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Introduction

With the phasing out of dental amalgams, 
resin-based composite (RBC) restoratives 
will be the dental material of choice for the 
direct restoration of compromised dentition 
in the UK, at least for the foreseeable 
future.1,2 With much better colour-matching 
to the surrounding dentition and more 
conservative cavity preparation typically 
required for RBCs compared with dental 
amalgams,3 they are already a popular 
choice for many practitioners worldwide.4,5 
Despite this, the UK is still an area of high 
dental amalgam use, particularly in the 
publicly funded sector.6,7 The best results 
with RBCs are obtained when using rubber 
dam and acid-etch bonding,8 which can 
increase treatment times; clinicians worry 
that the extra time and expense involved 

means that the NHS will have to modify the 
fee payment structure if dental amalgam 
is replaced.6 Despite dental amalgams and 
RBCs apparently performing equally well in 
small and large load-bearing restorations,4,9 
there remain concerns that RBCs have 
a relatively shorter lifespan than dental 
amalgams and many UK clinicians report a 
lack of confidence in using RBCs, compared 
to dental amalgams, for use in complicated 
procedures.10 When RBC failures occur, 
they are mostly due to secondary caries or 
fracture.2,11 Consequently, most laboratory 
RBC research tends to focus on trying to 
make improvements to combat one or both 
of these. This review is intended to bring 
together some of the main themes in this 
research, with a view to offer the practising 
clinician some indication as to how the 
current research may lead to improved RBCs 
in the future.

Brief history

The historical development of RBCs has been 
comprehensively summarised previously.11,12 
Briefly, the major developments in RBCs 
can be most conveniently divided into 

developments in the monomers, the fillers 
and the initiators. It is often considered that the 
development of the higher molecular weight 
difunctional monomer, bisphenol A-glycidyl 
methacrylate (BisGMA) by Bowen in the early 
1960s started the development of modern 
RBCs. This high molecular weight led to a 
reduced polymerisation shrinkage compared 
to acrylic resins. Additionally, the stronger 
monomer backbone and crosslinking during 
polymerisation gave improved mechanical 
properties in the finished restoration. 
However, BisGMA is highly viscous, meaning 
diluent monomers such as triethylene glycol 
dimethacrylate were needed to lower viscosity, 
which meant manipulation of the RBC was 
easier and higher filler loadings could be 
achieved. Subsequently, other monomers such 
as urethane dimethacrylate and ethoxylated 
bisphenol-A dimethacrylate were developed, 
but BisGMA’s superior mechanical properties 
mean that most currently available RBCs 
contain at least some BisGMA.

Higher concentrations of filler led to 
improved mechanical properties and lower 
polymerisation shrinkage, in general as 
a result of a reduced monomeric resin 
constituent. However, different approaches 
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were taken to achieve higher filler loadings 
leading to different classes of RBCs being 
developed, such as microfills and hybrids. 
Particle sizes were reduced to the sub-micron 
scale, long before the advent of the so-called 
nanocomposites. There was often similarity 
in the particle sizes used for the filler in these 
classes, with the differences in products really 
based on the filler concentration and how 
the fillers were produced and incorporated 
in the resin matrix. Consequently, clinicians 
had a variety of composite classes they could 
use to restore a variety of conditions, with 
the RBC classes based on the manufacturers’ 
marketing strategy, rather than a scientific 
analyses of the resultant properties.13,14

The initially used chemically activated 
polymerisation took longer than patients 
or clinicians desired and so photoinitiators 
were added. First, ultraviolet-sensitive 
photoinitiators were used, but they produced 
limited depth of cure (DOC) and degree of 
conversion (DC%), so visible-light-sensitive 
photoinitiators, such as camphorquinone (CQ), 
were introduced. To activate the photoinitiation, 
light-curing units (LCUs) capable of delivering 
light at the correct excitation wavelengths were 
developed, first using broadband sources such 
as quartz-tungsten-halogen bulbs and more 
recently, narrowband light-emitting diode 
(LED) sources tuned to the specific excitation 
wavelengths. With improvements in many 
properties linked to the DC%, increasingly 
intense light sources have been developed with 
the aim of increasing the DC%. However, the 
relationship between DC% and light intensity 
is complicated and it has been shown the once 
the LCU intensity increases above 1 W/cm2, 
any further improvement in properties may be 
marginal.15 These high intensity LCUs are also 
suggested to reduce the time required to obtain 
a satisfactory DC% because, it is claimed by 
manufacturers, that there is a simple reciprocity 
relationship between light intensity and curing 
time. However, investigation using both 
commercially available RBCs16 and laboratory-
produced model formulations,17 different types 
of LCUs18 and photoinitiators,17 have revealed 
that the relationship is more complex and 
factors such as overall monomer viscosity, 
monomer types used and filler concentration 
are all important. In general, it seems that so 
long as the radiant exposure from the LCU 
is above the minimum required to produce 
adequate polymerisation, the reciprocity 
relationship holds so long as the filler loading 
is above a 50 wt%.19

Low shrink RBC materials

The main reason for RBC replacement is 
due to dental caries, either a recurrence of 
the original caries, or secondary caries.5 
Although there is still no direct clinical 
evidence to prove that polymerisation 
shrinkage is the cause of secondary caries,5 
in vitro studies show that it can cause 
cuspal deflection, enamel cracking and 
the breakdown of the composite-tooth 
margin,5,20,21,22 the latter of which could 
potentially lead to caries and is taken as 
justification for the considerable amount of 
research undertaken to develop so-called low 
shrink materials. Meeries et al.23 conducted a 
meta-analysis of much of this work in 2018. 
The magnitude of the shrinkage strain and 
stress during polymerisation has many 
causes and so it is not surprising that many 
different approaches have been attempted 
to reduce it.24 Broadly speaking, these 
approaches can be divided into: alterations 
in the filler size and concentration; and 
the monomer structure,23,24 although 
some research has focused on modifying 
the coupling agent20,25,26 and altering the 
polymerisation initiation rate by initially 
reducing the intensity of light emitting from 
the LCU.27

Increasing the concentration of filler leads 
to a reduction in polymerisation shrinkage, 
simply due to the relative reduction in 
reactive monomer groups per unit volume.28 
By reducing the size of filler particles and 
including multiple size distributions into 
the monomer, filler concentrations have 
raised to well over the 50 vol%, which was 
the limit for the first RBCs. One of the 
limits identified with including higher 
concentrations of filler was that it became 
harder for the monomer to wet all the filler 
particles, meaning there came a point when 
mechanical properties were reduced with 
increasing filler concentration. Consequently, 
smaller nanoscale particles were developed. 
Traditional methods of making filler particles, 
such as milling and sieving, tend to be unable 
to produce particles smaller than of the order 
of 100 nm.29 Consequently, techniques such 
as pyrolysis and sol-gel production have been 
utilised.30 In general, silica nanoparticles are 
amorphous and spherical, although as they 
grow larger, they tend to be less regular 
in shape.31 With such small particles, the 
ratio of surface energy to volume can be 
sufficiently high, that particles tend to 

agglomerate into clusters that can be up 
to 5 μm in diameter,32 which can lead to a 
poor distribution of filler in an RBC. While 
some beneficial properties, such as improved 
wear resistance, have been reported for the 
agglomerated nanocluster materials,29,33 most 
often, organosilane coupling agents are used 
to reduce agglomeration29,34 and improve the 
properties. By incorporating nanoparticles 
into multi-particle distribution hybrid 
systems, increased filler concentrations 
have been reported with related increases 
in a variety of mechanical properties35,36 and 
decreases in polymerisation shrinkage. There 
is considerable variability in the distribution, 
concentration and relative amounts of 
microparticles and nanoparticles in current 
commercially available nanohybrids,14 
suggesting that once again, this description 
of a class of RBC is more akin to a marketing 
strategy than useful to the clinician when 
choosing a material for use.

In addition to altering the dimensions and 
concentration of filler in RBCs to reduce 
shrinkage, alterations to the monomeric 
resin constituents are commonplace. This 
is not surprising, since the monomer is the 
component responsible for the shrinkage and 
it has been known for many years that the 
amount of volumetric shrinkage that occurs 
during polymerisation is proportional to 
the molecular weight of the monomer, for 
methacrylate monomers at least.37 A whole 
variety of monomer families have been 
reported to produce ‘low-shrink’ RBCs, 
ranging from alternative methacrylates,38,39,40 
thiol-enes,41 thiol-urethanes42 and siloranes.21 
The in vitro data for these different 
monomers show promising results, with 
shrinkages significantly lower compared 
with those obtained with BisGMA RBC 
derivatives and often with improvements 
in the mechanical properties. Several 
commercial products have been released, 
notably those based on silorane and some 
dimethacrylates; however, the initially 
promising in vitro data on these materials 
does not seem to have translated to a clinical 
advantage since the first commercially 
available silorane-based RBC formulation 
was withdrawn from the market.

Stronger RBC materials

With fracture being the other most common 
cause of RBC restoration failure, many 
studies have focused on developing stronger 
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materials. Improvements in fillers have been 
suggested by developing ceramic and glass-
ceramic materials, some of which have 
already been incorporated in commercially 
available products. One area that is also 
receiving considerable attention is attempts 
to improve the resin component, either 
by developing stronger monomers or by 
increasing the degree of conversion.

Employing current LCUs, the conversion 
of monomer to polymer clinically is typically 
below 80%, and can be as low as 40%.43,44 
As the most common monomers used are 
difunctional, any degree of conversion above 
50% might suggest that each monomer is 
converted to polymer. However, as many 
studies have shown that there is residual 
unreacted monomer that can be released into 
the oral environment,44,45,46,47,48 a conversion 
more than 50% is needed. Health concerns 
remain over the release of monomer into 
the oral environment due to their potential 
irritancy and cytotoxicity.47 Of particular 
concern is the bisphenol A (BPA) component 
of BisGMA. BPA mimics the effects of 
oestrogen and in animal studies has been 
shown to be potentially linked to several 
health conditions, particularly a reduction 
in fertility49 and in utero exposure could 
alter organ development.50 In products such 
as baby drinking bottles, many products are 
now explicitly advertised as BPA-free and 
while the link between BisGMA-based RBCs 
and any of the health problems associated 
with BPA has never been established, 
improved monomers could potentially lead 
to longer lasting restorations and avert 
another ‘amalgam debate’.

Methacrylate monomers, such as those 
used in RBCs, have ester bonds that are 
susceptible to hydrolysis and so weaken over 
time.51 Consequently, alternative monomers 
more stable in aqueous environments 
are being researched. As with low-shrink 
monomers, a wide variety of monomer 
families have been reported, such as 
diacrylates, methacrylamides, vinyl ethers, 
thiol-vinyl sulphone and thiol-enes.52,53 In 
some cases, different polymerisation routes, 
such as step-growth polymerisation,54 
click-chemistry55 and reversible addition-
fragmentation chain transfer56 have been 
used. Initial in vitro data for composites made 
from these monomers seem promising, with 
high degrees of polymerisation and increased 
mechanical properties reported compared to 
currently available RBC products.

The most common photoinitiator used 
in RBCs is CQ, a Norrish type II initiator, 
which requires a co-initiator, such as a 
tertiary amine, to generate a sufficiently 
high concentration of radicals.57 Most in 
vitro research tends to use as the co-initiator 
either (dimethylamino)ethyl methacrylate 
(DMAEMA) or ethyl-4-(dimethylamino) 
benzoate (EDAB),58 with EDAB typically 
reported to be the most efficient of the two.58,59 
However, the desire to have higher DC% 
and faster polymerisation has led to other 
initiators being investigated. The addition 
of iodonium salts as co-initiators has been 
shown to increase the rate of polymerisation, 
DC% and mechanical properties of CQ/amine 
systems due to the iodonium salts increasing 
the number of radicals produced per CQ 
molecule.58,60,61,62,63 These encouraging results 
using iodonium salts has even led researchers 
to consider whether amine-free systems are 
possible, but so far, the properties of amine-
free RBCs are below those containing CQ/
amine/iodonium salts.64

Norrish type I initiators, such as 
derivatives of acylphosphine oxides and 
of benzoyl germanium, have been also 
been considered.65 These form radicals 
by a cleavage reaction and so do not need 
a co-initiator.57 They also tend to have a 
less obvious effect on the colour of RBCs 
compared to CQ.59,66 One benzoyl germanium 
der ivat ive ,  bis-(4-methoxy benzoy l)
diethylgermane, has already been patented 
under the trademark Ivocerin and is used 
in commercially available products.67 The 
acylphosphine oxides are widely researched, 
typically providing much greater rates of 
polymerisation and higher DC%68 but with 
lower DOC.66 They also have excitation 
wavelengths different to that of CQ, meaning 
that for optimal polymerisation, different 
LCUs are needed. Many manufacturers 
now market ‘polywave’ LCUs that contain 
multiple LEDs capable of delivering light at 
different wavelengths, but this represents 
an increased cost for clinicians if they are 
to use RBCs that contain these alternative 
initiators. When type I and type II initiators 
are combined, improvements in DOC and 
colour stability have been reported compared 
relative to type I (DOC) and type II (colour 
stability) only systems.66,68 In the search 
for stronger composites, it is likely that 
more research will focus on combinations 
of photoinitiators, particularly now that 
polywave LCUs are readily available.

Functional RBCs

Current RBCs act really only as a space 
filler, returning form and function to the 
surrounding tooth, yet other filling materials 
are known to have an antibacterial effect, for 
instance low copper dental amalgams and to 
release fluoride, for instance glass ionomer 
cements. As RBCs are developed it is not, 
therefore, surprising that researchers have 
attempted to add these types of capabilities 
to them.

RBCs that have a bactericidal effect have 
been developed with the twin aims of either 
killing any residual bacteria that remain 
after cavity preparation and/or to reduce the 
incidence of secondary caries. RBCs that can 
release ions of silver or zinc are well-known to 
show antibacterial action in vitro.69,70 Others 
have been modified to contain commonly 
used soluble antibacterial agents such as 
chlorhexidine (CHX). As the agents are not 
bound to the RBC, they wash out at initially 
high concentrations that diminishes rapidly 
over time, typical of a diffusion controlled 
release profile,71 which also compromises 
the mechanical properties of the RBC.72 
Methacrylate monomers functionalised with 
agents such as CHX have been developed73 
with the aim of extending the antibacterial 
activity beyond the initial burst period. 
While the CHX-methacrylates have been 
used in experimental RBCs and are already 
included in some commercially available 
dentine bonding agents, far more commonly 
used in RBC research are quaternary 
ammonium compounds. Many different 
quaternary ammonium methacrylates 
(QAMs) have been studied and they have 
demonstrated antibacterial activity against 
single species models and multi-species 
models, including bacteria obtained directly 
from saliva or dental plaque.74 One QAM, 
methacryloyloxydodecylpyridinium bromide 
(MDPB) has been incorporated into model 
RBCs, with some encouraging in vitro 
results75,76,77,78 and has been a component of a 
commercially available dentine bonding agent 
for some time. The results of in vitro and in 
situ studies using the DBA are encouraging 
and suggest that QAM-containing materials 
may well reduce bacterial adhesion.79 QAMs 
work by a contact killing mechanism, 
meaning that there are some concerns that 
their antibacterial action will diminish once 
the RBC surface is covered by pellicle.80,81 
Consequently, QAMs have been combined 
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with zwitterionic monomers to stop the 
pellicle from forming.82 Zwitterions, such as 
2methacryloyloxyethyl phosphorylcholine 
(MPC), have two oppositely charged groups 
in their structure and are highly hydrophilic, 
making it difficult for proteins and bacteria 
to adhere to them.83 In a recent in vitro study, 
these combined MDPB/MPC materials 
exhibited promising antibacterial activity and 
protein repulsion, although it should be noted 
that these effects were only studied over a 48 
hour period.82

A variety of salts, ceramics and glasses 
have been developed to act as potential fillers 
for RBCs that release ions such as calcium, 
fluoride and phosphate when exposed to an 
aqueous environment. The role of fluoride 
ions in the prevention of caries when used in 
gels and mouthwashes is well-documented.84 
It is hoped ion-releasing fillers will act in 
a similar way, but depending on the filler 
composition, also stimulate the formation 
of either hydroxyapatite or fluorapatite, 
in the surrounding enamel and dentine. 
Of particular interest are fillers based on 
calcium phosphates,85,86,87,88 calcium fluoride,86 
fluorapatite89,90,91 and a variety of glasses 
based on SiO2-P2O5-CaO-Na2O (termed 
BioGlasses),92 recently reviewed.93 In vitro 
assessment of RBCs containing these fillers 
has revealed they can form apatite layers94,95 
when exposed to simulated body fluid 
(SBF).96,97,98 However, SBF does not mimic the 
organic components of saliva, raising some 
concerns that the in vitro apatite formation 
may not be replicated in vivo, so some caution 
must be exercised when interpreting these 
results.99 The majority of current studies 
involve modifications to the composition of 
the filler, the method of producing the filler 
and alteration of filler concentration, meaning 
that clear structure-property relationships 
do not yet exist. Mechanical and physical 
properties comparable to commercially 
available RBCs have been reported for a range 
of RBCs containing these fillers, although 
in many studies, the mechanical properties 
diminish over time when the materials are 
stored in an aqueous environment.

Several RBCs are commercially available 
that claim to release ions and potentially 
prevent secondary caries and enable 
remineralisation. They are often marketed as 
being ‘bioactive’ RBCs, which may be nothing 
more than a marketing strategy rather that 
representing a genuine modulation of a 
biological process.93,100,101 It is too early to say 

whether these products present the clinician 
with a clear advantage over conventional 
RBCs but in vitro analysis of some of these 
products has revealed differences in their 
ability to form apatites and their ion release 
profiles over a variety of pHs,102 suggesting 
that there may be variation in performance 
among different products for the foreseeable 
future, particularly considering that we 
still do not know whether these materials 
stimulate actual remineralisation.

Conclusion

As the above discussion shows, there is a 
significant number of papers published 
annually purportedly highlighting the 
development of new RBC materials or 
components, yet unfortunately, despite the 
effort, there is a poor track record in translating 
this research into new products. While there 
are likely to be many reasons for this, one 
potential reason could be that there seems to be 
a large and ever increasing array of properties 
in reported studies used to characterise these 
materials, many of which have no clear link 
to clinical performance. Often, studies seem 
to use the tests specified in the International 
Organisation for Standardisation standards, 
even though these standards have never been 
intended to indicate clinical performance.103,104 
Additionally, new materials are often 
benchmarked against currently available 
products. While this is a sensible approach, 
as pointed out in a recent editorial,105 many 
authors do not actually report the conditions 
under which these comparator benchmarking 
materials have been produced. Rather, 
they state they have been made following 
‘the manufacturer’s instructions’, which is 
ambiguous and can reduce the reproducibility 
of the work.105 Encouragingly, several authors 
have attempted to relate laboratory-measured 
parameters to clinical performance, with 
fracture toughness correlated with clinical 
fracture and flexural strength correlated with 
wear.106 Further, the wider effects of clinician-
based factors and patient-based factors on the 
longevity of restorations of all types are now 
being extensively reported. The amount of 
training clinicians receive in the placement 
of RBCs can affect their confidence in using 
them in difficult situations.7,10 Training in the 
placement of RBCs for posterior restorations 
has increased in UK dental schools over the 
last 20 years,107,108 meaning that this lack of 
confidence should diminish in the clinician 

population. In terms of patient-based factors, 
it is now clear that the socioeconomic level of 
a patient, their access to and regular attendance 
of dental clinics and the level of caries risk they 
already have are major factors in restoration 
longevity, irrespective of which material is 
used.1,2,4

Of course, there have been some new 
products released that can be related to a 
series of laboratory studies. In recent years, 
RBCs marketed as being bulk-fill, bioactive 
or self-adhesive have been released; all based 
on extensive in vitro research. It is perhaps 
too early to say whether any of these new 
products offer the clinician a significant 
advantage in restoration longevity compared 
to RBCs that were available, say, five years ago. 
This review demonstrates the area of RBC 
research to be active and hopefully some of 
the areas highlighted will lead to improved 
RBC materials in the future.
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