carcinomas represent non-muscle-invasive bladder cancer
(NMIBC) (Ta, Tis, T1), not invading the detrusor muscle, while the
other 25% accounts for muscle-invasive bladder cancer (MIBC)
(T2–T4).3

Disease-specific mortality has been significantly reduced nowa-
days, due to smoking reduction and to outstanding improvements
in disease diagnosis and management—based on evolution of
imaging, new diagnostic modalities and advanced surgical
techniques.1,4 Despite however the administration of active
treatment, BlCa frequently recurs and become life threatening.5

NMIBC, although not associated with mortality per se, is
characterised by strong recurrence potential and subsequently
by progression to muscle-invasive tumours, which are metastatic
and lethal. In the clinical setting, disease prognosis relies on

tumour stage and grade, as well as on disease multifocality,
tumour size and concomitant carcinoma in situ (CIS).6,7 In this
regard, EORTC-risk-group stratification represents the clinically
established and used predictor of NMIBC outcome.8,9 However,
tumours’ heterogeneity in the cellular and molecular levels is
responsible for the highly variable clinical outcome of the same
risk-group patients, making disease prognosis a rather demanding
task. Consequently, the elucidation of disease molecular hallmarks
could effectively improve patients’ prognostication and support
precision medicine.
The growth arrest-specific 5 (GAS5) long non-coding RNA

(lncRNA; ~0.7 kb), originally identified by Schneider et al. through
cDNA cloning of genes overexpressed in growth-arrested cells, is
encoded by the intergenic GAS5 gene at the region 1q25.1.10 GAS5
is comprised of 12 exons, bearing a 5′-terminal oligopyrimidine
(5′-TOP) sequence in exon 1, and beside several mature GAS5
variants, GAS5 encodes 10 C/D box snoRNAs (SNORD44, SNORD47,
SNORD74–SNORD81) within its 11 introns.11 Although a short
open reading frame, able to encode for a 50 amino acid
polypeptide, has been identified within gene exons, GAS5
sequence is poorly conserved and does not encode any functional
protein.11,12 GAS5 transcription is regulated by the interplay of
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mTOR and nonsense-mediated decay pathways, resulting in the
increased GAS5 levels in growth-arrested cells.13–15

The well-characterised tumour suppressor of GAS5 has been
documented in a wide variety of human malignancies and loss of
GAS5 expression has been implicated both in tumorigenesis and
disease progression,16,17 as well as in patients prognosis.18,19 A
dual complementary function in arresting cell growth by inhibition
of cell proliferation and stimulation of apoptosis has been
attributed to GAS5, highlighting an active role in growth arrest
rather than a passive association. Indeed, GAS5 silencing is
associated with increased proportion of cells in the S/G2 phase as
well as with attenuated apoptosis upon endogenous stimuli or
chemotherapeutic agents.20–22 The main molecular mechanisms
of GAS5 tumour-suppressor activity are riborepression of gluco-
corticoid receptor (GR) transcriptional activity and “sponging” of
oncogenic miRNAs.16,17,23

Despite the crucial tumour-suppressive role of GAS5 lncRNA in
the molecular background of BlCa establishment and progres-
sion,24–27 there is no complete evaluation of its clinical utility for
the patients. In the present study, for the first time, we have
evaluated the clinical value of GAS5 tumour-suppressor lncRNA in
improving patients’ prognosis and prediction of disease course.

PATIENTS AND METHODS
Screening cohort
The biological samples analysed in the study consisted of 363
fresh-frozen bladder tissue specimens. Bladder tumours obtained
from 176 BlCa patients who underwent transurethral resection of
bladder tumours (TURBT) for primary NMIBC or radical cystectomy
(RC) for primary MIBC at the “Laiko” General Hospital, Athens,
Greece, representing our screening patients’ cohort. Adjacent
normal bladder tissues were also obtained from 144 patients of
the screening cohort, following pathologist’s evaluation for the
absence of dysplasia or CIS. Prior to surgery none of the patients
received any form of neoadjuvant treatment. Finally, healthy
bladder tissue samples were available from 43 benign prostate
hyperplasia patients who underwent transvesical suprapubic
prostatectomy. Tissue specimens were incubated in RNAlater
Solution (Ambion, Carlsbad, CA, USA) according to the manufac-
turer’s instructions and stored −80 °C until analysis.
NMIBC patients received adjuvant therapy according to

European Association of Urology (EAU) guidelines, while MIBC
patients did not receive any form of adjuvant treatment. NMIBC
patients’ risk-group stratification was performed according to the
European Organization for Research and Treatment of Cancer
(EORTC) guidelines. NMIBC patients were followed-up by cysto-
scopy and urinary cytology (for high-grade (HG) tumours)
according to EAU guidelines. MIBC patients’ follow-up included
renal ultrasound at 3 months and thoracoabdominal computed
tomography (CT)/magnetic resonance imaging (MRI) every
6 months, while additional kidney ultrasound and thoracoabdom-
inal CT/MRI, as well as bone scan or brain MRI was only performed
following symptoms. Disease recurrence (the same or lower stage)
and progression (recurrence of higher/invasive stage) of NMIBC
patients were confirmed by histology findings of a TURBT that
performed after a positive follow-up cystoscopy, while in MIBC
patients’ disease recurrence was detected by a follow-up CT.
The present study was conducted according to ethical

standards of the 1975 Declaration of Helsinki, as revised in 2008,
and approved by the ethics committee of “Laiko” General Hospital.
Informed consent was obtained by all the participated patients.

Validation cohorts
The cohorts of Hedegaard et al. (n= 476)28 and TCGA (The Cancer
Genome Atlas, provisional) (n= 413)29 were used as our study
validation cohorts regarding NMIBC and MIBC, respectively.
Hedegaard et al. performed paired-end whole transcriptome,

strand-specific RNA-seq (Illumina HiSeq platform) of a cohort
consisted of 460 NMIBC (Ta: 345, T1: 112, CIS: 3) and 16 MIBC
patients. TCGA (provisional) cohort (n= 413) consisted of 409
MIBC patients, and lncRNA expression profiles generated by
paired-end whole transcriptome RNA-seq (Illumina HiSeq plat-
form). Clinical and normalised expression data were downloaded
for Hedegaard et al. cohort by EMBL-EBI ArrayExpress (accession
number ArrayExpress: E-MTAB-4321; https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-4321/) and for TCGA cohort
(provisional) by cbioportal (http://www.cbioportal.org/).30

Extraction of total RNA
Following pulverisation of 40–150 mg of fresh-frozen tissue
specimen, total RNA was extracted using TRI-Reagent (Molecular
Research Center, Cincinnati, OH, USA) according to the manu-
facturer’s instructions, dissolved in RNA Storage Solution (Ambion)
and stored at −80 °C. RNA concentration and purity were
determined spectrophotometrically at 260 and 280 nm, while
agarose gel electrophoresis was performed to evaluate RNA
integrity.

First-strand cDNA synthesis
Total RNA was reverse transcribed in a 20 μl reaction containing
1 μg of total RNA template, 50 U MMLV reverse transcriptase
(Invitrogen, Carlsbad, CA, USA), 40 U recombinant ribonuclease
inhibitor (Invitrogen) and 5 μM oligo-dT primers. Reverse tran-
scription took place at 37 °C for 60 min, while enzyme inactivation
performed at 70 °C for 15 min.

Quantitative real-time PCR
A SYBR-Green fluorescent-based quantitative real-time PCR (qPCR)
assays was developed and applied to assess GAS5 expression.
Based on published sequences (NCBI Ref Seq: NR_002578.3 for
GAS5 and NM_000194.2 for HPRT1) and according to in silico
analysis, specific primers for GAS5 (F: 5′-CTTGCCTGGACCAGCT-
TAAT-3′, R: 5′-CAAGCCGACTCTCCATACCT-3′) and HPRT1 (F: 5′-
TGGAAAGGGTGTTTATTCCTCAT, R: 5′-ATGTAATCCAGCAGGTCAG-
CAA-3′) were designed and used for the amplification of a 122 bp
GAS5-specific and a 151 bp HPRT1-specific amplicon.
The 7500 Real-Time PCR System (Applied Biosystems, Carlsbad,

CA) was used for the qPCR assays. The 10 μl reaction consists of
Kapa SYBR® Fast Universal 2X qPCR MasterMix (Kapa Biosystems,
Inc., Woburn, MA), 100 nM of each specific PCR primer, and 10 ng
of cDNA template. The thermal protocol consisted of polymerase
activation step at 95 °C for 3 min, followed by 40 cycles of
denaturation at 95 °C for 15 s and finally the primer annealing and
extension step at 60 °C for 1 min. Melting curve analysis and
agarose gel electrophoresis were performed following amplifica-
tion to discriminate specific amplicons from non-specific products
or primer dimers.
The 2�ΔΔCT relative quantification (RQ) method was used to

quantify GAS5 levels. Duplicate reactions were performed for each
tested sample and target, and the average CT was calculated and
used for the quantification analysis. RT112 bladder cancer cell line
was used as a calibrator and HPRT1 as endogenous reference
control for normalisation purposes.

Statistical analysis
The IBM SPSS Statistics 20 software (IBM Corp., Armonk, New York,
USA) was used for the statistical analysis. Non-parametric tests
were applied appropriately in order to analyse GAS5 levels
differences between tumours and healthy bladder urothelium, as
well as to assess the correlation of GAS5 expression with patients’
clinicopathological features. The ability of GAS5 to discriminate
bladder tumours from normal urothelium was evaluated by the
ROC curve and logistic regression analysis.
Patients’ survival analysis performed by Kaplan–Meier survival

curves and Cox proportional regression analysis. Internal
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validation was performed by bootstrap Cox proportional regres-
sion analysis based on 1000 bootstrap samples. Optimal cut-off
values of the GAS5 expression levels in NMIBC and MIBC patients’
cohorts were determined using the X-tile algorithm. To evaluate
the clinical net benefit of the prediction models on disease
outcome following treatment, decision curve analysis was
performed according to Vickers et al.,31 using the STATA 13 soft-
ware (StataCorp LLC, College Station, TX, USA).

RESULTS
Baseline clinical and experimental data
The REMARK diagram of our study is presented in Fig. 1. Patients’
screening cohort consisted mostly of males (83.5%) with a median
age of 70 years. Concerning disease pathology, 67.6% and 32.4%
of the patients were diagnosed and treated for primary NMIBC
(TaT1) and MIBC (T2–T4), respectively. Within the T1 cohort, 34.5%
and 65.5% of the tumours were of low-grade (LG) and HG,
respectively, while the vast majority of the MIBC patients (96.5%)
displayed HG tumours. According to EORTC-risk-stratification
guidelines, 12.6%, 31.9% and 55.5% of the enrolled NMIBC
patients were classified as low, intermediate and high risk,
respectively. BlCa patients’ clinicopathological characteristics are
presented in Supplementary Table 1.
Regarding patients’ outcome following treatment, 151 patients

were successfully followed-up, whereas 25 patients were excluded
due to insufficient and unclear monitoring data. During a median
follow-up time (reverse Kaplan–Meier method) of 31 months (95%
CI: 29.16–32.84), of the 102 follow-up TaT1 patients, disease
recurrence and progression were detected in 40 (39.2%) and 15
(14.7%) patients, respectively, with 17 patients (16.7%) experiencing
recurrence at the first follow-up cystoscopy (FFC). Focusing on MIBC,
25 of the 49 follow-up patients died (51.0%). The mean disease-free
survival (DFS) and progression-free survival (PFS) of the NMIBC
patients was 30.76 (95% CI: 27.24–34.29) and 43.20 months (95% CI:
40.46–45.94), respectively, while the overall survival (OS) of the MIBC
patients was 28.11 months (95% CI: 22.91–33.30).

The expression GAS5 is significantly reduced in bladder tumours
The expression analysis (Fig. 2) revealed that GAS5 levels are
significantly downregulated (p= 0.001) in bladder tumours

compared to the matched adjacent normal specimens in 67.4%
of the screened patients (Fig. 2a). This finding was confirmed in
NMIBC patients, where decreased GAS5 expression (p= 0.002) in
tumours compared to their matched normal counterparts was
detected in approximately 69.5% of the enrolled TaT1 patients
(Supplementary Fig. 1). Reduced GAS5 levels in muscle-invasive
tumours, while not statistically significant, were also observed in
63.6% of the MIBC (T2–T4) patients (p= 0.181; Supplementary
Fig. 1). ROC curve analysis highlighted the ability of GAS5 reduced
levels to discriminate bladder tumours from the matched normal
urothelium (AUC: 0.623; 95% CI: 0.562–0.684; p < 0.001; Fig. 2b),
which was also confirmed by logistic regression analysis (OR:
0.339; 95% CI: 0.188–0.614; p < 0.001; Supplementary Table 2).

Loss of GAS5 is associated with unfavourable prognostic disease
features
The analysis of GAS5 expression regarding patients’ clinicopatho-
logical features clearly highlighted the association of GAS5 loss
with unfavourable disease prognostic markers (Fig. 2). Significantly
lower GAS5 levels (p < 0.001) are expressed in muscle-invasive
(T2–T4) and connective tissue-invasive (T1) tumours compared to
superficial Ta tumours (Fig. 2c), as well as in HG tumours related to
LG ones (p < 0.001; Fig. 2d). Analysis of the validation cohorts
confirmed the reduced expression of GAS5 in HG tumours
(Hedegaard et al., p= 0.050—PUNLMP not evaluated; Fig. 2e
and TCGA, p < 0.001; Fig. 2f), and in advanced tumour stages
(Hedegaard et al., p= 0.060; Fig. 2g). Moreover, the TCGA cohort
highlighted the loss of GAS5 levels in non-papillary tumours
compared to papillary ones (p= 0.004; Fig. 2h).
Focusing on NMIBC, significantly downregulated GAS5 levels

detected in HG compared to LG TaT1 tumours (p= 0.006; not
shown) and mainly to T1HG (p= 0.006; Fig. 3a). Moreover, the loss
of GAS5 was also correlated with higher EORTC-risk group (p=
0.012; Fig. 3b) as well as with NMIBC patients suffering disease
recurrence at FFC (p= 0.052; Fig. 3c).

Loss of GAS5 is associated with significantly higher risk for
recurrence and progression of NMIBC (TaT1) patients
The survival analysis of the screening cohort performed using
disease recurrence and disease progression as clinical endpoint
events for the DFS and PFS of the NMIBC (TaT1) patients, or

Screening cohort, n= 176 patients

363 fresh-frozen bladder tissue speciments
Bladder tumours, n= 176
Matched normal adjacent tissues, n= 144
Healthy bladder tissues, n= 43

Excluded survival analysis
17 patients

due to insufficient monitoring

NMIBC patients (TURBT-treated)
n= 119 patients

MIBC patients (RC-treated)
n= 57 patients

Excluded survival analysis
8 patients excluded

due to insufficient monitoring

Follow-up MIBC patients, n= 49
Survival analysis by:
Overall survival (OS)

Validation cohort
TCGA provisional, n= 413

Survival analysis
n= 402 patients

Follow-up NMIBC patients, n= 102
Survival analysis by:

Disease-free survival (DFS)
Progression-free survival (PFS)Validation cohort

Hedegaard et al. 2016, n= 476
survival analysis
n= 457 patients

Prognosis prediction model:
GAS5 levels
Tumor stage
Tumor grade

EORTC-risk group
Recurrence at FFC (for PFS)

Fig. 1 REMARK diagram of the study
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patients’ death for the OS of the MIBC (T2–T4) patients (Fig. 3).
Using the X-tile algorithm, the 50th percentile (median) of GAS5
levels was adopted as the optimal cut-off value for both NMIBC
and MIBC patient groups. Kaplan–Meier curves clearly

demonstrated the significantly shorter DFS (p= 0.003; Fig. 3d)
and PFS (p= 0.004; Fig. 3e) expectancy of the TaT1 patients with
decreased GAS5 levels compared to the patients overexpressing
GAS5. Unfortunately, the analysis of GAS5 tumour levels did not
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highlight a statistically significant prognostic value for the OS of
the MIBC patients (Fig. 3f).
The correlation GAS5 loss with the poor treatment outcome of

the NMIBC patients was also confirmed by Cox proportional
regression analysis (Fig. 4 and Supplementary Table 3). Univariate
analysis highlighted the significantly stronger risk for disease
recurrence (HR: 2.659; 95% CI: 1.348–5.246; p= 0.005) and
progression (HR: 6.628; 95% CI: 1.494–29.40; p= 0.013) of the
TaT1 patients with downregulated GAS5 levels. Moreover, multi-
variate Cox models adjusted for tumour stage, grade, EORTC-risk
group, patients’ gender and age demonstrated the independent
clinical predictive value of GAS5 loss for NMIBC relapse (HR: 2.680;
95% CI: 1.248–5.753; p= 0.011) and progression (HR: 6.362; 95%
CI: 1.144–35.39; p= 0.035).
The analysis of the Hedegaard et al. validation cohort clearly

confirmed the unfavourable significance of GAS5 loss for the
NMIBC disease course. Using disease progression to muscle-
invasive tumours as the clinical endpoint event for the survival
outcome of the TaT1 patients (n= 457), patients with down-
regulated GAS5 levels suffered from significantly shorter PFS, as
highlighted by Kaplan–Meier curves (p= 0.047; Fig. 3g). The
survival analysis of the MIBC patients of the TCGA cohort (n= 402)
did not highlight a statistically significant association of GAS5
levels with patients’ OS, in agreement with the survival analysis of
the MIBC patients of our screening cohort (Fig. 3h).

The evaluation of GAS5 expression improves the clinical value of
the established prognostic markers for NMIBC
The powerful and independent prognostic significance for NMIBC
prompted us to study GAS5 ability to strengthen the clinical value
of the established disease prognostic markers. Tumour stage,
grade, EORTC-risk group and recurrence at the FFC (for disease
progression) represent the established and widely clinically used
prognostic markers for NMIBC, whereas T1HG tumours, high-risk
EORTC stratification and recurrence at the FFC (3 months) are
independent predictors of TaT1 recurrence and progression
following treatment.
The incorporation of GAS5 levels with the above-mentioned

clinically used markers clearly resulted in superior positive
prediction of NMIBC patients’ adverse outcome (Fig. 5). Indeed,
Ta/T1LG patients with lower GAS5 levels were at significantly
higher risk for short-term relapse (p= 0.010; Fig. 5a) and
progression (p= 0.004; Fig. 5b), similar to T1HG patients’ risk.
Additionally, GAS5 loss could effectively distinguish patients at
higher risk for short-term relapse (p= 0.002; Fig. 5c) and
progression (p= 0.015; Fig. 5d) within the highly heterogeneous
cohort of intermediate/high-risk patients according to EORTC-risk
stratification. Finally, patients with negative FFC and loss of GAS5
expression presented significantly shorter PFS expectancy (p <
0.001; Fig. 5e) compared to those overexpressing GAS5.

The evaluation of GAS5 levels results in advanced clinical benefit
in NMIBC (TaT1) prognosis
To evaluate the clinical benefit of the models including GAS5
along with the established disease prognostic markers, decision
curve analysis was performed according to Vickers et al. Decision
curves of the prediction models tested are presented in Fig. 6. The

analysis highlighted the significantly improved clinical benefit of
the model incorporating GAS5 loss in predicting NMIBC relapse for
threshold probabilities ≥25%, compared to the tumour stage,
grade and EORTC-risk group model (Fig. 6a). Similarly, the model
integrating GAS5 loss offers the highest clinical benefit for the
prediction of NMIBC progression for threshold probabilities >0%,
compared to tumour stage, grade, EORTC-risk group and
recurrence at FFC model (Fig. 6b). Considering that NMIBC
progression to muscle-invasive tumours represents a particularly
aggressive clinical event, demanding more intensive follow-up
and treatment adjustment, the superior net benefit even at low
threshold probabilities is crucial for the effective prognosis and
personalised management of the NMIBC patients.

DISCUSSION
Despite reduction of disease-specific mortality and improvement
in disease diagnosis,1 urothelial bladder carcinoma remains a
clinically heterogeneous malignancy regarding patients’ prognosis
and treatment outcome. Indeed, patients of the same risk group
and sharing similar clinicopathological features could display
highly variable clinical outcomes and responses to therapy.9 The
lack of accurate disease prognosis forces the generic and non-
personalised active treatment and lifelong surveillance of patients,
classifying BlCa as the most expensive per-patient-to-treat cancer
for the healthcare systems of developed countries.32 Conse-
quently, the identification of novel disease markers represents a
top clinical priority in order to be able to support personalised
treatment and monitoring decisions, to limit unnecessary inter-
ventions and healthcare costs, and finally to benefit patients
quality-of-life.
The family of non-coding RNAs (ncRNAs) includes a large

number of different entities as approximately 70% of the genome
is actively transcribed to ncRNAs.33 Until recently, miRNAs had
received the most attention regarding the role and clinical impact
of the family in human malignancies.34,35 However, the functional
role of lncRNAs in gene expression as well as their deregulated
levels in the vast majority of human malignancies resulted in the
ever-growing interest in assessing their implication in cancer cell
homoeostasis and their clinical impact for the patients.36 The aim
of the present study was the first-time complete evaluation of
GAS5 lncRNA significance in supporting BlCa personalised
prognosis and prediction of disease outcome.
The analysis of our screening cohort highlighted the significant

reduced expression of GAS5 in bladder tumours compared to their
matched adjacent normal urothelium, as well as the ability of
GAS5 to discriminate bladder tumours from their normal counter-
parts. The loss of GAS5 was strongly correlated with unfavourable
disease prognostic markers, such as HG carcinomas, as well as
muscle-invasive (T2–T4) and T1HG tumours. In this regard, loss of
GAS5 expression was significantly associated with high-risk NMIBC
according to EORTC stratification and with NMIBC patients
displaying recurrence at the FFC.
The survival analysis revealed the independent and unfavour-

able significance of GAS5 loss for NMIBC patients’ prognosis.
Indeed, NMIBC patients underexpressing GAS5 were at signifi-
cantly higher risk for disease short-term relapse and progression

Fig. 2 GAS5 expression analysis in BlCa. a Box plot and bar graph presenting GAS5 levels and GAS5 levels ratio, respectively, in bladder
tumours and matched adjacent normal tissue specimens of bladder cancer patients. p-Values calculated by Wilcoxon Singed Rank test. b ROC
curve analysis of GAS5 levels for the discrimination of bladder tumours patients from matched adjacent normal specimens. p-Value calculated
by the Hanley and McNeil method. AUC area under the curve, 95% CI 95% confidence interval. c, d Box plots presenting the correlation of
GAS5 levels with tumour stage (c) and tumour grade (d) in the screening cohort. p-Values calculated by Kruskal–Wallis test (c) and
Mann–Whitney U-test (d). e, f Box plots presenting the correlation of GAS5 levels with tumour grade (e) and tumour stage (f) in the Hedegaard
et al. validation cohort. p-Values calculated by Mann–Whitney U-test (e) and Kruskal–Wallis test (f). g, h Box plots presenting the correlation of
GAS5 levels with tumour grade (g) and tumour growth (histologic subtype) (f) in the TCGA provisional validation cohort. p-Values calculated
by Mann–Whitney U-test
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to invasive tumour stages. Additionally, the adverse outcome of
the TaT1 patients with GAS5 loss revealed to be independent of
tumour stage and grade, EORTC-risk stratification, age and gender.
To confirm our findings, Hedegaard et al. (n= 476) and TCGA
provisional (n= 413) bladder urothelial carcinoma cohorts were
used as validation cohorts for NMIBC and MIBC, respectively.28,29

The analysis of the validation cohorts confirmed the correlation of
GAS5 loss with tumours of high grade, higher stage and of non-
papillary histology. Moreover, Hedegaard et al. validation cohort
for NMIBC clearly verified the significantly worse PFS expectancy
of the TaT1 patients underexpressing GAS5. On the other hand,
MIBC survival analysis of both the screening cohort and the TCGA
validation cohort did not show a statistically significant association
with patients’ survival outcome. This observed discrepancy of
GAS5 clinical value for NMIBC and MIBC patients could possibly be

attributed to the well-documented diversity of non-muscle-
invasive (superficial) and muscle-invasive tumours, regarding
cellular origin and molecular background,37–40 and clearly high-
lights the NMIBC-specific prognostic utility of GAS5.
Our findings are in line with the well-documented tumour-

suppressor role of GAS5, through the inhibition of cell proliferation
and the stimulation of apoptosis, in the wide range of human
malignancies studied so far.16,17,41–45 Repression of GR transcrip-
tional activity15,23 and miRNA sponging,46–50 have been proposed
as the main molecular mechanisms underlying GAS5 tumour-
suppressor function. Focusing on BlCa, silencing of GAS5 resulted
in enhanced cell proliferation and increased percentage of cells in
S/G2 cell-cycle phase, which was mediated by the increased
expression of CDK6 (ref. 24) and CCL1,25 in contrast to cell-cycle
arrest in G0/G1 phases following GAS5 ectopic expression.24,25,27
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Fig. 3 NMIBC (TaT1) patients with reduced GAS5 levels are at significant higher risk for short-term disease recurrence and progression.
a–c Box plots presenting the correlation of GAS5 levels with NMIBC patients’ stage and grade (a), EORTC-risk group (b) and recurrence at the
first follow-up cystoscopy (FFC) (c) of the screening cohort. p-Values calculated by Kruskal–Wallis test (a, b) and Mann–Whitney U-test (c).
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Additionally, overexpression of GAS5 was highlighted to stimulate
apoptotic cell death and to reduce cell viability by recruiting E2F4
to EZH2 promoter to repress gene expression,26 as well as to
promote doxorubicin-induced apoptosis through depressed
expression of BCL2 (ref. 27) in BlCa cells.
Taking advantage of GAS5 powerful and independent prog-

nostic value for NMIBC, we have evaluated the ability of GAS5 loss
to improve the prognostic performance of established disease
markers. Indeed, the integration of GAS5 loss resulted in superior
positive prediction of disease relapse and progression within Ta/
T1LG, intermediate/high EORTC-risk, and negative FFC patients’
groups, and thus in improved risk-stratification specificity. In this

regard, decision curve analysis highlighted the superior clinical
benefit of the prediction model incorporating GAS5 loss for NMIBC
relapse and progression compared to the model of the
established and clinically used prognostic markers alone.
Overall, our findings clearly support the use of a NMIBC

prognosis prediction model, based on GAS5 expression and the
independent clinicalpathologic prognostic markers of NMIBC,
namely tumour stage, tumour grade and EORTC-risk stratification,
using biopsy specimens of TURBT-treated TaT1 patients. This will
benefit the identification of the NMIBC patients with higher risk for
disease relapse and progression to invasive disease stages, and
thus suitable for early curative RC (mainly for T1 patients) or
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Survival of NMIBC (TaT1) patients according to GAS5 levels and EORTC risk stratification
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advanced adjuvant treatment with BCG for high-risk Ta patients.
Moreover, this prognosis prediction model could be of assistance
in the adjustment of NMIBC patients’ post-treatment monitoring
to reflect the individual patient’s degree of risk. Similarly, a
number of novel molecular prognostic markers for NMIBC have
been recently documented; thus, large-scale clinical validation
studies, based on independent institutional cohorts, will indicate
the best-suited multiplex prediction model/algorithm, incorporat-
ing both clinicopathological and molecular disease markers.
In conclusion, GAS5 tumour-suppressor lncRNA is significantly

downregulated in bladder urothelial carcinoma, to the extent that
it is able discriminate bladder tumours from the normal bladder
urothelium. GAS5 loss was correlated with unfavourable disease
features, such as invasive disease stages and HG tumours, as well
as high EORTC-risk group and positive FFC of the NMIBC (TaT1)
patients. Considering disease outcome, GAS5 loss was strongly
associated with higher risk for NMIBC early relapse and progres-
sion to invasive disease stages following tumour resection,
independently of tumour stage, grade, EORTC-risk score and
patient’s age and gender. MIBC survival analysis did not revealed a
statistically strong association of GAS5 with patients’ survival
outcome, indicating the lower impact of GAS5 loss in the biology
and the clinical behaviour of muscle-invasive tumours, and
supporting the NMIBC-specific prognostic value of GAS5. Hede-
gaard et al. (n= 476) and TCGA provisional (n= 413) validation
cohorts clearly confirmed the association of GAS5 loss with
invasive and HG tumours of non-papillary histology, as well as
with NMIBC adverse disease outcome compared to patients
overexpressing GAS5. Finally, prediction models incorporating
GAS5 loss resulted in superior stratification specificity and
improved positive prediction of NMIBC patients’ poor survival
outcome following tumour resection, offering a significantly
higher clinical benefit for patients’ prognosis and monitoring
compared to models of the established and clinically used
prognostic markers alone.
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