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Chemerin suppresses hepatocellular carcinoma metastasis
through CMKLR1-PTEN-Akt axis
Jing-Jing Li1, Hong-Kun Yin1, Dong-Xian Guan1, Jiang-Sha Zhao1, Yu-Xiong Feng1, Yue-Zhen Deng1, Xiang Wang2, Nan Li3,
Xiao-Fan Wang4, Shu-Qun Cheng3, Ying Bao2 and Dong Xie1,5

BACKGROUND: Chemerin, a known chemoattractant, participates in multiple biological events. However, its role in cancer remains
largely unknown.
METHODS: Chemerin expression was evaluated by real-time PCR, western blot and immunohistochemistry. Forced expression,
RNAi, immunoprecipitation, etc. were used in function and mechanism study. Mouse models of extrahepatic and intrahepatic
metastasis were employed to evaluate the therapeutic potential of chemerin.
RESULTS: Chemerin expression was significantly downregulated in hepatocellular carcinoma, and associated with poor prognosis
of HCC patients. Forced expression of chemerin inhibited in vitro migration, invasion and in vivo metastasis of HCC cells.
Administration of chemerin effectively suppressed extrahepatic and intrahepatic metastases of HCC cells, resulting in prolonged
survival of tumour-bearing nude mice. Chemerin upregulated expression and phosphatase activity of PTEN by interfering with
PTEN–CMKLR1 interaction, leading to weakened ubiquitination of PTEN and decreased p-Akt (Ser473) level, which was responsible
for suppressed migration, invasion and metastasis of HCC cells. Positive correlation between chemerin and PTEN, and reverse
correlation between chemerin and p-Akt (Ser473) were also observed in HCC clinical samples and intrahepatic mouse model
in vivo.
CONCLUSIONS: Our study has revealed the suppressive role and therapeutic potential of chemerin in HCC metastasis, providing
both a prognostic marker and drug candidate for HCC.

British Journal of Cancer (2018) 118:1337–1348; https://doi.org/10.1038/s41416-018-0077-y

INTRODUCTION
Worldwide, hepatocellular carcinoma (HCC) is the fifth most
common cancer and a leading cause of cancer-related mortality,
with an estimated 782,000 new cases and 745,000 deaths in the
year 2012.1 Though surgery remains the most effective
therapeutic approach, the majority of patients undergoing partial
hepatectomy will, nevertheless, develop intrahepatic or
distant metastases.2 Likewise, in about 50% of the patients who
die within 5 years after liver transplantation for HCC, intra- and
extrahepatic recurrences contributed to their death.3 Therefore, it
is important to reveal the mechanism of HCC metastasis and
develop more effective treatment strategies to prevent HCC
metastasis.
Chemerin was originally identified as the product of a gene

upregulated by the RAR β/γ-selective anti-psoriatic synthetic
retinoid tazarotene.4 It was later discovered to be the natural
ligand of the orphan G protein-coupled receptor (GPCR)
chemokine-like receptor 1 (CMKLR1),5 which was mainly
expressed in immune cells, including plasmacytoid dendritic
cells (pDCs), tissue macrophages6 and natural killer cells.7

Chemerin was soon recognised as a chemoattractant that
promotes the recruitment of immune cells to lymphoid
organs and sites of tissue injury. Subsequent studies noted
its involvement in numerous biological processes, including
adipocyte differentiation, metabolic syndrome and
cardiovascular disease. Chemerin suppresses melanoma by
recruiting natural killer cell antitumour defense,8 however, the
role of chemerin other than chemoattractant in cancer remains
largely unexplored.
In this study, we reported decreased expression of chemerin in

HCC, and its level could serve as an independent risk factor for HCC.
We further characterised chemerin as a metastasis
suppressor in HCC, which inhibited cell migration and invasion
in vitro and metastasis in vivo. This occurred through negative
regulation of Akt via CMKLR1-PTEN axis. Administration of chemerin
effectively suppressed extrahepatic and intrahepatic metastases of
HCC cells in nude mice, prolonged their survival and hindered
weight loss. In summary, our study has revealed the novel function
and underlying mechanisms of chemerin in HCC, providing a
prognostic marker and therapeutic candidate for this malignancy.
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MATERIALS AND METHODS
Reagents
Anti-human chemerin antibody and recombinant human che-
merin, R&D; Anti-chemerin antibody for immunohistochemistry,
Phoenix Pharmaceuticals; Anti-PTEN (mouse mAb), anti-ChemR23,
anti-Ub and anti-β-actin antibody, Santa Cruz Biotechnology;
Anti-Akt, p-Akt (Thr308), p-Akt (Ser473), phospho-GSK3beta (Ser9),
PTEN (rabbit mAb) and p-PTEN (Ser380/Thr382/383) antibodies,
Cell Signaling Technology; Anti-HA antibody, Sigma; Myeloperox-
idase (MPO) antibody, Abcam; Anti-CMKLR1 antibody, Bioworld
Technology Inc; Anti-MMP1 antibody, Proteintech Group; Anti-GST
antibody, Sangon Biotech (Shanghai); Rat anti-mouse CD68, AbD
Serotect Inc; DeadEnd™ Fluorometric TUNEL System, Promega.

Animals
Six-week-old male BALB/c mice were housed under standard
conditions. The animal protocols were done in agreement with
SIBS Guide for the Care and Use of Laboratory Animals and
approved by Animal Care and Use Committee, Shanghai Institutes
for Biological Sciences.

Tissue samples and tissue microarray analysis
HCC tissue samples and paired cancer-adjacent normal tissues
were obtained from Eastern Hepatobiliary Surgery Hospital, after
the written informed consent was obtained from the patients.
TMA1 is constructed from 320 paraffin-embedded primary HCC
tissues, 60 paired non-tumour liver tissues, and 33 corresponding
portal vein thrombus tumour tissues. TMA2 is composed of 222
pairs of HCC tissues and paired normal liver tissues. Two
experienced pathologists confirmed the pathological diagnosis
in each case before the tissue arrays were constructed. The clinical
stage was determined according to the TNM (WHO criteria).
TMA1 was immunostained with anti-human chemerin, PTEN, p-

Akt (Ser473) and CD68 antibodies, and TMA2 was only immunos-
tained with chemerin. Two experienced pathologists evaluated
the immunoreactivity and histological appearance of all tissue
samples in the microarray. The staining intensity of tumour cells
was scored on a scale of 0–3, with 0 being no staining, 1 as weak
intensity, 2 as moderate intensity and 3 as strongest intensity.

Western blot analysis
Cultured cells or tissues were lysed in RIPA buffer for 15min on
ice. Cell lysates were clarified by centrifugation (14,000 r.p.m., 15
min), and protein concentrations were determined using Bradford
Reagent (Bio-Rad). The lysates were separated on 10%/12%
SDS-PAGE, and blots were immunoblotted with indicated
primary antibodies and the corresponding horseradish
peroxidase-conjugated secondary antibodies. All immunoblots
were visualised by ECL (Pierce). Intensity of the blots was
quantified by Image J.

Immunohistochemistry
The collected tumours or liver tissues were fixed in 4%
formaldehyde solution in PBS, and then embedded in paraffin.
Five micrometer thick sections were cut from paraffin-embedded
tissue blocks, deparaffinized and rehydrated in dimethylbenzene
and ethanol, then subjected to antigen retrieval. The endogenous
peroxidase activity was blocked using 0.3% hydrogen peroxide in
methanol for 30 min, then the sections were blocked with 3% BSA
and 5% NGS in PBS for 1 h at 37 °C, followed by incubation with
primary antibodies at 4 °C overnight. After washing with PBS three
times on the second day, the corresponding secondary antibodies
were applied, and the samples were further incubated at 37 °C for
1 h. Finally, the slides were visualised with DAB staining.

In vivo metastasis assay using intrahepatic injection model
Intrahepatic injection was performed as described by Tada et al.,9

and a total of 5.0 × 105 cells mixed with matrigel at 1:1 ratio

(volume) were injected into the left hepatic lobes of nude mice.
The injected luciferase-labelled HCC cells were confirmed 3 days
after the operation using the living Image system (Xenogen). This
intrahepatic injection model consistently yielded detectable
tumours in 95–100% of animals.

Statistical analysis
Statistical analysis was performed by SPSS software, version 13.0
(SPSS, Inc., Chicago, IL, USA). The data distribution was examined
using the Kolmogorov–Smirnov test, and the non-normally
distributed data were analysed using Mann–Whitney test.
Homogeneity of the variance was tested using Levene’s Test. If
the variances were homogeneous, the data were analysed by two-
tailed unpaired t test. For data sets with nonhomogeneous
variances, two-tailed unpaired t test with Welch correction was
applied. Relationship between chemeirn expression and clinical
characteristics, p-Akt (Ser473), PTEN expression and macrophages
were analysed by Χ2 test. The survival curves were calculated
using the Kaplan–Meier method, and the differences were
assessed by a log-rank test. Univariate and multivariate Cox
proportional hazards models were used to investigate the
association between survival time and patient characteristics.
The criterion for significance was p < 0.05 for all comparisons.

RESULTS
Chemerin is downregulated in HCC and can serve as an
independent risk factor for survival
To investigate the mechanism of HCC metastasis, we performed
microarray analysis using a metastatic HCC cell line MHCC97 (P),
and three MHCC97-derived subclones L, H and M with gradually
increased metastatic capabilities.10,11 The expression of genes
whose values of the three ratios rose gradationally and
significantly (L/P < H/P <M/P) were defined as metastasis promo-
ters in HCC. Vice versa, the genes were defined as metastasis
suppressors if the ratios decreased (L/P > H/P >M/P), such as
chemerin (Supplementary Figure S1A).
The expression of chemerin mRNA was significantly reduced in 28

of 46 (61%) HCC samples compared to their normal counterparts
(Fig. 1a), and the decreased expression of chemerin was further
confirmed at the protein level via western blot (Fig. 1b) and
immunohistochemistry (Fig. 1c, Supplementary Table S1). To further
evaluate the clinical significance of chemerin in HCC, the expression
of chemerin was examined by immunohistochemistry in TMA1.
Grade 0 showed no positive signal, while Grade 1, 2, 3 showed weak,
modest and strong staining for chemerin, respectively (Fig. 1d). On
the basis of chemerin expression, the HCC patients were classified
into two groups: chemerin negative/low (n= 62) and chemerin high
(n= 231). Figure 1e displayed a significant difference in the mean
overall survival between the two groups: 8.8 months for chemerin
negative/low group while 15.3 months for chemerin high group (p
= 0.0021). Kaplan–Meier survival analysis revealed that chemerin
high group had better overall survival than chemerin negative/low
group (p < 0.001, Fig. 1f). The median survival time for chemerin
negative/low group was 4.8 months (95%CI: 3.8–5.8), while it was
9.6 months (95%CI: 6.8–12.4) for chemerin high group. Univariate
Cox Regression Analysis revealed that chemerin expression sig-
nificantly influenced the overall survival (p < 0.001, 95%CI=
1.393–2.737) of HCC patients. Multivariate Cox Regression Analysis
disclosed that chemerin could act as an independent risk factor for
overall survival (p= 0.001, 95%CI: 1.294–2.558) and disease-free
survival (p= 0.019, 95%CI= 1.059–1.891) (Supplementary Table S2).
Furthermore, chemerin expression was significantly associated with
HBV (p= 0.035), hepatocirrhosis (p= 0.048), and macrophage
infiltration (p= 0.029) (Supplementary Tables S3 and S4).
Portal vein tumour thrombus (PVTT) is an important poor

prognostic factor for HCC, and a strong statistical correlation exists
between intrahepatic metastasis and PVTT.12 Interestingly,
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expression of chemerin was negative/low in 16 of 28 (57%) PVTT
tissues, which was significantly downregulated compared to the
corresponding primary HCC tissues (p= 0.014) (Fig. 1b, c),
indicating a potential association between low chemerin level
and PVTT development.

Chemerin decreases HCC cell migration and invasion in vitro
The clinical significance of chemerin stimulated us to explore
its role in HCC. We found that chemerin receptor
CMKLR1 was expressed in both HCC cells and normal liver
cells, while chemerin was detected only in HepG2

(Supplementary Figure S1B), a HCC cell line with poor tumouri-
genic potential.
We overexpressed chemerin in 7404, PVTT-1 and Hep3B cells

(Fig. 3a, Supplementary Figure S1C). Chemerin significantly
suppressed migration and invasion of HCC cells (Fig. 2a,
Supplementary Figures S2A and S2B), but showed no effect on
cell proliferation (Supplementary Figure S1D) or apoptosis
(Supplementary Figure S1E and S1F). In contrast, knockdown of
chemerin in 7404/che H and HepG2 cells increased cell migration
and invasion (Fig. 2b, Supplementary Figure S2C). Neutralising
antibody effectively increased the migratory and invasive
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capability of 7404/che H cells in a dose-dependent manner
(Fig. 2c). Moreover, recombinant chemerin markedly and dose-
dependently reduced the migration ability of 7404 and PVTT-1
cells (Supplementary Figure S2D). These data suggested that the
inhibition of HCC cell migration and invasion was attributed to
secreted chemerin.

Chemerin inhibits HCC cell migration and invasion through
negative regulation of p-Akt (Ser473) by PTEN
To investigate the underlying mechanisms of chemerin, its known
downstream signaling was examined. The level of p-Akt (Ser473)
was downregulated in chemerin-overexpressing 7404, PVTT-1 and
Hep3B cells, while it was increased in chemerin knockdown 7404/
che H and HepG2 cells (Fig. 3a), which was consistent with the
altered migratory and invasive capabilities of these cells. However,
p-Akt (Thr308) showed little alteration (Supplementary Figure
S3C). Akt was previously reported to be activated by chemerin, a
typical signaling transduction downstream of GPCR.13,14 Consis-
tently, we observed Akt activation in short-term exposure to
chemerin (Fig. 3b). However, in the long-term treatment, the level
of p-Akt (Ser473) declined by 1 h, hitting a nadir at 2 h, then
reverted to the resting level at 4 h. However, when the medium
was changed every 2 h and replenished with 1 nM chemerin, the
decreased level of p-Akt (Ser473) was noted even at 8 h (Fig. 3b).
Therefore, our experiments suggested that prolonged exposure to
chemerin inhibited Akt, while short-term exposure to chemerin
activated Akt. Furthermore, constitutively active (CA)-Akt success-
fully rescued the impaired migration and invasion capability of
7404/che H cells (Supplementary Figure S3A).
We also found that active extracellular MMP1, a molecule

downstream of Akt, was significantly decreased in chemerin-
overexpressing HCC cells, while increased in chemerin knockdown
HCC cells (Supplementary Figure S3B), which may be responsible
for decreased migration and invasion and of HCC cells affected by
chemerin via Akt. Taken together, these data suggested that
chemerin inhibited HCC cell migration and invasion through
negative regulation of Akt.
To further clarify the negative regulation of Akt by chemerin, we

examined the status of PTEN, one of the major regulators of Akt. We
found that the expression of PTEN was moderately elevated in
chemerin-overexpressing cells (Fig. 3c), while it was downregulated
when chemerin was silenced (Supplementary Figure S4B). However,
activity of PTEN changed significantly but inversely in chemerin-
overexpressing and knockdown HCC cells (Fig. 3d and Supplemen-
tary Figure S3D). Levels of p-PTEN (Ser380/Thr382/383), the crucial
phosphorylation sites influencing PTEN stability and activity were
not affected by chemerin (Supplementary Figure S3C). In contrast,
ubiquitination of PTEN, another important modification modulating
PTEN stability15 and activity,16,17 was significantly decreased in
chemerin-overexpressing HCC cells (Fig. 3e), and increased upon
chemerin knockdown (Supplementary Figure S3E). Cycloheximide
treatment revealed that the half-life of endogenous PTEN was
prolonged by chemerin overexpression (Supplementary Figure S3F),
which was consistent with reduced ubiquitination of PTEN in
chemerin-overexpressing HCC cells.
To identify the relationship between PTEN, Akt and chemerin,

we examined the level of p-Akt (Ser473) and PTEN in HCC
TMA1 by immunohistochemistry, and analyse their
correlation with chemerin expression. We found that high
expression of chemerin was significantly associated with
low level of p-Akt (Ser473) and high expression of PTEN, which
was consistent with our observation in HCC cells (Fig. 3f,
Supplementary Table S5).

CMKLR1-PTEN axis is responsible for downregulation of p-Akt
(Ser473)
Since CMKLR1 mediated intracellular signal transduction induced
by chemerin, the interaction between PTEN and CMKLR1 was

examined. PTEN and CMKLR1 demonstrated partial co-localisation
in HCC cell (Fig. 4a). Their interaction was also detected by GST-
pulldown (Supplementary Figure S4A), and the endogenous
interaction between CMKLR1 and PTEN was further confirmed
by immunoprecipitation, while this interaction was remarkably
weakened in chemerin-overexpressing cells compared to control
cells (Fig. 4b). In contrast, chemerin knockdown strengthened
PTEN–CMKLR1 interaction (Supplementary Figure S4B), suggesting
that PTEN dissociated from CMKLR1 in the presence of chemerin.
To further clarify the effect of chemerin on PTEN–CMKLR1
interaction, long-term chemerin treatment was performed to
mimic the situation in chemerin-overexpressing cells.
PTEN–CMKLR1 interaction markedly decreased by 2 h (Fig. 4c),
which paralleled the decreased level of p-Akt (Ser473). However,
the expression of PTEN was not changed during chemerin
treatment, which may be attributed to the low dose of extraneous
recombinant chemerin (1 nM). Although PTEN ubiquitination was
not detected due to the potential disturbing effect of MG132,
PTEN activity gradually increased after 30 min, and reached a peak
at 2 h (Fig. 4c), which was coincident with the lowest level of p-Akt
(Ser473) and the weakest PTEN–CMLKR1 interaction.
To ulteriorly confirm the involvement of CMKLR1-PTEN axis in

chemerin function, PTEN expression was knocked down by RNAi.
PTEN knockdown significantly upregulated the level of p-Akt
(Ser473), and increased the migration and invasion capability of
chemerin-overexpressing HCC cells (Supplementary Figure S4C
and S4D). We also modulate the expression of CMKLR1 in HCC
cells, and found that CMKLR1 knockdown resulted in elevated
expression of PTEN in the absence of chemerin (Fig. 4d),
associated with weakened ubiquitination of PTEN, elevated PTEN
activity, decreased p-Akt (Ser473) level, and suppressed migration
and invasion of HCC cells, indicating that PTEN released from
CMKLR1 is less ubiquitinated and more active (Fig. 4d–f,
Supplementary Figure S4E). These data suggested that chemerin
affected PTEN expression and activity through its cognate
receptor CMKLR1.

Overexpression of chemerin decreases both distant and
intrahepatic metastasis of HCC cells in vivo
Considering the close association between migration, invasion
and metastasis, the effect of chemerin on HCC metastasis was
examined using luciferase-based murine model. In left ventricular
injection model, luciferase-labelled PVTT-1 con and PVTT-1 che
cells were injected into the left ventricles of nude mice,
respectively. Significant metastatic foci appeared in the mice
injected with PVTT-1 con cells two weeks after injection, while rare
visible foci could be detected in PVTT-1 che group (Fig. 5a). The
distant metastases in PVTT-1 con group were much more wide-
spread compared to the PVTT-1 che group 4 weeks after injection,
as assessed by mean fluorescence intensity (Fig. 5a).
We also employed intrahepatic injection model, which more

closely mimicked the physiological progression of HCC metastasis.
Luciferase-labelled PVTT-1 con or PVTT-1 che cells were injected
into the left hepatic lobes of nude mice, respectively, and
subsequent weekly examination was performed to measure the
fluorescent signals. The signal markedly increased in PVTT-1 con
group, while it increased more slowly or even was weakened in
PVTT-1 che group (Fig. 5b). Consistently, the mice in PVTT-1 che
group had a longer survival than those in PVTT-1 con group. Mean
survival time for PVTT-1 con and PVTT-1 che group was 41 days
(95%CI: 34–48) and 54 days (95%CI: 45–62), respectively (n= 11
mice per group, p= 0.0125, Fig. 5b). Intrahepatic metastases were
assessed by counting the superficial foci of the uninjected liver
lobes and histopathological analysis of H&E stained liver sections
(Fig. 5c, e). PVTT-1 con group developed dramatically more
tumour foci in both injected and uninjected lobes compared to
PVTT-1 che group (Fig. 5d, e), which was consistent with the
stronger fluorescent signals in PVTT-1 con group (Fig. 5b).
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Furthermore, we found that the level of p-Akt (Ser473) and MMP1
of foci was high, while the expression of PTEN was low in PVTT-1
con group. In contrast, the foci in PVTT-1 che group demonstrated
reverse expression pattern, which was consistent with HCC cells
in vitro (Fig. 5f). Therefore, the two different murine models
revealed that overexpression of chemerin in HCC cells led to
effective suppression of intrahepatic and extrahepatic metastases,
associated with low p-Akt (Ser473), MMP1 and high PTEN
expression.

Investigation of the therapeutic potential of chemerin in HCC
The above studies suggested a potential application of
chemerin in HCC therapy, thus we purified recombinant
chemerin as previously described with little modification8(Sup-
plementaryMaterials,Methods) (Supplementary Figure S5A) and
evaluated its therapeutic potential using different murine
models. In left ventricular injection model, intraperitoneal
injection every other day of recombinant chemerin inhibited
the development of distant metastases and effectively pro-
longed survival of the mice (Fig. 6a). Median survival time for
PBS con group was 44 days (95%CI: 41–47), while it was 49 days
(95%CI: 43–55) for chemerin-treated group (n= 9 mice per
group, p= 0.0316). In intrahepatic injection model, the mice
were intrahepatically injected with PVTT-1 luci cells, and
recombinant chemerin treatment (0.5 mg/kg) was begun 3 days
after intraperitoneal injection and given every other day.
Similarly, chemerin treatment significantly reduced both the
incidence and spreading of intrahepatic metastasis, as assessed
by counting superficial foci on the uninjected liver lobes,
fluorescence intensity and H&E staining of the liver sections
(Fig. 6b, c). Furthermore, chemerin treatment markedly hindered
weight loss of tumour-bearing mice during HCC progression
(Fig. 6d), and extended survival of the mice (Fig. 6e). Median
survival for PBS con and chemerin treated group was 41 days
(95%CI: 36–46) and 52 days (95%CI: 44–60), respectively (n= 10
mice per group, p= 0.0186).
We also examined expression of p-Akt (Ser473), PTEN and

MMP1 in the intrahepatic injection model. The foci in
chemerin-treated group demonstrated higher PTEN level, while
lower expression of p-Akt (Ser473) and MMP1 compared
to the foci in PBS con group (Fig. 6f). Therefore, positive
regulation of PTEN, and subsequent suppression of Akt and
MMP1 possibly contributed to suppression of HCC metastasis by
chemerin in vivo.
In the previous report,18 chemerin expression was significantly

correlated with the infiltration of dendritic cells (DC) and natural
killer (NK) cells in HCC. Considering the association between
chemerin expression and macrophage infiltration (Supplementary
Table S4), we detected the effect of chemerin treatment on
macrophage and neutrophil recruitment. As shown in Supple-
mentary Figure S5B, infiltration of Myeloperoxidase (MPO)-positive
neutrophils and CD68-positive monocytes was increased in the
livers of chemerin-treated mice, which was further identified by
the elevated expression of marker genes (Supplementary Figure
S5C). These data demonstrated that chemerin could significantly
extend the survival and hinder the weight loss of the nude mice
inoculated with HCC cells, through inhibition of HCC metastasis
and recruitment of immune cells.

DISCUSSION
Chemerin was initially discovered as a retinoid responsive gene
present in psoriatic skin lesions in 1997.4 Subsequent studies
identified chemerin as a ligand for the orphan receptor CMKLR1,5

which is a seven-pass transmembrane GPCR related to the
chemoattractant C3a and C5a complement receptors and the
bacterial peptide fMLP receptor.19 CMKLR1 expression appears to
be restricted to dendritic cells (DCs), neutrophils and macro-
phages. Accordingly, the function of chemerin/CMKLR1 was firstly
investigated in immune system, establishing the chemoattractant
activity of chemerin in immune response.5 However, the role of
chemerin in cancer is largely unknown. Decreased expression of
chemerin has been reported in a few cancers, including uterine
fibroids,20 skin squamous cell carcinoma,21 liver cancer,18,22 and
melanoma.8 The study in melanoma suggested that down-
regulation of chemerin may be an important mechanism of
tumour immune evasion. A recent study identified chemerin as a
negative regulator of HCC-associated inflammation and immuno-
suppression.22 Consistently, we reported that expression of
chemerin in HCC was decreased compared to cancer-adjacent
normal tissues, and chemerin treatment enhanced immune cell
recruitment to the liver, restraining HCC progression. Furthermore,
we demonstrated that chemerin significantly reduced migration,
invasion and metastasis of HCC cells, which revealed the immune-
independent function of chemerin in cancer.
Previous study reported that ligation of chemerin to CMKLR1

activated Akt,13 which appeared inconsistent with our observa-
tion. However, the previous studies showed that chemerin
induced Akt activation within a relative short time period in
human endothelial cells14 and chondrocytes13 (<30min). We also
observed that short-term exposure to chemerin activated Akt
(<30min), followed by a decline of p-Akt (Ser473) below basal
level (>30min) (Fig. 3b). Biphasic regulation of receptor-associated
signaling has been reported previously, including IGF-1 initially
increasing and subsequently decreasing the phosphorylation of
Erk1/2 in skeletal muscle cells, associated with cell
differentiation.23 Another study revealed a time-dependent
biphasic cAMP response after stimulation of LGR7 by human
gene 2 (H2) relaxin, associated with signal switching from Gs to
Gi.24 The biphasic effect of chemerin on Akt phosphorylation may
be caused by the alterations in the receptor and receptor-
associated signaling.
In this study, we found that PTEN could interact with

chemerin receptor CMKLR1, and PTEN–CMKLR1 interaction was
weakened by chemerin binding. An explanation for the biphasic
regulation of Akt by chemerin is that chemerin initially induces
activation of Akt through the canonical GPCR-mediated PI3K
pathway; meanwhile, PTEN is released from chemerin-bound
CMKLR1, with reduced ubiquitination and promoted activity.
PTEN accumulates and ultimately inhibits chemerin-induced
PI3K-Akt signaling. Our study also suggests a potential regula-
tion of PTEN in HCC development and chemerin treatment. In
normal liver tissues, chemerin helps maintain the regular
expression and phosphatase activity of PTEN. When chemerin
is downregulated in the development of HCC, PTEN is restricted
by CMKLR1, which leads to ubiquitination and suppression of
PTEN. Extraneous chemerin activates CMKLR1 and releases
PTEN, then the recovered PTEN regains tumour suppressor

Fig. 4 CMKLR1-PTEN axis is responsible for downregulation of p-Akt (Ser473). a Immunofluoresent staining of PTEN and CMKLR1 in HCC cells.
Scale bar= 100 µm. b PTEN–CMKLR1 interaction in chemerin-overexpressing and control cells is examined by immunoprecipitation and
western blot. c Left, 7404 cell lysates of either control or chemerin-treated cells are immunoprecipitated with control IgG or anti-PTEN
antibody and then subjected to western blot analysis. Right, PTEN activity in chemerin-treated cells. ***p < 0.001 for 1 h vs. 0 h, 2 h vs. 0 h,
Unpaired t test. Precipitated PTEN is shown below. d Expression of CMKLR1, PTEN, p-Akt (Ser473), Akt and β-actin in control cells and CMKLR1
knockdown cells. e Ubiquitination of PTEN in control and CMKLR1 knockdown cells. f PTEN activity in control and CMKLR1 knockdown cells.
***p < 0.001 for i1/i2 vs. icon, Unpaired t test. Precipitated PTEN is shown below
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activity and inhibits Akt, resulting in suppressed migration,
invasion and metastasis of HCC cells, at least partially through
downregulation of MMP1.25–27 This hypothesis is supported by
our observation in clinical samples, HCC cells, and animal
models of HCC metastasis. However, further studies are required
to explore the details of CMKLR1–PTEN interaction, clarify their
mutual regulation, and find out more effectors downstream of
CMKLR1/PTEN/Akt signaling axis.

Chemokine-based immune therapy has become an attractive
therapeutic strategy in the management of HCC. One study has
shown that administration of ECI301, an active variant of the CC
chemokine ligand 3, augmented the antitumour effect of radio-
frequency ablation in a CCR1-dependent manner.28 In another
study, administration of interleukin-12 was shown to enhance the
therapeutic efficacy of dendritic cell-based tumour vaccines in
moues hepatocellular carcinoma.29 In our study, administration of
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chemerin in HCC-bearing nude mice significantly restrained the
development of both distant and intrahepatic metastasis. These
antitumour effects were not only attributed to recruitment of
immune cells, but also due to inhibition of metastatic capability of
HCC cells. In addition, because chemerin is naturally produced by
normal hepatocytes, appropriate administration of chemerin is

nontoxic to normal tissues, which is optimal for drug
development.
In conclusion, our study has revealed a novel suppressive role of

chemerin in HCC, through its inhibition of HCC metastasis and its
chemoattractive capability to recruit immune cells. We also revealed
a negative regulation of Akt by chemerin-CMKLR1-PTEN axis, which
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expand our understanding of chemerin-mediated signaling. The
dual effects of chemerin on both HCC cells and tumour
microenvironment make it a promising candidate for HCC therapy.
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