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Spatial transcriptomic interrogation of the murine bone
marrow signaling landscape
Xue Xiao1, Conan Juan 2, Tingsheng Drennon 3, Cedric R. Uytingco3, Neda Vishlaghi2, Dimitri Sokolowskei2, Lin Xu1, Benjamin Levi2,
Mimi C. Sammarco 4 and Robert J. Tower 2✉

Self-renewal and differentiation of skeletal stem and progenitor cells (SSPCs) are tightly regulated processes, with SSPC
dysregulation leading to progressive bone disease. While the application of single-cell RNA sequencing (scRNAseq) to the bone
field has led to major advancements in our understanding of SSPC heterogeneity, stem cells are tightly regulated by their
neighboring cells which comprise the bone marrow niche. However, unbiased interrogation of these cells at the transcriptional
level within their native niche environment has been challenging. Here, we combined spatial transcriptomics and scRNAseq using a
predictive modeling pipeline derived from multiple deconvolution packages in adult mouse femurs to provide an endogenous, in
vivo context of SSPCs within the niche. This combined approach localized SSPC subtypes to specific regions of the bone and
identified cellular components and signaling networks utilized within the niche. Furthermore, the use of spatial transcriptomics
allowed us to identify spatially restricted activation of metabolic and major morphogenetic signaling gradients derived from the
vasculature and bone surfaces that establish microdomains within the marrow cavity. Overall, we demonstrate, for the first time, the
feasibility of applying spatial transcriptomics to fully mineralized tissue and present a combined spatial and single-cell
transcriptomic approach to define the cellular components of the stem cell niche, identify cell‒cell communication, and ultimately
gain a comprehensive understanding of local and global SSPC regulatory networks within calcified tissue.
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INTRODUCTION
In healthy bone, skeletal stem and progenitor cells (SSPCs) are
tightly regulated to self-renew, to maintain the stem cell pool, and
to differentiate to replenish the population of bone-forming
osteoblasts.1,2 Disruption of this tight SSPC regulation is associated
with the onset of metabolic bone disorders leading to progressive
bone loss, such as osteoporosis. Disruption of SSPC regulation is
typically caused by localized changes within the bone marrow
niche.3 Thus, identifying and characterizing the SSPCs within their
local regulatory environment is an area of intense research.
While single-cell RNA sequencing (scRNAseq) has become

widely used and can interrogate each individual cell within a
tissue, the requirement for dissociation, often through enzymatic
digestion, not only alters the transcriptional profile of each cell but
also removes the ability to place these cells within their native
environment. The ability to interrogate the spatial profile of these
cells relative to each other in tissue only recently came about with
the development of the spatial transcriptomics platform. While
this technique is easily applied to soft tissue, the need to decalcify
bone, a process that typically destroys mRNA, has remained an
obstacle for long bone samples. As a result, scRNAseq has been
the primary approach to dissect SSPC populations in long bone.4–7

A variety of markers have been proposed using transgenic mice
and immunohistochemistry to label SSPC populations, including
platelet-derived growth factor receptor alpha (PDGFRα) and SCA1

(termed PαS cells),8 leptin receptor (LEPR), and CXCL12 (termed
CXCL12-abundant reticular cells, CAR cells).9,10 The application of
scRNAseq has significantly advanced our understanding of the
intrinsic signaling mechanisms in these SSPC populations.5,11,12

However, single-cell studies have revealed that previously
proposed markers label discrete stromal cell subtypes, supporting
the concept of heterogeneity within the proposed SSPC popula-
tions. These studies have also shown that previously identified
stromal cells have expression profiles that overlap with markers
for committed adipocyte lineage cells, such as Adipoq, and that
these SSPC markers may also label progenitor cells already primed
to the osteogenic and adipogenic lineages.4,7 This lack of
consensus highlights the complexity of stem cell biology within
the bone and underscores the need to better understand the
mechanisms driving this diversity.
The finding that SSPC populations have multiple transcriptional

profiles may be due to various factors. One possibility is that their
transcriptional profile can be dictated by their localization within the
marrow, a spatial interrogation difficult to assess by scRNAseq. Stem
cells are regulated by the secretion of soluble factors by neighboring
cells that comprise the stem cell niche. Subtle shifts in the spatial
location or changes in the cell‒cell interactions of SSPCs and niche-
forming marrow resident cells can have a profound impact on SSPC
fate and function.13,14 However, understanding these spatial
relationships in vivo in an unbiased manner has proven challenging.
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Researchers have applied large-scale scRNAseq to multiple cell types
in an attempt to computationally reconstruct the stem cell niche and
assign primary regulatory factors to their key cell types of origin.12

However, in addition to lacking any spatial information, this
technique is limited in disentangling cell‒cell communication due
to numerous secreted factors that are derived from the diverse cell
types present within the bone marrow environment. As such, a more
comprehensive understanding of the in situ SSPC niche microenvir-
onment that places these cells in the spatial context of major niche
modulators, such as the bone surface or blood vessels, is needed.4

Spatial transcriptomics bypasses the need to generate single-
cell suspensions, preventing the introduction of potential artifacts
by enzymatic digestion and providing unbiased transcriptional
profiling in vivo. While widely used on soft tissues such as the
brain15,16 or to unravel heterogeneity and spatial organization in
tumors,17,18 this technique has only recently begun to be utilized
in the context of musculoskeletal tissue. Early studies used spatial
transcriptomics in soft tissue such as tendon19,20 or muscle21,22

and, most recently, we utilized this technique for mineralized
bone tissue such as the developing calvarial suture23 or
regenerating digit tip.24 Barring the need for tissue decalcification
while still preserving mRNA in long bones, limitations in spatial
resolution remain a major drawback given that each spatial spot
within the Visium spatial gene expression system from 10 ×
Genomics represents 55 µm. Thus, a single spatial spot can
encompass numerous diverse cell types in tissues with high
degrees of cellularity and heterogeneity, making it challenging to
determine whether changes in gene expression are the result of
changes in cell composition within each spot, changes in gene
expression within the cells comprising each spatial spot, or a
combination of the two. In the context of intact musculoskeletal
tissue, this limitation can be resolved (1) if the tissue area
represents relatively low cellularity in which each spatial spot
would correspond to only a few cells or (2) if cells of similar origin
and transcriptome are present within each spot. However, with
more heterogeneous tissue, in which cell types of very different
lineages coexist within a tightly confined space, these spots can
encompass tens of cells with highly unique transcriptional profiles,
making it difficult to ascertain the cause of observed transcrip-
tional changes. The bone marrow stem cell niche is a prime
example of this type of composition, where cells derived from
vascular, hematopoietic, and mesenchymal lineages exist within
tight spatial confines, carefully regulating each other through
direct and indirect signaling mechanisms.13,14 Taken together, the
technical difficulties and tissue composition of the bone marrow
niche have made it a difficult target for spatial transcriptomics.
To overcome the spatial limitations outlined above, we

combined spatial transcriptomic data with bone marrow scRNA-
seq and several different predictive modeling packages to
deconvolve the larger spatial spots into their cellular constituents.
Using this approach, we first spatially localized SSPC subtype
populations previously identified using scRNAseq.5,7 Using corre-
lative analyses, we then mapped out cellular subtypes enriched
within these SSPC-containing spatial spots, with Pdgfra+Sca1+

SSPCs preferentially localizing to the periosteal surface and
Cxcl12+Lepr+ SSPCs enriching within the marrow. Finally, we used
cell‒cell interaction analyses, spatial gene expression, and spatial-
time analyses23,24 to reveal signaling networks utilized within the
niche and across microdomains within the bone. This study
overcomes technical and analytical obstacles for spatial transcrip-
tomics in long bone to assess, for the first time, changes in SSPC
regulation within its in vivo context.

RESULTS
Analysis of adult mineralized bone by spatial transcriptomics
Although recent advances in scRNAseq have allowed transcrip-
tional interrogation of cells within the bone marrow, technical and

analytical approaches have a limited ability to place these cellular
changes within the context of their native bone environment. To
overcome this limitation, we subjected adult mouse femurs to
spatial transcriptomic analyses (Fig. 1). Femurs were bisected and
fixed in buffered formalin overnight at 4 °C. The samples were
then decalcified in EDTA for 2 weeks with fresh decal added every
2 days. The decalcified femurs were then processed for standard
paraffin embedding. Histological sections were placed on the
Visium Spatial Gene Expression slide, which contains spatially
unique capture oligos. Following staining and imaging, histologi-
cal sections were hybridized using a comprehensive mouse whole
transcriptome probe set mapping to ~20 000 genes. Following
probe ligation and rinsing, specifically hybridized probes were
then released from the tissue through permeabilization and
captured by Visium slide oligos. Subsequent sequencing, align-
ment, and registration to the H&E-stained image resulted in gene
expression information within its original 2D position within the
bone. Following exclusion of surrounding soft tissue, as well as
cartilage from the growth plate, quality controls were applied to
assess the transcript recovery efficiency (Fig. 1a). To determine
tissue-specific gene changes, we manually segmented spatial
samples into cortical bone (orange), trabecular bone (blue), and
bone marrow (magenta) (Fig. 1b). Combined, our assessment
showed an average of 172 ± 154 (cortical), 194 ± 96 (trabecular),
and 233 ± 131 (marrow) unique genes per spot for a combined
13 115 (cortical), 9 605 (trabecular), and 17 524 (marrow) total
unique genes represented within each of the morphologically
unique regions. Notably, spatial spots were assigned to the tissue
most represented within each spot and, as a result, may partially
contain cells from neighboring tissue regions (i.e., spots desig-
nated as “cortical bone” overlay the cortical bone by >50% but
may also partially overlap with neighboring bone marrow). Gene
expression profiles were used to confirm the successful spatial
delineation of captured transcripts (Fig. 1c). Both cortical and
trabecular bone showed high levels of mature osteogenic
transcripts (Col1a1, Bglap), with additional periosteal (Postn) and
osteoprogenitor (Sp7, Runx2) genes enriched within the cortical
and trabecular bone, respectively. In contrast, hematopoietic
(Ptprc, encoding CD45), erythropoietic (Hba-a2), and proliferative
markers were heavily enriched within the bone marrow (Fig. 1c).
These data show for the first time the technical feasibility of
conducting spatial transcriptomics within fully mineralized adult
long bone tissue.

Computational deconvolution of spatial spots using scRNAseq
The high complexity of the bone marrow in terms of the diversity
of cell types present in close proximity of each other, in
combination with the limited spatial resolution of spatial
transcriptomics, make it challenging to assign spatial gene
expression profiles to individual cell types. To overcome this, we
made use of scRNAseq to computationally deconvolve spatial
spots into their cellular constituents. Deconvolution of spatial
spots was conducted using scRNAseq datasets and the packages
Seurat, CellTrek, and Cell2Location (Fig. 2). Seurat relies on data
transfer of uniquely expressed genes between cellular clusters,
CellTrek uses a mutual nearest neighbor-based approach to map
individual cells to spatial data, and Cell2Location uses a
decomposition-based approach. For our studies, multiple scRNA-
seq datasets were combined from bone- and marrow-derived
cells5,7 to generate a single object comprising all major cell types
of the bone marrow (Figs. 3a and S1). Seurat, CellTrek, and
Cell2Location each provided a probability in which an scRNAseq
cluster of interest is present within each spatial spot (Fig. 3b).
Predictive modeling was conducted for all clusters and mapped to
all regions of our spatial data. The discerning power of each
predictive model was then determined by calculating the
standard deviation in predictive scores within a single spatial
spot across all clusters (larger values denote an increased ability to
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distinguish the enrichment of an individual cell type above
random mixing) (Fig. 3c). Next, predictive values were interrogated
in terms of their cellular placement within the different spatial
compartments (Fig. 3d). These results suggest that each of the
predictive models possesses positive and negative attributes.
Seurat showed a relatively high abundance of mesenchymal
lineage (MesLin) cells within the cortical (65%) and trabecular

(44%) bone, as well as within the marrow (49%). Conversely,
Cell2Location showed a high abundance of hematopoietic cells
within the marrow (63%) but a disproportional abundance of
smooth muscle cells (SMCs) within both cortical (44% vs. 11% and
4% in Seurat and CellTrek, respectively) and trabecular (33% vs.
4% and 21% in Seurat and CellTrek, respectively) bone regions.
CellTrek appeared to perform more moderately in both assigning

Tissue

scRNA-seq data

Spatial transcriptomics

Cell2location

Spots deconvolution

Mapping single cells

cellTrek

Mutual nearest neighbor

Data transfer

Decomposing the spatial
expression into cell types

= W1 + W2 + W3

Seurat Assign cells to spots

Fig. 2 Spatial spot deconvolution using scRNAseq. Overview of the deconvolution of spatial spots. First, scRNAseq data and spatial data are
collected from the same or similar tissue. Second, scRNAseq data and spatial transcriptomics are then fed to three different deconvolution
algorithms: Cell2Location, Seurat, and CellTrek. Cell2Location uses a Bayesian model to decompose the spatial expression count matrix into
cell type signatures. Seurat employs bulk gene expression deconvolution based on a single-cell reference. CellTrek maps single cells to spatial
locations. Finally, prediction results of the cell type abundance at each spatial spot are generated from the three algorithms
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MesLin cells to bone compartments and hematopoietic cells to
the marrow compared to Seurat and Cell2Location (Fig. 3d). To
overcome these limitations within each predictive package, we
created a combined predictive pipeline. All spatial spots within the
upper 2 quartiles of predictive values were selected for each of the
3 predictive models and compared to determine the level of
overlap between each method (Fig. 3e). Spots in the upper 2
quartile predictive values in at least 2 separate methods were
defined as positive for each cell type. The distribution of cells
using our combined predictive pipeline showed strong mapping
of MesLin cells to cortical bone (53%) and hematopoietic cells to
the marrow compartment (83%) (Fig. 3f), consistent with the

known cellular composition of these tissues. The presence of
hematopoietic cells within the cortical (27%) and trabecular (59%)
compartments likely reflects the fact that spatial spots designated
as cortical or trabecular bone partially overlap with the neighbor-
ing marrow.
With this analytical pipeline, MesLin cells showed increased

predictive probabilities within the cortical and, to a lesser extent,
trabecular spatial spots (Fig. 4a, insert), likely corresponding to the
high enrichment of osteoblasts and osteocytes within the bone.
For confirmation of the use of these selection criteria, MesLin+

spatial spots were isolated from the marrow (Fig. 4a), and
differentially expressed genes were calculated on MesLin+
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marrow spots relative to MesLin− marrow spots. Pathway analysis
of DEGs showed enrichment in terms linked to matrix production/
organization, as well as skeletal development and ossification,
within MesLin+ spots, while MesLin− spots were highly enriched
for erythropoiesis, immune cells, and cell proliferation (Fig. 4b). To
further refine this spatial localization of scRNAseq clusters, we next
reanalyzed and subclustered MesLin cells (Fig. 4c). The expression
pattern of marker genes (Fig. 4c and Table S1) revealed mature
osteoblasts (OBs) and early osteocytes (Ocys), along with two
previously proposed, heterogeneous SSPC populations, PαS cells,
defined here as expressing high levels of Pdgfra and Ly6a
(encoding SCA1) (PαS), and CXCL12-abundant reticular (CAR) cells,
demarcated here by the expression of Cxcl12 and Lepr. To
characterize the spatial distribution of these SSPC clusters, we
applied a similar predictive modeling workflow as described
above, with MesLin+ spatial spots further divided into these two
proposed SSPC cell subtypes, along with mature osteoblasts to
serve as a control (Fig. 4d). Quantitative analyses of subtype
distribution suggest that PαS cells were highly enriched within the
cortical bone, especially along the outer cortical surface consistent
with the periosteum (Fig. 4d, e). In contrast, CAR cells were found
primarily within the bone marrow, consistent with bone marrow

SSPCs. Osteoblasts were associated primarily with trabecular
spatial spots and to a much lesser extent within cortical spatial
spots, consistent with the high bone remodeling frequently
observed within trabecular compartments. Our combined pre-
dictive pipeline approach demonstrates the collective power of
spatial transcriptomics and scRNAseq to overcome limitations in
spatial resolution and spatially localize PαS and CAR cells to the
periosteum and marrow, respectively.

Defining the cellular components of the marrow SSPC niche
Having computationally derived the spatial locations of this
heterogeneous Cxcl12+Lepr+ SSPC population within the bone
marrow, we next investigated the other cellular components
present within the bone marrow SSPC niche. We combined our
predictive pipeline data for each cell cluster (Fig. 3f). Next,
correlative analyses were conducted to determine the probability
that SSPCs and each indicated cell type are present within the
same spatial spots (i.e., which cell types are frequently found to be
present within the same spatial location as SSPCs) (Fig. 5a).
Correlations using all three predictive modeling packages (Seurat,
CellTrek, Cell2Location) were used to quantify the slope of the
spatial correlations between SSPCs and the cell types of interest
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(in log scale) and the significance of this correlation (Fig. 5b).
These results suggest that Cxcl12+Lepr+ SSPCs within the bone
marrow are most frequently spatially associated with smooth
muscle cells, endothelial cells, macrophages, and, to a lesser
extent, megakaryocytes. Conversely, SSPCs show a strong,
negative spatial correlation with red blood cells (Fig. 5c). These
results recapitulate previous works in the stem cell field,13

validating this approach to assess the cellular composition of
the niche using spatial transcriptomics and our deconvolution
pipeline.
To further refine the cellular constituents present within the

bone marrow Cxcl12+Lepr+ SSPC niche, we subclustered and
reanalyzed endothelial cell (Fig. 5d–g) and macrophage (Fig. 5h–k)
single-cell populations for their association with SSPC-containing
spatial spots. Endothelial cells were subclustered into 3 transcrip-
tionally unique subpopulations (EC1-3) (Fig. 5d). EC1 was enriched
for marker genes for sinusoidal vessels, while EC3 was enriched for
arteriole markers4 (Fig. S3A). EC2 showed moderate expression for
each vessel type but was enriched for angiogenic tip cells vs. stalk
endothelial cells25 (Fig. S3B, C). These 3 endothelial cell subclusters
exhibited differential mapping to our spatial data, with EC1 most
closely associated with cortical bone surfaces, EC2 associated
primarily with trabecular bone, and EC3 associated with the bone
marrow and, to a lesser extent, trabecular bone (Fig. 5e). Pathway
analysis of subcluster DEGs (Table S2) showed enriched activation
of BMP signaling in EC1, TGFβ and hypoxia-related signaling in
EC2, and Notch signaling in EC3 (Fig. 5f). Calculation of the
correlation slopes revealed that EC3 was significantly and
positively correlated with SSPC-containing bone marrow spatial
spots, while the EC1 and EC2 subpopulations showed a strong
negative and weak positive correlation, respectively (Figs. 5g and
S2A). Similar subcluster analyses were conducted on macrophages
(Mac1–4) (Fig. 5h), with spatial mapping showing distinct areas of
enrichment for each of the 4 macrophage subclusters (Fig. 5i).
Pathway analyses from subcluster DEGs (Table S3) showed unique
enrichment in several pathways linked to cellular function and
inflammatory status (Fig. 5j). Calculating the correlation slopes
revealed that Mac2 was significantly and positively correlated with
SSPC-containing bone marrow spatial spots (Figs. 5k and S2B).
Mac3 cells showed a positive correlation with SSPC-containing
spots similar to the total macrophage population but were not
significantly enriched due to high variance in the correlative
slopes between prediction methods (combined P value= 0.109 2),
while both Mac1 and Mac4 associations were found to not be
significant (Figs. 5k and S2B). These data demonstrate the
feasibility of using single-cell prediction methods combined with
spatial transcriptomics to identify heterogeneous populations of
cell types frequently present within the stem cell niche.
Furthermore, these results demonstrate that these cell types can
be segmented by gene expression profiles and spatially sub-
divided to quantify enrichment within the SSPC niche.

Dissecting cell‒cell interactions within the SSPC niche
Having established the cell types frequently present within the
SSPC niche, we next sought to determine the signaling mechan-
isms occurring within the stem cell microenvironment. Differential
gene expression analysis was conducted on SSPC+ spatial spots
within the marrow relative to other marrow spots using each of
the 3 methods of single-cell predictions (Table S4) or our
combined method approach (Table S5). Pathway analysis of genes
enriched within SSPC-containing marrow spots revealed enriched
expression in several well-established morphogenetic pathways,
including WNT, Notch, and TGFβ signaling (Fig. 6a). Next, we
sought to use ligand‒receptor interactions to understand how
these and other signaling cascades are regulated within the SSPC
niche. Single-cell analysis packages have been previously devel-
oped to identify potential cell‒cell interaction mechanisms.26–28

However, they lack the spatial information to determine whether

the proposed cell types both exist within a sufficiently close
proximity and express the proposed ligand and receptor within
this region. As such, it is challenging to distinguish computation-
ally predicted (Fig. 6b, dotted arrows) from biologically relevant
(Fig. 6b, solid arrows) signaling mechanisms. To overcome these
limitations, we combined single-cell data with our spatial data to
refine our list of total spatial and single-cell cluster DEGs into those
genes that expressed known ligands or receptors, which were
predicted to interact between cell types by CellChat, were
mechanisms of cell‒cell interaction between the cell types
predicted to be present within the SSPC niche and finally showed
enriched expression within our predicted SSPC+ niche spatial
spots (Fig. 6c and Table S6). Although unable to distinguish finer
spatial organization, this combinatorial approach of scRNAseq and
spatial transcriptomics can identify genes enriched within a 55 µm
area (size of each spatial spot) around the predicted SSPC location.
Probing of these different categories of overlapping DEGs allowed
us to identify (i) niche signaling factors spatially restricted to the
niche but showing widespread expression across multiple cell
types (spatially restricted), (ii) genes that were enriched within cell
types but not spatially restricted to the niche (cell type restricted),
and (iii) genes that were found to show both cell type
and spatially restricted expression (spatial and cell type restricted)
(Fig. 6d). Similar results were obtained using RNAscope for Cd44-,
Cd74-, and Ryr1-expressing cells surrounding Lepr+ SSPCs (Fig. 6e).
Quantification of these in vivo results shows that while Cd44+ and,
to a lesser extent, Ryr1+ cells are spatially restricted to within a few
µm of Lepr+ SSPCs, Cd74+ cells were more ubiquitously dispersed
(Fig. 6f). These data suggest that combining spatial and single-cell
analyses can localize potential ligand‒receptor cell‒cell interac-
tions predicted by scRNAseq algorithms within SSPC niche
signaling in an unbiased manner to reveal new components of
niche biology.

Signal gradients establish domains within the bone marrow
In addition to local signaling axes present within the SSPC niche,
we further hypothesized that broader signaling gradients exist
within the bone marrow that establish domains within the marrow
cavity. These microdomains would be the result of secreted
ligands or the availability of nutrients and oxygen and act in a
coordinated fashion, likely affecting all cells based on their
proximity to major tissue areas such as the bone surface or blood
vessels. To assess these gradients in an unbiased fashion, we
conducted spatial-time analyses on marrow spatial spots (Fig. 7).
This technique utilizes a manually designated reference line and
then measures the distance between each spatial spot and the
nearest point along this reference surface.24 First, spatial spots
were aligned based on their relative proximity to the nearest
blood vessel, trabecular bone, or cortical bone surface (Fig. 7a).
Genes whose expression fluctuated as a function of
their proximity to their reference surface were then identified
(Fig. 7b). Pathway analysis was then used to identify major
regulatory networks altered relative to their distance from the
reference tissue.
To observe overall pathway activation across SpatialTime as a

function of the distance from the nearest vessel, trabecular, or
cortical bone surface, we conducted module scoring, which
calculates the average expression of a gene list curated from
known KEGG pathways relative to background. Scoring for genes
linked to bioenergetics, we observed high levels of glycolytic gene
expression immediately adjacent to blood vessels, immediately
adjacent and distant from the trabecular surface, and distant from
the cortical bone surface (Fig. 7c). In contrast, genes linked to
oxidative phosphorylation (OxPhos) were predominantly found
within spatial marrow spots distant from blood vessels and
intermediate from both trabecular and cortical bone surfaces.
Finally, fatty acid (FA) metabolism was found to be predominantly
associated with the cortical bone surface and at intermediate
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distances from trabecular bone surfaces (Fig. 7c). In addition to
metabolic regulation, pathway analysis identified changes in
gradients of signal activation associated with major morphoge-
netic pathways (Fig. 7d). Platelet-derived growth factor (PDGF)
signaling was found to be highly active both adjacent to and
distant from blood vessels, as well as adjacent to trabecular bone
surfaces. In contrast, WNT signaling was high immediately
adjacent to blood vessels and distant from both trabecular and
bone surfaces, while WNT signaling appeared conversely low
distant to vessels and adjacent to trabecular and cortical bone
surfaces (Fig. 7d). Both bone morphogenetic protein (BMP) and
transforming growth factor beta (TGFβ) signaling were preferen-
tially high near trabecular and cortical surfaces and declined at
more distant marrow spots (Fig. 7d). Histological validation
confirmed the preferential activation of TGFβ signaling (denoted
by p-SMAD3 staining) near cortical and trabecular surfaces, as well
as preferential staining for PDGF receptor alpha (PDGFRα) near
trabecular vascular surfaces (Fig. 7e). Overall, these unbiased
analyses identify microdomains of signaling gradients, cellular
function, and metabolism in response to the distance from blood
vessels and bone surfaces.

DISCUSSION
In this study, we used an analytical pipeline to probe signaling
within the stromal cell niche within the bone. ScRNAseq suffers
from a lack of spatial context, while spatial transcriptomics lacks the
resolution to distinguish individual cells. Our approach overcomes
the spatial limitation of scRNAseq and resolution limitation of
spatial transcriptomics for the first time in the long bones of adult
mice through the use of predictive modeling and deconvolution.
Here, we used this approach to show the spatial location, cellular
composition, and cell‒cell communication network of previously
proposed stromal cell populations in the niche, placing them in the
context of regulatory microdomains within the marrow.
While scRNAseq analyses have substantially advanced our

understanding of stromal cells and their commitment to cell-
specific lineages within the bone, some disparity remains in terms of
the heterogeneity of proposed stromal cell populations. Prior
immunohistochemical and in situ studies have identified several
SSPC markers, including PDGFRα/SCA1,10 CXCL12,9 and LEPR.10

However, further refinement using scRNAseq analysis suggests the
possibility of two distinct SSPC populations.5,7,12 To attempt to
resolve these findings, we used scRNAseq and spatial transcrip-
tomics data to create an analytical predictive pipeline using the
previously generated R packages Seurat,29 CellTrek,30 and Cell2Loca-
tion.31 Although each proposed population is composed of a
heterogeneous set of stem/progenitor/stromal cells, for simplicity,
this study used this analytical pipeline to probe general populations
of SSPCs expressing high levels of Pdgfra and Ly6a (PαS) or Cxcl12
and Lepr (CAR). Using our predictive pipeline, we exploited the
strengths of each analytical approach to create a predictive
workflow for the location of each cell cluster within complex and
heterogeneous spatial data. Our spatial predictive mapping suggests
that CAR cells are heavily enriched within the bone marrow,
consistent with previously published results.32–34 In contrast, while
some PαS cells were found within the bone marrow, these cells were
heavily enriched within the cortical tissue primarily along the outer
periosteal surface. This finding is consistent with more recent studies
identifying PDGFRα and SCA1 as markers of periosteal stem cells
important for fracture healing.35–37 These findings suggest that
either PαS cells present within the bone marrow show significant
overlap in gene expression with stem cells within the outer
periosteum or that periosteal cells may have been inadvertently
captured during enzymatic digestion to generate bone marrow
single-cell preparations.
SSPCs rely on the regulatory function of other cell types within

the stem cell niche to be maintained in an undifferentiated state. To

date, several cell‒cell communication prediction packages have
been developed to infer ligand‒receptor-based interactions. How-
ever, one striking limitation of these methods remains the lack of
spatial information. As a result, while these communication
packages can predict potential mechanisms through which cross-
talk may occur, they lack the ability to determine if the proposed
crosstalk, while theoretically possible, is biologically feasible (i.e., do
the cells proposed to communicate exist within spatial confines
that would make direct cell‒cell communication possible while also
expressing the necessary genes for interaction within this spatial
context). To overcome this limitation, we made use of the fact that
spatial transcriptomics is not at a single-cell resolution and instead
considered each spatial spot at the “niche” level. We determined
the probability that other cell types of the bone marrow were
present within the same spatial spot as our previously identified
SSPC populations. Consistent with previously published results, our
data indicate that smooth muscle cells, endothelial cells, macro-
phages, and, to a lesser extent, megakaryocytes comprise the SSPC
niche. Reanalysis of both endothelial cells and macrophages
identified cellular subtypes enriched within the niche. Transcrip-
tional analyses of the endothelial and macrophage subtypes
present within the niche revealed enriched activation of Notch
and Jak/Stat signaling, respectively. Previous studies have shown
the critical role of endothelial Notch signaling in regulating
hematopoiesis,12 as well as in regulating SSPC proliferation and
differentiation.38–40 Conversely, other studies have shown that
mesenchymal stromal cells induce M2 polarization within macro-
phages coinciding with elevated levels of Jak/Stat signaling.41,42

Notably, due to the spatial resolution (55 µm), our signaling
analyses cannot distinguish cells in immediate contact with SSPCs
from those present within the same spatial spot but still upward of
several cell lengths removed from the SSPC itself. While this
method showed improvements compared to analyses relying on
scRNAseq alone, pathways such as Notch, which require direct cell‒
cell interaction, may still be falsely predicted. Combining spatial
transcriptomics, scRNAseq, and our spatial deconvolution pipeline,
our results demonstrate the ability to dissect cellular composition
and communication within the niche in an unbiased fashion.
While the niche has been extensively investigated, one concept

that is well known, yet difficult to assess, is the formation of
microdomains within the bone marrow regulated by the release of
growth factors from various tissues. Osteoblasts and osteoclasts
along bone surfaces, chondrocytes at the terminus of the growth
plate, and vascular endothelial and smooth muscle cells have all
been shown to regulate the local environment. However,
assessing these signaling gradients in an unbiased fashion has
proven difficult with existing techniques. Our analyses revealed
unique expression of transcripts related to metabolism and major
morphogenetic pathways. Despite the presumably high avail-
ability of oxygen near blood vessels, we observed low levels of
oxidative phosphorylation and high levels of glycolysis within
spots immediately adjacent to vascular tissue. These results are
consistent with previous data that suggest that endothelial cells,43

smooth muscle cells,44 and skeletal stem cells45 all favor glycolysis
as an energy production mechanism to minimize ROS produc-
tion43,46 and overall gene activation.47,48 Additionally, these results
showed elevated levels of transcripts associated with FA
metabolism near the cortical bone surface. This finding is
consistent with in vitro studies that show increased FA
metabolism in mature osteoblasts49 and indicate the importance
of FA metabolism in normal bone accrual50 and the response to
anabolic stimuli.51 Similarly, previous findings of elevated WNT52,53

and PDGF54,55 signaling near vessels as well as high activation of
PDGF6,56 and BMP57,58 near bone surfaces were reflected in this
analysis. Our findings further add indications of the potential
range of these coordinate gradients, with, for example, WNT
signaling showing a more restrictive window of activation
surrounding blood vessels than that observed by PDGF signaling.
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Several potential limitations should be considered in this
analytical pipeline. The unique anatomy of bone, with a mineralized
outer cortical shell, can delay the diffusion of reagents to the
internal marrow and necessitate decalcification, ultimately delaying
sample processing. These factors may contribute to the relatively
low number of transcripts retrieved compared to those of previous
works in soft tissue. While previous studies using scRNAseq of bone-
derived cells or spatial transcriptomics of soft tissue typically yield
several thousand transcripts per cell/spot, our results show a greatly
reduced efficiency. As such, limitations in the extent and types of
analyses possible should be carefully considered. These limitations
were overcome, to some extent, by (i) more broadly selecting our
cell clusters of interest for spatial mapping, (ii) investigating
expression patterns of groups of genes linked to a common
pathway, (iii) relying on a combination of predictive packages, and
(iv) using techniques such as SpatialTime to allow the merging of
multiple samples into a single analysis. Optimization of this sample
preparation pipeline may yield greater transcript recovery, increas-
ing the accuracy of downstream analyses and permitting more
sophisticated investigations in the future. While we speculate that
our findings will be similar across mouse strains, our spatial analyses
are specific to C57BL/6 mice. Additional studies are needed to
determine global versus strain-specific findings.
Overall, this study makes use of predictive modeling, combining

the unbiased transcriptional profile and in vivo spatial context of
spatial transcriptomics with the cellular resolution of scRNAseq.
These studies reveal the cellular and signaling components of the
stem cell niche, as well as the gradients of signals established by
various anatomical structures within the bone. These analyses are
highly supportive of intensive studies published over the past
several decades and suggest that this analytical pipeline could
serve as a method to unbiasedly assess changes in several aspects
of stem cell and bone biology in response to perturbation or
therapeutic intervention.

MATERIALS AND METHODS
Spatial transcriptomics of bone
Femurs from 2 separate mice were harvested from 10-week-old
C57BL/6 mice (Charles River), bisected, and immediately fixed in
10% buffered formalin overnight at 4 °C. The samples were
decalcified in 0.5 mol·L−1pH 8 EDTA for 2 weeks on a shaker, with
a fresh reagent change every 1–2 days. The samples were then
processed for paraffin embedding. All processing was conducted
with minimal delay between steps. Two 5 µm longitudinal sections
through the marrow were collected per block from two different
FFPE blocks (for a total of 4 tissue sections) and placed onto the
Visium Spatial Gene Expression Slide (10 x Genomics). Spatial
transcriptomic libraries were generated using the Visium Spatial
Gene Expression for FFPE Kit according to the manufacturer’s
instructions (10 x Genomics, CG000407, Rev D). Briefly, the slide
was subjected to H&E staining and imaged at × 20 magnification
using a NanoZoomer S60v2MD (Hamamatsu). Tissue sections were
decrosslinked and probe-hybridized (Visium Mouse Transcriptome
Probe Set v1.0), targeting 20 551 mouse genes. Specifically,
hybridized and ligated probes were then released from the tissue
through permeabilization and captured by Visium Slide oligos.
Barcoded ligation products were then subjected to amplification
and indexing. Libraries were pooled and subjected to 2 × 96 bp
pair-ended sequencing with a sequencing depth of >100 M reads
per sample on a NovaSeq instrument (Illumina). Demultiplexing
and sequence alignment, along with registration to H&E-stained
images, was carried out using the SpaceRanger pipeline.

Computational analyses of spatial and single cells
Analyses of both spatial and scRNAseq data were carried out in
the R package Seurat.29 For spatial data, histologically unique
regions of the bone were manually segmented, and differential

gene expression was carried out using default parameters. For
whole bone marrow single-cell analyses, datasets from GSE145477
(GSM4318799)7 and GSE128423 (GSM3674243, GSM3674244,
GSM3674245, and GSM3674246)5 were merged into a single
object to represent all major types of cells present within the bone
marrow. For analysis of mesenchymal lineage cells, datasets from
GSE145477 (GSM4318799, GSM4318800, and GSM4318801)7 were
reanalyzed. Pathway analysis of DEGs was conducted using the
Database for Annotation, Visualization and Integrated Discovery
(DAVID).59 The AddModuleScore function was used to assess levels
of overall pathway activation using established gene lists curated
from KEGG pathways (Table S7). For determination of the potential
interactions between different cell clusters, we performed cell‒cell
communication analysis using the R package CellChat.60

Deconvolution of spatial spots using scRNAseq
To deconvolve spatial spots into single cells, we separately utilized
the predictive tools Seurat, Cell2Location, and CellTrek to estimate
the abundance/proportion of different scRNAseq-derived cell types
in each spatial spot. Seurat first identified transferable anchors for
each cell type of the scRNAseq data and then extracted the
expression matrices of these anchors from scRNAseq data and
spatial data, which were subsequently used as input in the
deconvolution algorithm SCDC to acquire predicted proportions of
each cell type for each spatial spot. Cell2Location is a Bayesian model
that predicts the abundance of cell types at each spatial location. It
builds linear regressions to describe the relationship between gene
expression at a spatial location and gene expression of each cell type
while also weighing information shared across spatial locations to
obtain the regression weights of each cell type, which are
interpreted as the cell type abundance. Unlike the other two
methods that directly predict the abundance of cell types, CellTrek is
a single-cell mapping tool. ScRNAseq and spatial data were first
coembedded, and then, a random forest distance between single
cells and spatial spots was computed. Finally, using mutual nearest
neighbor calculations, spatial coordinates were transferred to single
cells. Based on the spatial coordinates of single cells, we assigned
each single cell to its nearest spot before calculating the cell
abundance and proportion. To determine the cellular components of
the niche, we conducted linear correlations on each marrow spot for
SSPCs and the indicated single-cell cluster using predictive values
derived from each of the three predictive packages. Significance was
assessed by the probability that the correlative slope was equal to 0.
The slope and P value were averaged to obtain combined values.

SpatialTime analysis
SpatialTime analyses were conducted according to previously
published methods.23,24 Briefly, blood vessel, trabecular, and
cortical surfaces were manually contoured. Next, distances were
calculated between each spatial spot within the marrow and each
pixel along the manually drawn surface contours, with the
minimum distance selected. Finally, distances were normalized
to values between 0 (immediately adjacent to contoured surface)
and 1 (most distant from surface). For analysis of genes
differentially expressed across each of these spatial-time axes,
marrow spatial spots were analyzed by the R package Monocle
using the differentialGeneTest function, replacing pseudotime
values with self-calculated spatial-time values. For visualization
of changes in cellular pathways, module scores were calculated
across SpatialTime values, and a smoothed curve was generated
by averaging neighboring spot values.

Immunofluorescence and RNAscope
For immunofluorescence, long bones from 12-week-old mice were
isolated and fixed in 4% PFA overnight. Bones were then
decalcified in Decalcifier I (3800440, Leica) for 4 days. Bones were
cryoprotected in 20% sucrose and 2% polyvinyl pyrrolidine (PVP)
and then embedded in 20% sucrose, 2% PVP, and 8% gelatin.
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Sections were cut at a thickness of 100 µm and stained using
primary antibodies against endomucin (Sc-659495, Santa Cruz),
PDGFRα (AF1062, R&D Bioscience), or p-SMAD3 (ab52903, Abcam),
followed by secondary antibodies (Alexa Fluor 488 donkey anti-rat,
Alexa Fluor 647 donkey anti-goat, Alexa Fluor 555 donkey anti-
rabbit, Invitrogen). Images were acquired using a Leica DMI8
confocal microscope. Images are representative of three individual
samples taken from three separate mice.
To detect single mRNA molecules, we performed FFPE-fixed

RNAscope on sections from control C57BL/6 mice (Charles River).
Positive control probes (the Mus musculus duplex probes Ppib,
green channel, and Polr2a, red channel, and the single channel
Ubc control to test for high expression in bone) and one negative
control probe (Escherichia coli DapB) were used. Following
protocol optimization, sections were assessed for Lepr (C1) and
either Cd44 (C2), Cd74 (C2), or Ryr1 (C2). In situ hybridization was
performed according to the protocol of the RNAscope 2.5 Duplex
Detection Kit (Chromogenic, Cat. No. 322500). Briefly, sections
from FFPE mouse tibias and an RNAscope Control Slide (Mouse
3T3 cell pellet, Cat. No. 310023) were baked at 60 °C for 1 h before
deparaffinization and dehydration according to the protocol. The
slides were then incubated with H2O2 and permeabilized before
air drying. C2 probes were diluted in C1 probes at a 1:50 ratio and
incubated on the slides for 2 h at 40 °C and amplified according to
the protocol. Positive Ppib/Polr2a duplex probes, DapB negative
probe, and Ubc control probe were incubated separately on three
individual tibia samples. The RNAscope Control slide received the
duplex control probes. Prior to coverslipping, slides were stained
with hematoxylin. Images are representative of three individual
samples. For quantification of RNAscope, 50 Cd44+, Cd74+, and
Ryr1+ cells were identified, and the distance to the nearest Lepr+

cell was manually quantified using NDP.view2 (Hamamatsu).

DATA AVAILABILITY
Spatial transcriptomic data generated for this paper have been deposited in the Gene
Expression Omnibus (GEO) database under the accession code GSE228534.

ACKNOWLEDGEMENTS
This work is funded by R01HD107034 and R21HD106162 by the NIH/NICHD (MCS),
the Faculty of Surgery Pilot Research Award and grant HT94252310327 from the DoD
(R.J.T.).

AUTHOR CONTRIBUTIONS
Conception or design of the work, R.J.T.; data collection, C.R.U., T.D., N.V. and M.C.S.;
data analysis and interpretation, X.X., C.J., D.S., L.X., B.L., M.C.S. and R.J.T.; drafting the
article, R.J.T. All authors approved the final version of the manuscript.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41413-023-00298-1.

Competing interests: Spatial data were generated in cooperation with 10x
Genomics, the manufacturer of the Visium Spatial Gene Expression system.

REFERENCES
1. Matsushita, Y., Ono, W. & Ono, N. Skeletal stem cells for bone development and

repair: diversity matters. Curr. Osteoporos. Rep. 18, 189–198 (2020).
2. Serowoky, M. A., Arata, C. E., Crump, J. G. & Mariani, F. V. Skeletal stem cells:

insights into maintaining and regenerating the skeleton. Development 147,
dev179325 (2020).

3. Mancinelli, L. & Intini, G. Age-associated declining of the regeneration potential of
skeletal stem/progenitor cells. Front. Physiol. 14, 1087254 (2023).

4. Baccin, C. et al. Combined single-cell and spatial transcriptomics reveal the
molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 22,
38–48 (2020).

5. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in home-
ostasis and leukemia. Cell 177, 1915–1932.e1916 (2019).

6. Bohm, A. M. et al. Activation of skeletal stem and progenitor cells for bone
regeneration is driven by PDGFR beta signaling. Dev. Cell 51, 236–254.e12 (2019).

7. Zhong, L. et al. Single cell transcriptomics identifies a unique adipose lineage cell
population that regulates bone marrow environment. Elife 9, e54695 (2020).

8. Morikawa, S. et al. Prospective identification, isolation, and systemic transplan-
tation of multipotent mesenchymal stem cells in murine bone marrow. J. Exp.
Med. 206, 2483–2496 (2009).

9. Omatsu, Y. et al. The essential functions of adipo-osteogenic progenitors as the
hematopoietic stem and progenitor cell niche. Immunity 33, 387–399 (2010).

10. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-
expressing mesenchymal stromal cells represent the main source of bone formed
by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

11. Ambrosi, T. H. et al. Distinct skeletal stem cell types orchestrate long bone ske-
letogenesis. Elife 10, e66063 (2021).

12. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell reso-
lution (vol 569, pg 222, 2019). Nature 572, E6–E6 (2019).

13. Kurenkova, A. D., Medvedeva, E. V., Newton, P. T. & Chagin, A. S. Niches for
skeletal stem cells of mesenchymal origin. Front. Cell Dev. Biol. 8, 592 (2020).

14. Yin, T. & Li, L. H. The stem cell niches in bone. J. Clin. Investig. 116, 1195–1201
(2006).

15. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human
dorsolateral prefrontal cortex. Nat. Neurosci. 24, 612–612 (2021).

16. Chen, W. T. et al. Spatial transcriptomics and in situ sequencing to study Alz-
heimer’s disease. Cell 182, 976–991.e19 (2020).

17. Hunter, M. V., Moncada, R., Weiss, J. M., Yanai, I. & White, R. M. Spatially resolved
transcriptomics reveals the architecture of the tumor-microenvironment inter-
face. Nat. Commun. 12, 6278 (2021).

18. Wu, R. et al. Comprehensive analysis of spatial architecture in primary liver
cancer. Sci. Adv. 7, eabg3750 (2021).

19. Ackerman, J. E. et al. Defining the spatial-molecular map of fibrotic tendon
healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep. 41,
111706 (2022).

20. Akbar, M. et al. Single cell and spatial transcriptomics in human tendon disease
indicate dysregulated immune homeostasis. Ann. Rheum. Dis. 80, 1494–1497
(2021).

21. McKellar, D. W. et al. Large-scale integration of single-cell transcriptomic data
captures transitional progenitor states in mouse skeletal muscle regeneration.
Commun. Biol. 4, 1280 (2021).

22. D’Ercole, C. et al. Spatially resolved transcriptomics reveals innervation-
responsive functional clusters in skeletal muscle. Cell Rep. 41, 111861 (2022).

23. Tower, R. J. et al. Spatial transcriptomics reveals a role for sensory nerves in
preserving cranial suture patency through modulation of BMP/TGF-beta signal-
ing. Proc. Natl. Acad. Sci. USA 118, e2103087118 (2021).

24. Tower, R. J. et al. Spatial transcriptomics reveals metabolic changes underly age-
dependent declines in digit regeneration. Elife 11, e71542 (2022).

25. Qin, Q. Z. et al. Neuron-to-vessel signaling is a required feature of aberrant stem
cell commitment after soft tissue trauma. Bone Res. 10, 43 (2022).

26. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular commu-
nication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

27. Jin, S. Q. et al. Inference and analysis of cell-cell communication using CellChat.
Nat. Commun. 12, 1088 (2021).

28. Li, L. X. Y. et al. Single-cell and CellChat resolution identifies collecting duct cell
subsets and their communications with adjacent cells in PKD kidneys. Cells 12, 45
(2023).

29. Hao, Y. H. et al. Integrated analysis of multimodal single-cell data. Cell 184,
3573–3587.e29 (2021).

30. Wei, R. M. et al. Spatial charting of single-cell transcriptomes in tissues. Nat.
Biotechnol. 40, 1190–1199 (2022).

31. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial
transcriptomics. Nat. Biotechnol. 40, 661–671 (2022).

32. Matsushita, Y. et al. A Wnt-mediated transformation of the bone marrow stromal
cell identity orchestrates skeletal regeneration. Nat. Commun. 11, 332 (2020).

33. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is. required for
haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

34. Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic
stern cell niches. Nat. Cell Biol. 19, 214–223 (2017).

35. Matthews, B. G. et al. Heterogeneity of murine periosteum progenitors involved
in fracture healing. Elife 10, e58534 (2021).

36. Xu, J. J. et al. PDGFR alpha reporter activity identifies periosteal progenitor cells
critical for bone formation and fracture repair. Bone Res. 10, 7 (2022).

37. Jeffery, E. C., Mann, T. L. A., Pool, J. A., Zhao, Z. Y. & Morrison, S. J. Bone marrow
and periosteal skeletal stem/progenitor cells make distinct contributions to bone
maintenance and repair. Cell Stem Cell 29, 1547–1561.e6 (2022).

Spatial analysis of bone marrow signaling
X Xiao et al.

12

Bone Research           (2023) 11:59 

https://doi.org/10.1038/s41413-023-00298-1


38. Hilton, M. J. et al. Notch signaling maintains bone marrow mesenchymal pro-
genitors by suppressing osteoblast differentiation. Nat. Med. 14, 306–314 (2008).

39. Oldershaw, R. A. et al. Notch signaling through jagged-1 is necessary to initiate
chondrogenesis in human bone marrow stromal cells but must be switched off
to complete chondrogenesis. Stem Cells 26, 666–674 (2008).

40. Vujovic, S., Henderson, S. R., Flanagan, A. M. & Clements, M. O. Inhibition of
gamma-secretases alters both proliferation and differentiation of mesenchymal
stem cells. Cell Prolif. 40, 185–195 (2007).

41. Arabpour, M., Saghazadeh, A. & Rezaei, N. Anti-inflammatory and M2 macro-
phage polarization-promoting effect of mesenchymal stem cell-derived exo-
somes. Int. Immunopharmacol. 97, 107823 (2021).

42. Cho, D. I. et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance
in mouse bone marrow-derived macrophages. Exp. Mol. Med. 46, e70 (2014).

43. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haema-
topoiesis (vol 532, pg 323, 2016). Nature 538, 274–274 (2016).

44. Butler, T. M. & Siegman, M. J. High-energy phosphate-metabolism in vascular
smooth-muscle. Annu. Rev. Physiol. 47, 629–643 (1985).

45. Shum, L. C., White, N. S., Mills, B. N., Bentley, K. L. D. & Eliseev, R. A. Energy
metabolism in mesenchymal stem cells during osteogenic differentiation. Stem
Cells Dev. 25, 114–122 (2016).

46. Vandekeere, S., Dewerchin, M. & Carmeliet, P. Angiogenesis revisited: an over-
looked role of endothelial cell metabolism in vessel sprouting. Microcirculation
22, 509–517 (2015).

47. Rigaud, V. O. C., Hoy, R., Mohsin, S. & Khan, M. Stem cell metabolism: powering
cell-based therapeutics. Cells 9, 2490 (2020).

48. Ito, K. & Suda, T. Metabolic requirements for the maintenance of self-renewing
stem cells. Nat. Rev. Mol. Cell Biol. 15, 243–256 (2014).

49. Frey, J. L. et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the
osteoblast. Mol. Cell Biol. 35, 1979–1991 (2015).

50. Kim, S. P. et al. Fatty acid oxidation by the osteoblast is required for normal bone
acquisition in a sex- and diet-dependent manner. JCI Insight 2, e92704 (2017).

51. Alekos, N. et al. Mitochondrial B-oxidation of adipose-derived fatty acids by osteoblast
fuels parathyroid hormone-induced bone formation. JCI Insight 8, e165604 (2023).

52. Richter, J., Traver, D. & Willert, K. The role of Wnt signaling in hematopoietic stem
cell development. Crit. Rev. Biochem. Mol. 52, 414–424 (2017).

53. Ahmadzadeh, A., Norozi, F., Shahrabi, S., Shahjahani, M. & Saki, N. Wnt/beta-
catenin signaling in bone marrow niche. Cell Tissue Res. 363, 321–335 (2016).

54. Lilly, B. We have contact: endothelial cell-smooth muscle cell interactions. Phy-
siology 29, 234–241 (2014).

55. Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell sig-
naling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol.
29, 630–638 (2009).

56. Caplan, A. I. & Correa, D. PDGF in bone formation and regeneration: new
insights into a novel mechanism involving MSCs. J. Orthop. Res. 29, 1795–1803
(2011).

57. Xu, C. & Di, C. The BMP signaling and in vivo bone formation. Gene 357, 1–8
(2005).

58. Salazar, V. S., Gamer, L. W. & Rosen, V. BMP signalling in skeletal development,
disease and repair. Nat. Rev. Endocrinol. 12, 203–221 (2016).

59. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis
of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57
(2009).

60. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat.
Commun. 12, 1088 (2021).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Spatial analysis of bone marrow signaling
X Xiao et al.

13

Bone Research           (2023) 11:59 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Spatial transcriptomic interrogation of the murine bone marrow signaling landscape
	Introduction
	Results
	Analysis of adult mineralized bone by spatial transcriptomics
	Computational deconvolution of spatial spots using scRNAseq
	Defining the cellular components of the marrow SSPC�niche
	Dissecting cell&#x02012;cell interactions within the SSPC�niche
	Signal gradients establish domains within the bone�marrow

	Discussion
	Materials and methods
	Spatial transcriptomics of�bone
	Computational analyses of spatial and single�cells
	Deconvolution of spatial spots using scRNAseq
	SpatialTime analysis
	Immunofluorescence and RNAscope

	Supplementary information
	Acknowledgements
	Author contributions
	ADDITIONAL INFORMATION
	References




