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Risk of metabolic abnormalities in osteoarthritis: a new
perspective to understand its pathological mechanisms
Guizheng Wei 1,2,3, Ke Lu 2,3, Muhammad Umar2,3, Zhenglin Zhu4, William W. Lu3, John R. Speakman5, Yan Chen1✉,
Liping Tong2✉ and Di Chen2,3

Although aging has traditionally been viewed as the most important risk factor for osteoarthritis (OA), an increasing amount of
epidemiological evidence has highlighted the association between metabolic abnormalities and OA, particularly in younger
individuals. Metabolic abnormalities, such as obesity and type II diabetes, are strongly linked to OA, and they affect both weight-
bearing and non-weight-bearing joints, thus suggesting that the pathogenesis of OA is more complicated than the mechanical
stress induced by overweight. This review aims to explore the recent advances in research on the relationship between metabolic
abnormalities and OA risk, including the impact of abnormal glucose and lipid metabolism, the potential pathogenesis and
targeted therapeutic strategies.
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INTRODUCTION
Osteoarthritis
Osteoarthritis (OA) is a chronic and degenerative joint disease that
is prevalent among elderly individuals. It is characterized by
cartilage destruction and persistent pain, which can severely
impact quality of life. The global incidence of OA has been
increasing due to the aging population and other contributing
factors, such as metabolic disorders, with an estimated conserva-
tive number of 250 million OA patients worldwide1,2. The
pathological changes of OA are multifaceted, including synovitis,
cartilage degeneration, subchondral bone thickening, osteophyte
formation, ligament degeneration, meniscus injury, and structural
changes in the surrounding muscles2–5. Unfortunately, current
treatment options for OA can only relieve pain and manage
symptoms, rather than stopping or reversing disease progression.
For most severe cases, joint replacement surgery may be needed,
which is expensive, invasive and carries significant risks6,7. Thus,
finding new strategies to prevent OA development or improve OA
treatment is of utmost importance. Further research is needed to
better understand the underlying mechanisms of the disease and
to develop new therapies that can effectively treat OA.
The etiology of OA remains elusive, and recent studies have

demonstrated that OA is a multifaceted disease influenced by
various pathogenic factors8–10. Aging and overweight are
well-known risk factors for OA, but metabolic homeostasis imbalance
has also been implicated in its pathogenesis11. Inflammation plays a
crucial role in the progression of OA, which often originates from the
adipose tissue in the joint cavity12. In a cohort study evaluating
the incidence of obesity and OA among 1 764 061 subjects,

researchers found that the risk of knee osteoarthritis (KOA) in obese
individuals was more than three times higher than the risk in healthy
individuals13. In patients with obesity, adipose tissue produces
adipokines such as leptin, lipocalin, resistin and endolipoproteins, as
well as inflammatory cytokines including tumor necrosis factor-alpha
(TNF-α), interleukin 1 (IL-1) and interleukin 6 (IL-6)14–16. These
mediators are released from local or systemic adipose tissue as the
result of joint trauma or overuse and can significantly impact the
development and progression of OA17. Further research is needed to
fully understand the complex mechanisms underlying the relation-
ship between obesity, inflammation and OA, which may lead to the
development of novel therapeutic strategies.

Metabolic abnormalities
Metabolic abnormalities encompass a range of conditions, such as
obesity, hypertension, dyslipidemia, hyperglycemia, and insulin
resistance. These risk factors not only contribute to the onset and
progression of OA but also potentially increase the likelihood of
developing cardiovascular disease. A multicenter study revealed
that individuals with chronic obesity are prone to damage in the
medial knee cartilage, leading to the development of OA18.
Moreover, there exists a direct association between weight gain
and the risk of KOA, as evidenced by a 35% increase in the risk for
every five-unit increase in body mass index (BMI)19. It is thus clear
that obesity plays a significant role in the manifestation of OA.
Nevertheless, subsequent studies have demonstrated that hand
osteoarthritis (HOA) can also occur in non-weight-bearing areas of
obese individuals, suggesting that OA is not solely influenced by
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mechanical load but is also associated with metabolic abnormal-
ities20. Chronic hyperglycemia and insulin resistance create an
environment that promotes the development of OA, as elevated
glucose levels induce the synthesis of proinflammatory cytokines
and matrix metalloproteinases in joint tissues, leading to damage
to human chondrocytes and the subsequent development of
OA21,22. Additionally, dyslipidemia and hypertension have also
been identified as causative factors for OA16,23. Consequently,
metabolic disorder is one of the key risk factors for OA
development and progression.

Association between metabolic disorders and OA risk
A cross-sectional study aimed to examine the association between
dietary glycemic index (GI), dietary glycemic load (GL), and knee
OA among Korean adults, and the results showed a significant
positive association between dietary GI and symptomatic KOA in
women24. In addition, a study investigated the relationship
between the Mediterranean diet (with lower GI) and prevalence
of OA of the knee in a large cohort from North America, where the
researchers found that individuals who had higher adherence to
the Mediterranean diet usually had a lower risk of KOA25.
Metabolic abnormalities not only augment the susceptibility of

OA but also impede the functional recovery of joint replacement
surgery. A clinical follow-up study conducted in Canada found that
metabolic abnormalities adversely impact patient functionality
subsequent to joint replacement surgery, especially in the case of
hip surgery26. Furthermore, in another cross-sectional investiga-
tion examining the relationship between metabolic syndrome and
symptomatic KOA, the results demonstrated a positive correlation
between the severity of symptomatic KOA and the metabolic
syndrome accumulation factor27.

THE ADVERSE EFFECTS OF DIABETES AND OBESITY ON OA
OA and diabetes often coexist due to their high prevalence and
common risk factors. Nearly 47.3% of individuals with diabetes
had some form of arthritis28. The negative impact of diabetes on
joints could be explained by the induction of oxidative stress, pro-
inflammatory cytokines, chronic high glucose concentration and
insulin resistance.

Chronic high glucose concentration
In individuals with type 2 diabetes, elevated levels of blood
glucose result in the generation and accumulation of advanced
glycation end products (AGEs) due to the maintenance of
prolonged hyperglycemia29. This process promotes matrix stiff-
ness. Collagen, which is a key component of various connective
tissues, exhibits an exceptionally low turnover rate, rendering it
susceptible to modifications by AGEs. Additionally, AGEs bind to
the receptor for AGEs (RAGE) on the chondrocyte membrane,
initiating intracellular signaling that leads to the overexpression of
proinflammatory and prodegradative mediators23,30. In human OA
chondrocytes, the specific binding of AGEs to RAGE activates the
MAPK signaling pathway, thereby enhancing the expression of IL-
6 and IL-831. This, in turn, exacerbates the inflammatory response
within chondrocytes31. Activation of RAGE by AGEs in articular
chondrocytes prompts an increase in matrix catabolism in articular
cartilage, ultimately contributing to the development of OA32.
Moreover, elevated levels of AGEs in human articular chondro-
cytes further impede the turnover of the extracellular matrix in
articular cartilage, promote cartilage degradation and diminish
proteoglycan synthesis33. Studies have reported significantly
higher levels of AGEs in the cartilage of OA patients than in
healthy individuals32. Inhibition of the JAK/STAT3 signaling path-
way following RAGE activation by AGEs led to a decrease in the
expression of matrix metalloproteinase 13 (MMP13) and a
disintegrin and metalloproteinase with thrombospondin motifs 5
(ADAMTS5), resulting in an increase in the synthesis of type II

collagen (Col-2) in chondrocytes34. Researchers have also
observed that incubation of rabbit chondrocytes with AGEs
upregulates reactive oxygen species (ROS) expression, impairs
mitochondrial function and induces chondrocyte death35. The
accumulation of AGEs renders the collagen network in articular
cartilage fragile, thereby increasing the risk of developing OA36.

Proinflammatory cytokines
Proinflammatory cytokines, including IL-1β, TNF-α, and IL-6, are
primarily synthesized by activated macrophages and play a crucial
role in the inflammatory response associated with OA37,38.
Epidemiological studies have identified diabetes and obesity as
contributing factors to the development of OA23,39. These
conditions induce a local or systemic state of low-grade
inflammation in the human body. Hyperglycemic environments
and adipose tissue have been shown to increase the in vivo
expression of proinflammatory factors, such as IL-1β, IL-6 and TNF-
α. This upregulation further activates the nuclear factor-κB (NF-κB)
signaling pathway, increases the catabolic activity of articular
chondrocytes and promotes degradation of the extracellular
matrix (ECM), ultimately leading to OA progression4,16,17,40–42. In
a stress-induced mouse model of OA, researchers observed that
the group fed a high-fat diet exhibited significantly higher serum
levels of TNF-α and more severe cartilage damage than the control
group. However, the Toll-like receptor-5-deficient (Tlr5 KO) mouse
group, also on a high-fat diet, displayed significantly lower serum
levels of IL-6 than the other groups, suggesting that obesity
increases the expression of proinflammatory factors, thereby
aggravating OA progression43. Another study demonstrated a
significant elevation of IL-1β in the serum of mice fed a high-fat
diet, with IL-1β inducing an inflammatory response in OA
chondrocytes through activation of the NF-κB signaling path-
way44,45. Notably, some studies have reported that metformin, a
medication used to treat diabetes, not only reduces body mass
index (BMI) in obese individuals but also decreases the rate of joint
replacement surgery in patients with OA46–48. In murine studies
conducted by Li et al., TNF-α and IL-1β markedly increased the
mRNA expression levels of matrix metalloproteinase 3 (MMP3),
MMP13, metalloproteinase with thrombospondin motifs 4
(ADAMTS4) and ADAMTS5 in primary articular chondrocytes49.
However, the addition of metformin effectively suppressed the
expression of MMP13 and MMP3 induced by TNF-α and IL-1β, and
it was further revealed that metformin exerted its inhibitory effects
on MMP13 and MMP3 expression by attenuating the catabolic
responses induced by inflammatory cytokines and promoting the
expression of anabolic genes, thereby safeguarding articular
chondrocytes49. Consequently, inhibiting the expression of proin-
flammatory factors through weight reduction or controlling
diabetic blood glucose levels can confer positive therapeutic
outcomes for the treatment of OA22,50.

Reactive oxygen species
Reactive oxygen species (ROS) are highly reactive molecules that
contain oxygen and can cause damage to cells. Oxidative stress
and mitochondrial dysfunction are known to be the primary
sources of ROS. Extensive research has shown that obesity and
diabetes can induce elevated levels of ROS in the body51–54.
Adipose tissue and high blood glucose levels create a proin-
flammatory environment, leading to an increase in M1-type
macrophages and proinflammatory cytokines such as IL-1, TNF-α,
and IL-6. These factors contribute to tissue damage and further
stimulate the secretion of proinflammatory cytokines, exacerbat-
ing oxidative stress and mitochondrial dysfunction; consequently,
tissues experience heightened levels of ROS55,56. Overproduction
of ROS is a contributing factor to the development and
progression of OA57. In OA chondrocytes, excessive ROS produc-
tion activates the MAPK and NF-κB signaling pathways, disrupting
the balance between cartilage catabolism and anabolism. This
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imbalance leads to increased catabolism of articular cartilage,
synovial inflammation and subchondral bone thickening56,58.
Studies have demonstrated that incubation of chondrocytes with
H2O2 results in increased ROS production, chondrocyte death59,
degradation of chondrocyte ECM and inhibition of proteoglycan
synthesis, which accelerate OA progression60,61. However, the use
of ROS inhibitors or scavengers can slow cartilage loss. Jin et al.
conducted experiments in a surgically induced mouse model of
knee OA and found that intraperitoneal injection of ROS inhibitors
significantly reduced the severity of cartilage damage in the knee
joints62. Additionally, ROS inhibitors decreased the mRNA levels of
MMP13 and ADAMTS5 in OA chondrocytes while increasing the
mRNA levels of Col-2 and Aggrecan62. Thus, ROS inhibitors reduce
cartilage damage by inhibiting ROS transduction in the MAPK and
NF-κB signaling pathways. In the IL-1β-induced human synovial
explant of the OA model, the level of the oxidative stress marker
8-OHdG exhibited a fourfold increase, and there was also a
significant elevation in MMP13 and ADAMTS5 expression63.
Notably, the addition of antioxidants resulted in a significant
decrease in the expression of MMP13 and ADAMTS5, indicating
that ROS inhibitors may possess the potential to alleviate synovial
inflammation in OA63. Lu et al. employed an ACLT surgery-induced
rat model of KOA and discovered that the ROS scavenger known
as black phosphorus nanosheets (BPNSs) effectively eliminated
intracellular ROS while concurrently maintaining cartilage mor-
phology and impeding the reduction of subchondral bone volume
in KOA64. Furthermore, it was observed that increased ROS levels

in OA chondrocytes could hinder the mitochondrial respiratory
chain and give rise to mtDNA mutations. This ROS-induced mtDNA
damage subsequently prompted enhanced expression of MMP1
and MMP3 in chondrocytes, thereby further increasing the
progression of OA58,65. Consequently, reducing ROS production
exerts a significant effect on the retardation of articular
chondrocyte senescence or the mitigation of associated
damage66.

Insulin resistance of the diabetic synovial membrane
Insulin resistance refers to the diminished physiological response
of specific organs or tissues in the body to normal insulin levels,
necessitating higher insulin concentrations to maintain normal
insulin function67. The presence of insulin resistance underlies the
development of type 2 diabetes, and its impact on KOA severity is
significantly more pronounced in individuals with type 2 diabetes
than in nondiabetic KOA patients68; notably, diabetes induces
more severe synovial inflammation or synovial thickening in both
diabetic mice and patients with KOA69–71. Extensive expression of
insulin receptors (IRs) has been observed in the synovium of both
mice and humans69. Moreover, obese KOA patients with type 2
diabetes exhibit elevated levels of TNF in their synovium, whereas
this elevation is not observed in obese KOA patients without
diabetes69. Fibroblast-like synoviocytes (FLS) respond to increased
TNF by upregulating the production of IL-1, TNF-α, IL-6, bone
morphogenetic protein 2 (BMP-2), ADAMTS4 and MMP1369,72.
Hamada et al. isolated synoviocyte fibroblasts from KOA patients
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without diabetes and found that insulin inhibited the induction of
TNF-mediated cytokines, growth factors and proteases69. How-
ever, in diabetic KOA patients, the inhibitory effects of insulin on
TNF-induced cytokines, growth factors and protease production
are diminished due to impaired signaling by insulin-resistant
synovial IRs69. BMP-2, in conjunction with cytokines and proteases,
further intensifies the progression of OA, as it promotes the
development of osteochondritis dissecans73. Additionally, chronic
hyperglycemia triggers oxidative stress, proinflammatory cyto-
kines and excessive production of AGEs within joint tissues. These
factors induce the production of vascular endothelial growth
factor (VEGF) and aggravate the synovial inflammatory response in
human synoviocytes through activation of the RAGE-NF-κB
pathway, ultimately leading to joint damage in OA patients30,74,75.
In diabetic patients, insulin resistance promotes the progression of
OA by impairing the protective and anti-inflammatory effects of
insulin within the synovium. Studies have also identified another
hepatic metabolic factor, LECT2, which is highly expressed in the
liver76. LECT2 mediates glucose metabolism and obesity-related
insulin resistance76. In a healthy male population, LECT2
concentrations in the blood increased with the intake of a high-
fat diet, suggesting that LECT2 has an important effect on
metabolic homeostasis in the body77. The researchers found that
LECT2 appeared at high expression levels in OA patients and
elderly individuals, suggesting that LECT2 may be involved in
OA78. Further studies are needed in the future to determine the
pathological mechanisms of LECT2 in OA.
In conclusion, obesity- and diabetes-induced hyperglycemia,

oxidative stress, inflammatory response and insulin resistance
suggest that disturbance in glucose metabolism may contribute to
metabolic OA (Fig. 1).

LIPID METABOLISM AND OA
The process of lipid metabolism includes the synthesis and
degradation of lipids in the cell, which is critical for the proper
functioning of living organisms. Lipid metabolism involves the
digestion, absorption, synthesis, storage and breakdown of fats and
the transport of various synthesized substances throughout the body
to meet physiological needs, such as the construction of cell
membranes. The action of various enzymes and bile salts hydrolyzes
fats into glycerol, fatty acids and other substances. Lipids are
absorbed through two mechanisms: triglycerides composed of
medium-chain and short-chain fatty acids are emulsified and directly
absorbed into the blood, while triglycerides containing long-chain
fatty acids combine with apolipoproteins and cholesterol to form
chylomicrons, which are ultimately absorbed into the blood via the
lymphatic system79. After metabolism and absorption, fats are
divided into four lipid groups: triglycerides, phospholipids, choles-
terol, and plasma lipoproteins. Other substances in the body control
the four lipid groups and change them into substances needed for
various biochemical processes in the organism. However, when the
homeostatic balance of lipid metabolism is disturbed, it will
predispose the body to diseases, including OA11. Numerous studies
have found that patients with lipid metabolism disorders suffer from
a higher risk of OA16,80,81. In a national study in the United States,
which focused on the prevalence of OA and metabolic syndrome in
subjects with OA and the general population without OA, the results
showed that the prevalence of OA was more than twice as high in
individuals with metabolic disorders as in the control population82.
This review examines the relevance of important lipid metabolites in
the development of OA and explores the underlying mechanisms of
lipid metabolism disorders in OA pathology, thus providing new
insights into the treatment of metabolic OA.

Effects of triglyceride metabolism on OA
A triglyceride is an ester consisting of glycerol and three fatty
acids. Elevated levels of serum triglycerides are also a risk factor

for the progression of OA83. During moderate- to low-intensity
exercise, the breakdown of triglycerides can provide most of the
energy needed by the exercising muscles. However, when there is
excessive fat intake over a prolonged period, the breakdown and
metabolism of fats can exceed the body’s capacity, resulting in the
accumulation of fatty acids. Triglycerides stored in adipose tissue
are gradually hydrolyzed into glycerol and free fatty acids (FFAs)
by lipases and released into the bloodstream. Fatty acids can be
classified as saturated fatty acids (SFAs), monounsaturated fatty
acids (MUFAs) and polyunsaturated fatty acids (PUFAs) based on
the length of their carbon chain and the number of double bonds.
Excessive lipid intake leads to an increased breakdown and

metabolism of triglycerides, resulting in elevated levels of SFAs in
the blood84. In vitro, studies have shown that treating cartilage
explants with SFAs increases the expression of glycosaminogly-
cans (GAGs), IL-6 and poly (ADP-ribose) polymerase (PARP) and
decreases the viability of chondrocytes in the top layer of the
explants85. SFAs also induce the upregulation of the autophagy
markers microtubule-associated protein and the expression of the
p65 protein and activate autophagy and NF-κB signaling pathways
in C28/I2 chondrocytes86. In an SFA-induced OA chondrocyte
model, IL-1β and MMP13 mRNA expression was increased, while
Col-2 and Sox9 mRNA expression was decreased and chondrocyte
glucose uptake was reduced87. After feeding Wistar rats an SFA-
containing diet for 16 weeks, the results of immunohistochemical
(IHC) staining revealed an increase in MMP13 and Col-X expression
and a decrease in aggrecan (ACAN) expression in the joint
cartilage, and the results of micro-CT showed a decrease in the
bone volume fraction of the tibia84. A clinical study of the
relationship between diet and OA progression in 2 092 patients
with OA showed that as dietary SFA levels in OA patients
increased, the width of the joint space decreased by 0.26mm,
0.27mm, 0.31 mm and 0.35 mm at 12, 24, 36, and 48 months after
feeding with a high SFA diet, respectively, suggesting that high
levels of SFA intake may aggravate structural damage in KOA88.
There is relatively limited research on the relationship between

MUFAs and the progression of OA. Gas chromatography‒mass
spectrometry (GC‒MS) has been used to determine the fatty acid
composition of the infrapatellar fat pad in a rabbit model of OA
caused by anterior cruciate ligament transection (ACLT). This
procedure led to a decrease in the amount of MUFAs in the knee
joint, but the link between MUFAs and OA is still not clear89.
However, the finding of an in vitro study demonstrated that
administration of MUFAs may be able to inhibit cartilage
degradation90. This may explain why the proportion of MUFAs is
decreased in patients with knee joint OA. In a TNF-α-induced
chondrocyte injury model, MUFAs were found to inhibit the mRNA
expression of prostaglandin-endoperoxide synthase-2 (PTGS2)
and matrix metalloproteinase 1 (MMP1), thus inhibiting cartilage
degradation90. In a clinical study, the synovial fluid of 23 OA
patients undergoing total knee replacement surgery was ana-
lyzed, and it was found that the level of MUFAs in the synovial
fluid of the OA group was higher than that in the non-OA group.
However, the mechanism underlying the relationship between
MUFAs and OA cartilage is still unclear91. The different results
obtained from observational studies may be due to differences in
the selected study populations. Further research is needed to
clarify the relationship between MUFAs and OA.
Polyunsaturated fatty acids (PUFAs) are a unique class of

bioactive compounds that play important physiological roles in
the human body. PUFAs can be classified into omega-3 (n-3) and
omega-6 (n-6) PUFAs based on the position of their double bonds.
N-3 PUFAs include eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA), while n-6 PUFAs include linoleic acid (LA) and
arachidonic acid (AA)92,93. N-3 and n-6 PUFAs are precursors for
the synthesis of eicosanoids, and the balance of these two
molecules in the body plays an important role in stabilizing cell
membrane function, regulating gene expression and maintaining
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cytokine function. In healthy adult chondrocytes cultured with n-6
PUFAs, the secretion of IL-6 was significantly increased94. AA
increases PEG production and ADAMTS mRNA expression in
canine chondrocytes95. In a male mouse fed a high n-6 PUFA diet,
n-6 PUFAs cause the progression of OA, prolong the wound
healing time and increase the expression of inflammatory
adipokines96. In a prospective cohort study of 5 328 participants,
including 42% men, the plasma n-6 PUFA levels in male OA
patients were positively correlated with joint effusion and knee
structural damage levels97. SFAs and n-6 PUFAs can exacerbate
cartilage structure damage by enhancing cell apoptosis and the
expression of cartilage degradation-related genes85,97. Studies
have shown that increasing n-3 PUFAs and decreasing n-6 PUFAs
in the bodies of transgenic fat-1 mice can significantly alleviate
cartilage destruction and osteophyte formation in the mouse OA
model, reduce the expression of MMP13 and ADAMTS5 in joint
cartilage, and stop the loss of chondrocytes and extracellular
matrix98. Another study found that n-3 PUFAs significantly
reduced the mRNA expression of ADAMTS4, ADAMTS5, MMP3,
MMP13, COX-2, IL-1β and TNF-α when bovine chondrocytes were
incubated with n-3 PUFAs, while n-6 PUFAs had no effect on the
mRNA expression of cartilage degradation-related genes and
inflammatory cytokines99. The researchers collected plasma from
167 patients with knee joint OA and found that OA patients with a
high n-6:n-3 PUFA ratio had lower pain thresholds and more
obvious limitations in joint movement and activities100. In another

clinical trial, symptomatic knee OA patients who took different
doses of n-3 PUFAs (fish oil supplements) experienced a reduction
in clinical pain symptoms and an increase in joint functions and
physical activities in the first year of treatment101. The WOMAC
score showed that OA patients treated with a low dose of n-3
PUFAs had greater improvement in pain levels and physical
functions after 2 years of treatment101 (Fig. 2). We have
summarized the fatty acid species and their effects on OA in
Table 1.

Effects of phospholipid metabolism on OA
Phospholipids are the main components of biological membranes
and can be divided into two classes: glycerophospholipids and
sphingolipids (SM). Glycerophospholipids are the most abundant
type of phospholipids in the body and can participate in cell
membrane recognition and signal transduction. Based on LC‒MS
plasma lipidomics analysis, Pousinis et al. found 24 lipid spectra
differences between the plasma of DMM-induced OA mice and
sham-operated mice. The significantly higher SM in the plasma
was positively correlated with the degree of DMM-induced joint
cartilage injury102. Phosphatidylinositol-4-phosphate 5-kinase type
γ (PIP5K1c) is a lipid kinase that catalyzes the synthesis of
phosphatidylinositol 4,5-bisphosphate (PIP2) and participates in
various cellular processes. It has been reported that mice with
Pip5k1c gene deletion exhibit a variety of spontaneous OA
pathological phenotypes, including cartilage degeneration, sur-
face fissures, subchondral sclerosis, meniscus deformation, syno-
vial hyperplasia and osteophyte formation103. These findings
suggest that Pip5k1c expression in chondrocytes plays a critical
role in maintaining joint tissue homeostasis.
In the pathological process of OA, the lubrication of synovial

joints could be influenced by mechanical and molecular factors
and by changes in synovial fluid. Synovial fluid can reduce joint
wear and maintain tissue homeostasis. In healthy individuals, an
effective lubricating layer is formed among the surfaces of
cartilage and other joint tissues, and changes in the structure
and composition of this layer could lead to lubrication abnorm-
alities and dysfunction of joint tissues and OA symptom
progression104. Researchers collected synovial samples from 13
OA patients who underwent knee replacement surgery for lipid
measurements and found that the spatial distribution of
glycerophospholipids was correlated with hypertrophic, inflamed
or vascularized synovial regions105. Kosinska et al. used lipidomics
and electrospray ionization tandem mass spectrometry methods
to analyze synovial fluid (SF) samples from 17 early OA patients, 13
late OA patients, 18 RA patients, and 9 control donors postmortem
and identified the following phospholipid categories in SF:
phosphatidylcholine (PC), lysophosphatidylcholine (lysoPC), phos-
phatidylethanolamine, phosphatidylethanolamine-derived alde-
hyde phospholipid, phosphatidylglycerol, phosphatidylserine,
sphingolipids and ceramides. Compared to the median PC
concentration in the SF of the control group, the median PC
concentration in the SF of early OA is 2.7-fold higher than that of
the control, and the median PC concentration in the SF of late OA
is 5.4-fold higher than that of the control106. In a clinical cohort
study, investigators collected serum from 24 patients with KOA for
metabolomics analysis and evaluated the volume of cartilage loss
between baseline and 24 months using magnetic resonance
imaging (MRI). The results showed that the increased serum ratio
of lysoPC to PC was associated with the volume of lateral
compartmental cartilage loss in the knee joint and the increase in
the joint degradation markers COMP and MMP1107. A recent study
has demonstrated the differences in SF phospholipidomics
between knee OA patients and non-OA patients, with higher
levels of PC, phosphatidylserine and phosphatidylinositol in the SF
of OA patients than in non-OA control subjects108. The plasma
ratio of lysoPC to PC also significantly increased in KOA
patients109. This ratio could be used to predict OA risk, disease
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Fig. 2 The mechanism of fatty acids in osteoarthritis. Excess SFAs
and n-6 PUFAs in the blood directly or indirectly activate the NF-κB
pathway by binding to the corresponding receptors, promoting the
expression of PTGS, IL-1, MMP13, ADAMTS5, and COL10 and
aggravating OA. MUFAs and n-3 PUFAs can inhibit the expression
of proinflammatory factors such as TNF-α and IL-1 and block the
activation of the MAPK and NF-κB pathways. SFAs saturated fatty
acids, n-6 PUFAs omega-6 polyunsaturated fatty acids, NF-κB nuclear
factor-k-gene binding, PTGS prostaglandin-endoperoxide synthase,
IL-1 interleukin-1, MMP13 matrix metalloproteinases 13, ADAMTS5 a
disintegrin and metalloproteinase protein 5, Col-X Collagen-10,
MUFA monounsaturated fatty acids, n-3 PUFA omega-3 polyunsa-
turated fatty acids, TNF-α tumor necrosis factor-α, MAPK mitogen-
activated protein kinase
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progression and treatment response110. This finding suggests that
increased conversion of PC to lysoPC, which is catalyzed by
phospholipase A2 (PLA2), is associated with OA progression111.
Pruzanski et al. found that the concentration of PLA2 in cartilage is
higher than that in synovium, suggesting that cartilage may be
the main source of PLA2 production112. PLA2 has also been found
to play a central role in OA inflammation113.

The impact of cholesterol metabolism on OA
Cholesterol in the human body mainly comes from two sources:
endogenous biosynthesis and intestinal absorption. The liver is the
major organ for cholesterol synthesis, and other tissues in the
body can also synthesize cholesterol114. It has been reported that
cholesterol can alter Indian hedgehog (IHH) activity to regulate
the development of articular cartilage, suggesting that cholesterol
plays an important role in cartilage development115. Numerous
studies have shown that promoting cholesterol efflux or increas-
ing cholesterol metabolism may help protect chondrocytes from
the influence of inflammation116–118. Nuclear receptors are one of
the most abundant transcriptional regulators in animals, as they
play important roles in metabolism, differentiation, reproductive
development and homeostasis maintenance. Reports have shown
that nuclear receptors, such as liver X receptor (LXR), peroxisome
proliferator-activated receptor (PPAR) and retinoic acid-related
orphan receptor α (RORα), play a key role in the transcriptional
regulation of lipid metabolism119–121. They are closely related to
the occurrence and development of metabolic OA122.
LXR regulates cholesterol efflux-related genes and plays a key

role in the transcriptional regulation of lipid metabolism-related
genes as a member of the nuclear hormone receptor superfamily.
By activating reverse cholesterol transport (RCT), LXR promotes
the conversion of cholesterol into bile acids in the liver, thus
protecting the body from hypercholesterolemia79,123,124. Reports
have shown that the expression of cholesterol efflux genes in OA
patients is significantly reduced and that the expression level of
LXR is positively correlated with the expression of cholesterol
efflux genes116,125. In a chondrocyte OA model, treatment with the
LXR agonist TO-901317 significantly increased the mRNA and
protein levels of cholesterol efflux genes ApoA1 and ABCA1 and

reduced lipid deposition in OA chondrocytes, suggesting that
changes in LXR levels in chondrocytes may be a contributing
factor in the regulation of dynamic OA development116. It has also
been found that LXR activation regulates the expression of lipid
homeostasis-related genes in chondrocytes and the free choles-
terol content in chondrocytes through the LXR–Srebp1–Scd1
axis120. After treatment with IL-1β and TNF-α, articular chondro-
cytes from OA patients showed significantly reduced LXR
expression, leading to polysaccharide protein degradation
through negative feedback regulation of the activated NF-κB
signaling pathway, suggesting that decreased LXR expression
levels could promote OA development126. In addition, LXR
activation can significantly reduce the expression of proinflam-
matory cytokines such as TNF-α, COX-2, IL-1β, MMP9 and iNOS127

and inhibit Toll-like receptor-mediated inflammatory responses by
promoting cholesterol efflux in macrophages128. Vaspin can
inhibit miR-155 expression in rat chondrocytes and promote
cholesterol efflux. When Vaspin expression is reduced, LXRα and
other cholesterol efflux-related genes are inhibited in chondro-
cytes, leading to cholesterol accumulation in chondrocytes and
worsening OA progression129. Reports have shown that metformin
can activate the AMPK/SIRT1 signaling pathway to reverse IL-
1β-induced extracellular matrix degradation in chondro-
cytes130,131. Activation of the AMPK/SIRT1 pathway upregulates
LXRα expression, thereby promoting cholesterol efflux in chon-
drocytes130,131. AMPK signaling could interact with many signaling
pathways that may be involved in OA occurrence and progression.
For example, it has been shown that metformin inhibits
β-cateninS552 phosphorylation and nuclear translocation132. The
AMPK activators metformin and berberine inhibit OA progres-
sion49,133,134. In an IL-1-treated chondrocyte model, researchers
observed that IL-1β significantly downregulated the mRNA and
protein expression of cholesterol efflux-related factors ABCA1,
ApoA1 and LXR in chondrocytes. Resveratrol (RES) can activate the
SIRT1/FoxO1 signaling pathway to promote LXRα expression,
reduce cholesterol accumulation in chondrocytes and delay OA
progression135.
Due to the inability of peripheral cells to degrade cholesterol,

excessive cholesterol efflux is the only way to eliminate

Table 1. Fatty acids and the development of OA

Type of fatty
acid

Type of study Role in the pathogenesis of OA Potential relationship with
OA

Reference

SFA In vitro model Promotes IL-6 release, and ECM degradation, induces chondrocytes death. Promote OA 85

In vitro model Increased activation of autophagy and NF-κB signaling pathways. 86

In vitro model Increased IL-1β and MMP13 expression, decreased the expression of
collagen-II and Sox9.

87

Rat model Increased MMP13 and Col-X expression, decreased bone volume fraction
and ACAN expression.

84

Clinical trial Reduce the width of the knee gap and aggravate the damage to the
cartilage structure of the joint.

88

MUFA In vitro model Inhibit expression of PTGS2 and MMP1. Inhibit OA 90

Rabbit model Inhibit cartilage destruction. 90

N-6 PUFA In vitro model 1. Increased expression of IL-6.
2. Upregulation of PEG and ADAMTS expression.

Promote OA 94,95

Mouse model Prolongs the time to wound healing, and increases the expression of
inflammatory adipokines.

96

Clinical trial Exacerbates damage to the structure of the knee joint. 97

N-3 PUFA In vitro model Reduces the expression of ADAMTS4, ADAMTS5, MMP3, MMP13, COX-2, IL-
1β, and TNF-α.

Inhibit OA 99

Mouse model Reduces the expression of MMP13 and ADAMTS5, alleviate cartilage
destruction and osteophyte hyperplasia.

98

Clinical trial Reduces clinical pain symptoms and improves motor function. 101
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cholesterol from these cells. When the LXR transcription factor is
activated, it binds to the promoter sequence of the ABCA1 gene.
ABCA1 acts as a lipid pump to efflux cholesterol and phospho-
lipids from osteoarthritic chondrocytes to ApoA1 (Fig. 3),
generating new high-density lipoprotein (nHDL) particles116,136,137.
Lecithin-cholesterol acyltransferase (LCAT) catalyzes the conver-
sion of free cholesterol to cholesterol esters to form mature HDL,
which enters the liver through bile secretion and fecal excretion,
reducing cholesterol levels in chondrocytes138. Currently, choles-
terol efflux agonists have an important impact on inhibiting
metabolic OA progression. LCAT deficiency directly affects the
normal physiological function of HDL. Researchers found that
LCAT-/- mice fed a high-fat diet for 24 weeks developed OA
pathology, indicating that the abnormal physiological function of
HDL led to the occurrence of an OA phenotype in mice139. There
are also reports showing that high levels of HDL have a certain
preventive effect on OA progression140. LCAT is mainly produced
and secreted by the liver, and upregulation of LCAT expression has
been shown to enhance the reverse cholesterol transport (RCT)
process in mice with hepatic osteodystrophy, thereby alleviating
bone loss141.
PPAR plays an important role in lipid metabolism, the

inflammatory response, and cell apoptosis142,143. PPAR regulates
many metabolic processes in cells, including the three subtypes
PPARα, PPARγ and PPARδ. Increasing evidence suggests that PPAR
is involved in the occurrence and development of OA and is
closely related to the regulation of lipid metabolism disorders and
OA.
PPARα is present in chondrocytes, endothelial cells and

hepatocytes and exhibits anti-inflammatory effects. In aging and
surgically induced OA mouse models, it has been shown that the
numbers of PPARα-positive chondrocytes decreased gradually in
the cartilage with aging and OA progression144. Further IHC
analysis showed that PPARα expression in the cartilage of patients
with KOA was significantly lower than that in the non-OA
individuals, suggesting that PPARα plays an important role in
the homeostatic regulation of chondrocytes144. Researchers have
also divided the cartilage of OA patients into relatively healthy

(non-OA) and severely damaged (OA) groups and found that the
lipid deposition area in the OA group was significantly increased
compared to that in the non-OA group. Additionally, the
expression of PPARα in chondrocytes and cartilage of OA patients
was significantly reduced. However, in OA chondrocytes treated
with PPARα agonists, lipid deposition was significantly reduced,
suggesting that PPARαmay be involved in the development of OA
by regulating lipid metabolism. The study also found that PPARα
regulates the balance of joint cartilage homeostasis through the
PPARα–ACOT12 pathway145. More recent studies have demon-
strated that PPARα protects against articular cartilage damage in a
mouse OA model by inhibiting the inflammatory response146. The
mechanism of lipid deposition in articular cartilage and the
pathogenesis of OA are not fully understood and require further
in-depth investigation in the future.
PPARγ is highly expressed in cartilage tissue, and PPARγ

agonists reduce inflammation and prevent cartilage degradation
in OA animal models147,148. A study showed that PPARγ expression
was downregulated during the progression of OA in STR/Ort mice,
which was aggravated under inflammatory conditions in joint
cartilage, leading to knee joint cartilage damage and osteophyte
formation149. It has been reported that promoting cholesterol
efflux through PPARγ-mediated pathways can promote extra-
cellular matrix synthesis in OA chondrocytes in rabbits118. Studies
have found that SUMO-modified PPARγ can improve lipid
metabolism disorders in chondrocytes. In summary, PPARγ
activation has a potential therapeutic effect on OA, but the
specific mechanism of PPARγ-regulated lipid metabolism in
decelerating OA progression has yet to be fully elucidated150.
Unlike PPARα and PPARγ, which have positive effects on

cartilage degradation in OA, current research suggests that PPARδ
activation could exacerbate OA progression151. When a PPARδ
agonist (GW501516) was used to treat mouse chondrocytes, it was
found that PPARδ activation significantly increased the mRNA
expression of MMP2, MMP3, ADAMTS2 and ADAMTS5 in
chondrocytes compared to that of nontreated cells, and the
degree of fatty acid oxidation in chondrocytes was significantly
increased152. It has also been shown that deletion of the PPARδ
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Fig. 3 The role of liver nuclear receptor LXR in osteoarthritis. The liver nuclear receptor LXR binds to ABCA1, promotes the efflux of cholesterol
in chondrocytes, inhibits the activation of the NF-κB pathway and reduces the expression of IL-1β, TNF-α, MMP13 and ADAMTS5. LXR agonists
can promote LXR expression and strengthen the above two pathways. LXR liver X receptor, ABCA1 ATP-binding cassette transporter A1, NF-κB
nuclear factor-k-gene binding, IL-1β interleukin-1β, TNF-α tumor necrosis factor-α, MMP13 matrix metalloproteinases 13, ADAMTS5 a
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gene in chondrocytes helps alleviate OA symptoms induced by
DMM surgery in mice, indicating that PPARδ deficiency has an
inhibitory effect on OA development152. The potential mechanism
of PPARδ-exacerbated OA could be that PPARδ promotes fatty
acid oxidation in chondrocytes, which can induce the production
of ROS and accelerate OA progression.
During cholesterol overload, cholesterol signaling activation

promotes chondrocyte hypertrophy by upregulating the expres-
sion of the nuclear receptor RORα. RORα is a downstream target of
the cholesterol metabolism pathway, the cholesterol-25-
hydroxylase (CH25H)-oxysterol-7α-hydroxylase (CYP7B1) axis.
Overexpression of RORα upregulates cartilage degradation-
related genes and downregulates the expression of anabolic
metabolic factors153,154. Cui et al. induced effective overexpression
of CH25H in the joint by intra-articular injection of adenovirus-
CH25H (Ad-CH25H) in mice and found that RORα upregulated the
downstream mediators of cholesterol metabolism, leading to
severe cartilage damage, osteophyte formation and thickening of
the subchondral bone plate in mice, indicating that the CH25H-
CYP7B1-RORα axis is involved in cholesterol metabolism and plays
a role in the pathological process of OA153. In an ACLT-induced OA
mouse model, RORα siRNA delivered by adenovirus was
administered into the knee joint two weeks after surgery, the
expression of Aggrecan and Col2a1 in joint cartilage was
increased, and cartilage damage was partially reversed by RORα
siRNA. Researchers found that RORα may regulate the progression
of OA through the IL-6/STAT3 signaling pathway155. miR-10a-3p is
an upstream target of CH25H. miR-10a-3p can reduce the
production of cartilage degradation enzymes in chondrocytes
under inflammatory conditions through regulation of the CH25H-
CYP7B1-RORα axis and protect cartilage degeneration in a rat OA
model156. RORα plays an important role in regulating the
cholesterol metabolism pathway and can be a potential target
for the treatment of metabolic OA.

Low-density lipoprotein receptor-related protein 3 (LRP3) not
only regulates the steady state of blood lipids and fibrinolysis but
also participates in the regulation of cholesterol metabolism. It has
been shown that LRP3 can positively regulate the metabolism of
extracellular matrix in chondrocytes, and the downregulation of
LRP3 can activate the Ras signaling pathway and upregulate
syndecan-4 protein levels, aggravating mouse knee joint cartilage
degeneration157.
High cholesterol levels may play a key role in the pathogenesis

of OA. Hypercholesterolemia can lead to atherosclerosis, causing
ischemia and hypoxia in the corresponding blood supply area,
resulting in inadequate energy supply in the joint tissue. There-
fore, when cholesterol accumulates in the joint, the blood supply
to the subchondral bone is insufficient, enhancing the insufficient
oxygen and nutrient supply to the subchondral bone and
worsening the pathological process of OA158. We summarize the
functional components of cholesterol in OA and its associated
molecular pathways in Table 2.

The impact of plasma lipoprotein metabolism on OA
The structure of plasma lipoproteins is mostly spherical, consisting
of a core of triglycerides and cholesterol esters, covered by a
complex of lipids, phospholipids and free cholesterol molecules
on the surface, ensuring the normal transport of lipids in the
plasma. Lipoproteins can be classified into chylomicrons (CM),
very-low-density lipoproteins (VLDL), low-density lipoproteins
(LDL) and high-density lipoproteins (HDL) based on their density.
HDL is mainly produced in the liver and is responsible for
removing excess cholesterol from cell membranes. The plasma
phospholipid cholesterol acyltransferase transfers fatty acid
residues from phospholipids to cholesterol to produce cholesterol
lipids, and then HDL transports cholesterol lipids to the liver,
where excess cholesterol is converted into bile acids, maintaining
the homeostasis of normal lipid metabolism in the body. Studies

Table 2. The role of nuclear receptors associated with cholesterol metabolism in OA

Nuclear receptor
type

Mechanism of action of nuclear receptors Signaling pathways in OA Reference

LXR Increased expression of cholesterol efflux genes ApoA1 and ABCA1 and
reduced lipid deposition in chondrocytes.

NA 116

Promotes the expression of lipid homeostasis genes and reduces free
cholesterol in chondrocytes.

LXR-Srebp1-Scd1 signaling pathway
activation

120

Promotes cholesterol efflux and inhibits inflammatory response. NA 128

Inhibits proteoglycan degradation. NF-κB signaling pathway inhibition 126

Inhibits expression of LXRα leads to the accumulation of cholesterol in
cartilage.

NA 129

Promotes the efflux of cholesterol inside chondrocytes. AMPK/SIRT1 signaling pathway
activation

130,131

Reduces the accumulation of cholesterol in chondrocytes. SIRT1/FoxO1 signaling pathway
activation

135

PPARα Reduces lipid deposition. PPARα−ACOT12 signaling pathway
activation

145

PPARγ Reduces micro environmental inflammation and catabolism in articular
cartilage.

NA 149

Promotes extracellular matrix synthesis. NA 118

Inhibits abnormal lipid metabolism in chondrocytes. NA 150

PPARδ Increased expression of MMP2, MMP3, ADAMTS2 and ADAMTS5 in
chondrocytes.
Loss of PPAR-δ protects OA cartilage damage.

NA 152

RORα 1. Upregulation of cartilage degradation-related genes and
downregulation of anabolic factors.

2. Exacerbates cartilage damage and subchondral bone thickening.

CH25H-CYP7B1-RORα axis 153,154

Inhibition of RORα can promote the elevation of aggregate glycans and
Col2a1 in articular cartilage.

IL-6/STAT3 signaling pathway 155
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have found that metabolic syndrome and low HDL are associated
with decreased medial tibial plateau cartilage volume, while
insulin resistance, high waist circumference and low HDL-C are
associated with tibial cartilage defects. Interventions targeting
these pathogenic factors may prevent or delay knee joint OA
progression159,160. However, in a study of the relationship
between lipid and lipoprotein levels and OA in the MOST cohort,
337 symptomatic OA patients and 283 radiographic OA patients,
of whom 55% were female, were included. The researchers found
that the levels of total cholesterol, LDL and HDL in the serum of
OA patients were not significantly correlated with joint cartilage
loss, synovial inflammation or knee joint pain161. More basic and
clinical investigations are needed to determine the role of
lipoproteins in metabolic OA.
Lipoproteins are the protein component of plasma lipoproteins

and are mainly divided into five categories: A, B, C, D and E.
Lipoproteins are proteins that can bind and transport lipids to
various tissues in the body for metabolism and utilization.
ApoA-1, the main component of HDL, plays an important role in

lipoprotein clearance and cholesterol efflux in chondrocytes154. In
a study in which 184 OA patients undergoing knee joint surgery
and 180 healthy volunteers were recruited, researchers found that
the expression levels of ApoA-1 in the synovial fluid (SF) of OA
patients were negatively correlated with the severity of knee OA
cartilage damage, radiographic severity, and severity of OA
symptoms162. However, in a surgically induced rabbit KOA model,
researchers detected a downregulation of ApoA-1 protein levels in
the SF after ultrasound treatment163. Further exploration is
needed to determine whether ApoA-1 can serve as a reliable
marker for OA diagnosis.
ApoB is a basic structural component of CM, VLDL, IDL and LDL.

Studies have found significant differences in ApoB levels between
OA patients and healthy individuals, with higher levels in OA
patients164. However, a bidirectional Mendelian randomization
study found that elevated ApoB levels were negatively correlated
with the risk of knee and hip OA165. Therefore, further research is
needed to determine whether ApoB can serve as a molecular
target for OA treatment.
ApoD is a secreted glycosylated protein and is an atypical

lipoprotein that can bind to several small molecules, including
arachidonic acid, steroids and cholesterol, and has important
functions, such as antioxidation, anti-inflammation and anti-stress
functions166–168. Qin et al. identified potential biomarkers for OA
using weighted gene coexpression network analysis (WGCNA) and
confirmed that ApoD was the only gene that was downregulated as
a hub gene in multiple tissues169. The researchers collected serum
samples from 113 KOA patients and 97 healthy controls for ELISA test
and found that ApoD levels were significantly lower in KOA patients
than in the control individuals, suggesting that serum ApoD levels
may be associated with the severity of OA in OA patients170.
ApoE is an important component of plasma lipoproteins that

primarily transports triglycerides and cholesterol to peripheral
tissues. Farnaghi et al. generated an OA model in ApoE-deficient
mice by feeding the mice a high-cholesterol diet for 4 weeks and
found that the mice had increased osteophyte formation,
aggravated cartilage degradation and more severe OA patholo-
gical symptoms171. In another study, researchers fed APOE-
deficient mice with a high-cholesterol diet and found that the
synovial membrane thickness increased in these mice172. These
studies suggest that ApoE may play an important role in the
occurrence and progression of metabolic OA.
ApoC is the main lipoprotein carrier of VLDL and an important

regulator of lipoprotein metabolism, but there are currently almost
no reports on the relationship between ApoC and OA.

The impact of other lipid metabolism-related proteins on OA
Leptin is a hormone secreted by adipose tissue, and its serum
levels are positively correlated with the size of animal fat tissue.

Leptin binds to its receptor and induces cellular responses
through the JAK-STAT, PI3K, AMPK and MAPK signaling path-
ways173. Studies have found that leptin has a catabolic effect on
cartilage metabolism. In a study using conditioned medium from a
patellar fat pad (containing leptin) derived from OA patients to
treat chondrocytes, leptin significantly induced collagen release
and MMP expression in chondrocytes and activated signaling
pathways such as JAK-STAT174. Bao et al. injected recombinant rat
leptin (100 μg) into rat knee joints and found that leptin
significantly increased the expression levels of MMP2, MMP9,
tissue protease D, and Col-2 mRNAs and proteins and observed a
decrease in proteoglycans in joint cartilage175. When leptin was
used alone or in combination with IL-1β, it upregulated MMP
production in human OA chondrocytes through signaling path-
ways, such as NF-κB and MAPK, leading to protein degradation of
cartilage ECM176. In a study of 163 elderly individuals, researchers
found that serum leptin levels were negatively correlated with the
thickness of joint cartilage, suggesting that leptin may play an
important role in changes in cartilage thickness177. These results
suggest that leptin plays a catabolic role in cartilage metabolism
and may be a detrimental factor in the pathological development
of OA. However, in another study, researchers observed a
significant increase in proteoglycan synthesis in all cartilage
regions of the rat tibial plateau after injection of exogenous leptin
(30 μg), indicating a protective effect of leptin on cartilage
degradation, and these discrepancies may be dose-related178.
Currently, the role of leptin in OA remains unclear, and further
investigations are still needed.
Adiponectin, the most abundant adipokine in human plasma, is

primarily secreted by white adipose tissue and plays a crucial role
in regulating appetite and metabolism. Adiponectin exerts its
biological effects through AdipoR1 and AdipoR2 receptors, which
are expressed in various tissues, including the liver, articular
cartilage, bone and synovium179–181. However, these two recep-
tors have distinct functions in the body, with AdipoR1 mainly
associated with AMPK signaling pathway activation, while
AdipoR2 is linked to PPAR-α signaling pathway activation182.
In a study containing 12 patients undergoing knee replacement

surgery for OA, researchers found that AdipoR1 and AdipoR2
expression levels were significantly higher in the OA cartilage
lesion areas than in the non-lesion areas180. Moreover, the growth
rate of AdipoR1-positive chondrocytes was significantly higher
than that of AdipoR2-positive chondrocytes, suggesting that
changes in AdipoR1 expression may better reflect the catabolic
metabolism status of cartilage than AdipoR2. Adiponectin may
accelerate the degradation of OA cartilage ECM through the
activation of the JNK signaling pathway180.
Plasma adiponectin levels and adiponectin release from

cartilage were found to be higher in patients with severe OA
(Ahlbäck grades 4 and 5) than in those with mild OA (Ahlbäck
grades 1 to 3). Adiponectin may activate the MAPK signaling
pathway, leading to increased release of inflammatory cytokines
and MMP expression in chondrocytes, thereby promoting the
destruction of articular cartilage and heightening OA symp-
toms183. Similarly, in another study of OA patients undergoing
total knee replacement surgery, adiponectin in knee synovial fluid
significantly inhibited the aggregation of glycosaminoglycans in
cartilage, suggesting that synovial adiponectin plays a positive
role in cartilage damage184. Based on the current understanding
of the relationship between adiponectin and OA, the develop-
ment of pathway inhibitors related to adiponectin may be a
promising avenue for the treatment of metabolic OA (Fig. 4).

Lipid metabolism and OA treatment
Treatment of OA remains a challenging issue, with most
therapeutic approaches aiming to alleviate pain, improve or
restore joint function, enhance patient quality of life, delay disease
progression and correct deformities. The treatment of OA requires
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a combination of pharmacological and nonpharmacological
interventions, with surgery being necessary for severe cases in
the advanced stages of the disease.
Nonpharmacological interventions include exercise and dietary

management. Studies have shown that OA can be treated through
nonpharmacological approaches such as aerobic and strength
exercises. Regular moderate exercise can alleviate pain, improve
physical function and significantly slow disease progression,
making it an important component for early intervention of
OA185–189. Overweight or obese patients with OA can achieve their
ideal body weight by combining dietary adjustments with
exercise, thereby reducing the burden on their joints and
improving their clinical symptoms190,191. Overweight or obese
patients with OA often have lipid metabolic disorders, and weight
loss can help slow the progression of metabolic OA.
Pharmacological interventions include the use of nonsteroidal

anti-inflammatory drugs (NSAIDs) either locally or systemically,
which are commonly used to alleviate mild to moderate pain in
OA patients186,192. Intra-articular injection of corticosteroids can
provide short-term pain relief in OA patients. A clinical trial
showed that physical therapy or corticosteroid injection had
similar efficacy in the short term, but physical therapy had better
long-term effects, and long-term intra-articular injection may
cause some joint damage185,193,194. For late-stage OA patients
whose pain cannot be relieved by other treatments, joint
replacement surgery is recommended, which can effectively
alleviate pain and improve the patient’s quality of life195. For the
treatment of metabolic OA, targeting the pathogenesis and
correcting lipid metabolism disorders may be an ideal approach.
Lipid-lowering drugs are a class of medications that can reduce

plasma triglycerides or lower plasma cholesterol. They include
statins, cholesterol absorption inhibitors, fibrates, PCSK9 inhibitors,
niacin, bile acid sequestrants and n-3 PUFA. By targeting different
types of lipid metabolic disorders, the use of different lipid-
lowering drugs is a new treatment approach for metabolic OA.
Statins are competitive inhibitors of 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase, which can effectively lower
serum cholesterol levels and are widely used to treat

hypercholesterolemia196,197. Members of the statin class include
atorvastatin, fluvastatin, lovastatin, pitavastatin, pravastatin, rosu-
vastatin and simvastatin197,198. Studies have shown that statins
can delay or inhibit the progression of OA in in vitro cultured OA
chondrocytes199–203 and experimental OA animal models
in vivo204–207. In a clinical study comparing the progression of
OA over 6.5 years between statin users and nonusers, researchers
found that use of statin significantly slowed the overall progres-
sion of knee OA208. Another clinical follow-up study found that use
of statins reduced the risk of joint space narrowing in patients
with KOA compared with that of non-statin users209. This may be
related to the anti-inflammatory and antioxidant functions of
statins.
Cholesterol absorption inhibitors mainly reduce the absorption

of cholesterol in the intestine and are represented by ezetimibe,
which can lower low-density lipoprotein cholesterol and, when
used in combination with statins, can further lower low-density
lipoprotein cholesterol levels210,211. Although ezetimibe can
significantly lower cholesterol and have therapeutic effects in
other diseases, it can only lower serum cholesterol in OA and has
no therapeutic effect on OA210,212. Niacin is converted to
nicotinamide in the human body, which is a component of
coenzyme I and coenzyme II, involved in lipid metabolism in the
body. Currently, niacin has not been applied in the treatment of
OA. Bile acid sequestration promotes the excretion of cholesterol
by inhibiting the reabsorption of cholesterol-rich bile acids.
However, due to their many adverse effects, they are now rarely
used clinically and have not been used to treat OA.
Fibrates include fenofibrate, bezafibrate and gemfibrozil.

Currently, fenofibrate is the only fibrate that is associated with
OA. Fenofibrate is a peroxisome proliferator-activated receptor
alpha (PPARα) agonist that can lower triglyceride levels in the
body. PPARα can regulate the uptake and metabolism of fatty
acids, as well as exert anti-inflammatory effects213,214. Studies have
found that PPARα is downregulated in the blood and cartilage of
surgically induced OA mouse models and KOA patients, indicating
that PPARα deficiency may be an intrinsic factor leading to the
development of OA, and PPARα agonists can prevent cartilage
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degradation144. Researchers have found that the addition of
PPARα agonists to the infrapatellar fat pad (IPFP) of OA patients
can effectively inhibit the production of cytokines, such as IL-6, IL-
8, MCP1 and IL-4, induced by IL-1β in IPFP215–217. Patients with
HOA showed improvement in pain, hand function, systemic
inflammation and lipid status after 4 weeks of treatment with
fenofibrate218. However, other studies have found that fenofibrate
has no inhibitory effect on cartilage injury in the STR/Ort
spontaneous OA mouse model219. Currently, the use of fibrates
in the treatment of OA is still unclear and requires more basic and
clinical investigations for further clarification.
PCSK9 inhibitors have potent cholesterol-lowering effects by

preventing LDL receptor degradation and reducing LDL-C by
50%–70%. However, PCSK9 inhibitors are rarely used alone for
lipid-lowering therapy but rather in combination with other lipid-
lowering drugs for efficient lipid-lowering therapy. In a study
inducing KOA in APOE∗3Leiden. CETP mice fed a high-fat diet,
researchers found that cholesterol-lowering therapy with a combi-
nation of atorvastatin and PCSK9 inhibitors did not inhibit the
progression of cartilage degradation in mice220. This suggests that
while PCSK9 inhibitors can be used to treat lipid metabolic disorders,
their use in the treatment of metabolic OA is still debatable.
N-3 PUFA is a type of fatty acid that cannot be synthesized by

the human body. The main types of n-3 PUFA are alpha-linolenic
acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA), which can promote the reduction of triglycerides. In IL-
1β-induced chondrocyte and synovial cell inflammation models,
the addition of n-3 PUFAs can reduce the expression of
inflammatory and degradation markers in chondrocytes and
synovial cells93,221. Adler et al. found that n-3 PUFA intervention

in IL-induced canine chondrocytes significantly decreased iNOS
expression and NO production compared to the control chon-
drocytes95. Additionally, in human chondrocytes treated with n-3
PUFAs, the expression levels of MMP13 and PGE2 were
reduced222,223. Therefore, the current findings suggest that n-3
PUFAs have a positive effect on chondrocytes in treating
inflammation. Researchers have injected sustained-release EPA
into surgically induced KOA mice and observed that it can
effectively prevent the progression of KOA224. In a previous RCT,
consuming krill oil improved pain, stiffness and functional
movement in patients with mild to moderate KOA225. However,
in another RCT, supplementing n-3 PUFAs did not alleviate knee
pain, stiffness, or functional movement226. Although a large body
of evidence suggests that n-3 PUFAs may have a role in reducing
low-grade inflammation related to OA and slowing cartilage
degradation, more clinical studies are needed to further clarify the
function of n-3 PUFAs. Metabolic OA has been found to be
associated with metabolic syndrome because they share common
pathogenic factors23. In the future, lipid-lowering drugs combined
with nonsteroidal anti-inflammatory drugs have great potential for
the treatment of metabolic OA. The studies related to lipid-
lowering drugs in the treatment of OA and their efficacy in OA
treatment are summarized in Table 3.

PERSPECTIVE
Current research on lipid metabolic disorders in OA provides a
basis for further exploring the pathogenesis and prognosis of this
disease. A large number of studies have confirmed that while age
and body weight are related to OA, lipid metabolism disorders are

Table 3. Lipid-lowering drugs in the treatment of OA

Lipid
Lowering
Drug

Drug
function

Potential
role in OA

Basic research Clinical trial

Statins TC↓
LDL↓
HDL↑

Protective
effect

1. Atorvastatin may prevent the damage of the cartilage200.
2. Cindine promotes the repair of damaged chondrocytes201.
3. Pravastatin reduces the expression of MMP, promoting OA

chondrocytes cholesterol efflux and protecting the
chondrocytes matrix202.

4. Simvastatin reduces IL-1β, MMP-3, and leptin expression203.
5. Simvastatin delays OA progression204.
6. Fluvastatin attenuates the degradation of cartilage in OA206.
7. Lovastatin inhibits apoptosis of rabbit chondrocytes in

inflammatory environments207.

1. Statins can significantly delay disease
progression in patients with KOA208.

2. Statins may reduce the risk of narrowing of the
joint space in people with KOA209.

Ezetimibe LDL↓ No effect Ezetimibe has no effect on inhibiting the development of
OA210,212.

NA

Fibrates TG↓
HDL↑

Protective
effect

PPARα agonists can prevent cartilage degradation144. 1. PPARα agonists prevent cartilage degradation144.
2. PPARα agonists downregulates the production

of inflammatory factors in the IPFP in patients
with OA215–217.

3. Fenofibrate reduces pain, systemic inflammation
and lipids in patients with HOA218.

No effect Fenofibrate has no inhibitory effect on the development of
cartilage injury in mouse models of OA219.

NA

PCSK9
Inhibitors

LDL↓ No effect PCSK9 inhibitors did not attenuate cartilage degradation in OA
mice220.

NA

Omega-3
fatty acids

TG ↓ Protective
effect

1. N-3 PUFA can reduce the expression of inflammatory factors
and markers of cartilage degradation93,221.

2. N-3 PUFA reduces the production of iNOS and NO95.
3. N-3 PUFA can reduce the expression of MMP13 and

PGE2222,223.
4. N-3 PUFA can mitigate the progression of KOA224.

N-3 PUFA improves pain, stiffness, and motor
function in patients225.

No effect NA N-3 PUFA cannot alleviate knee pain, stiffness and
functional movement226.
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also involved in the progression of OA. Related in vitro and in vivo
experiments have been conducted, and molecules important for
metabolism, such as LXR120,130,131, PPARα145 and RORα153,154, have
been found to play important roles in OA development.
Additionally, certain lipid-lowering medications in clinical settings
have been found to alleviate OA progression in recent clinical
studies144,208,209. A combination of lipid-lowering drugs and anti-
inflammatory drugs may be more beneficial for OA patients than
anti-inflammatory drugs alone. However, existing data are still
limited, a common mechanism for lipid metabolism disorders in
OA has not been definitively revealed, and some inconsistent
results have been reported. Therefore, more evidence is needed to
clearly define the pathological mechanisms of lipid metabolism
disorders and their contribution to OA development. Controlling
body weight and a balanced diet to maintain the homeostasis of
lipid metabolism can play a positive role in maintaining joint
health. Finding effective drugs to target metabolic disorders will
require further in-depth research in the future.
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