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Osteomodulin downregulation is associated with osteoarthritis
development
Jérémie Zappia1✉, Qiao Tong2, Renée Van der Cruyssen3,4, Frederique M. F. Cornelis5, Cécile Lambert1, Tiago Pinto Coelho6,7,
Juliane Grisart8, Erika Kague 2, Rik J. Lories5,9, Marc Muller 10, Dirk Elewaut3,4, Chrissy L. Hammond2, Christelle Sanchez1 and
Yves Henrotin1,8,11

Abnormal subchondral bone remodeling leading to sclerosis is a main feature of osteoarthritis (OA), and osteomodulin (OMD), a
proteoglycan involved in extracellular matrix mineralization, is associated with the sclerotic phenotype. However, the functions of
OMD remain poorly understood, specifically in vivo. We used Omd knockout and overexpressing male mice and mutant zebrafish to
study its roles in bone and cartilage metabolism and in the development of OA. The expression of Omd is deeply correlated with
bone and cartilage microarchitectures affecting the bone volume and the onset of subchondral bone sclerosis and spontaneous
cartilage lesions. Mechanistically, OMD binds to RANKL and inhibits osteoclastogenesis, thus controlling the balance of bone
remodeling. In conclusion, OMD is a key factor in subchondral bone sclerosis associated with OA. It participates in bone and
cartilage homeostasis by acting on the regulation of osteoclastogenesis. Targeting OMD may be a promising new and personalized
approach for OA.
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INTRODUCTION
Osteoarthritis (OA) is a degenerative joint disease with a high
prevalence that affected 527.8 million people worldwide in 2019.1

OA, as a major cause of disability, is a public health challenge and
a rising societal burden due to the aging population and
increasing life expectancy.1 OA is a heterogeneous disease
originating from multifactorial causes with different subtypes of
patients linked to distinct phenotypes.2,3 It is associated with
pathologic changes in all joint tissues, including subchondral
bone, cartilage, meniscus and synovium.4 One of the main OA
features is subchondral bone sclerosis, which results from
impaired subchondral bone remodeling driven by excessive
mechanical loading. Bone sclerosis is associated with abnormal-
ities in bone matrix biochemistry and mechanical properties that
contribute to OA physiopathology. Among these abnormalities,
loss of matrix elasticity, abnormal mineralization, modification of
the proteomic landscape with impaired cytokine production such
as increased transforming growth factor β and interleukin 6 levels,
overexpression of proteases, and decreased synthesis of small
proteoglycans are well documented.5–8 These changes are
associated with the bone-driven OA phenotype.3,4

The small leucine-rich proteoglycans (SLRPs) are intricately
related to the physical properties of bone and can be used as a
fingerprint of its health status.9 The majority of SLRPs control the

organization of collagen fibrils and, through the extracellular
matrix (ECM), interact directly with cytokines, acting as a
reservoir and a regulator of their bioavailability.10–15 Mice
deficient for the SLRPs biglycan, fibromodulin, epiphycan,
lumican, and chondroadherin demonstrated the protective role
of these proteoglycans on the bone and cartilage matrix or
osteoblasts; many of the knockout mutants showed premature
or more pronounced OA.16–24 In contrast, knockout of opticin
was associated with an inhibition of cartilage damage in an OA
model.25 Until now, the role played by osteomodulin (OMD), also
known as osteoadherin, in OA physiopathology has been poorly
documented.
OMD is a keratan sulfate proteoglycan and a member of the

SLRP family. OMD was originally isolated and characterized from
bone and shown to be strongly expressed by osteoblasts.26,27

Although OMD is considered to be mainly expressed in bone, its
expression has been observed in other cell types, such as articular
chondrocytes and fibrochondrocytes.28 It is involved in the
mineralization process by binding to osteoblasts through the
αVβ3 integrin and by stabilizing bone morphogenetic protein 2
(BMP2) ligands on their membrane receptors.27,29,30 A secretome
analysis comparing osteoblasts from sclerotic and nonsclerotic
areas of OA patients performed in our laboratory has shown that
OMD is one of the major proteins downregulated by sclerotic
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osteoblasts in culture.8 Mature osteoblasts show enhanced
expression of OMD when osteoclast activity is increased.31

For the first time, Omd knockout mice, referred to as KO mice,
and mice with Omd gain-of-function in osteoblasts, hereafter
referred to as UPs, were used to decipher the roles of Omd in bone
remodeling and OA physiopathology. We followed the develop-
ment of OA in aging mice and after destabilization of the medial
meniscus (DMM). We focused on the subchondral bone, as a lack
of OMD was reported to be related to bone sclerosis.8 In addition,
we used the zebrafish model to study the role of omd in
development and bone remodeling. Finally, using in vitro models,
we deepened our investigation of the relationship between OMD
and osteoclastogenesis.

RESULTS
General growth characteristics of Omd KO and UP mice
Omd KO mice had a lower weight and body size than WT mice
only at 4 months. UP mice had a smaller weight than the WT at
4 months, while their body size was not significantly different (Fig.
S1A, B). At 8 and 16 months, weight and size were similar in all
genotypes (Fig. S1A, B). The UP mice displayed a longer femur
than the KO mice at 8 months. The femoral length evolved
differently over time between the genotypes, with the UP mice
reaching the mature size the soonest. Their femoral length was
significantly increased at 8 months compared to the length at
4 months. At 16 months, each genotype reached a similar femoral
length (Fig. S1C, D). Apart from some differences in their general
growth characteristics over time, overall modifications of the level
of Omd expression did not induce gross phenotypes.

OMD is mainly localized in bone and calcified cartilage in mouse
knee joint tissues
We performed immunohistochemical detection of OMD in the knee
joint of 4-, 8-, and 16-month-old mice. OMD was present at all ages
in WT and UP mice but absent in KO mice, indicating the specificity
of the immunostaining (Fig. 1a). OMD was strongly localized in the
calcified cartilage ECM, while heterogeneous and light staining was
also observed in the deep zone of the uncalcified articular cartilage
ECM and in some chondrocytes (Fig. 1a, b). In bone, the lining cells
were strongly stained as well as the ECM, mostly the mineralization
front (Fig. 1a, c, d). The ECM and some cells in the meniscus were
stained (Fig. 1a). The cartilaginous ECM of the growth plate was not
stained (Fig. 1c). Immunostaining revealed that OMD is a
proteoglycan with strong specificity for mineralized skeletal tissues.

Omd influences bone and cartilage microarchitectures
Effect of Omd on articular cartilage structure. Histological analysis
revealed that the size of the tibial growth plate significantly
decreased between 4 and 8 months in all genotypes but further
decreased between 8 and 16 months only in the WT but not in
other genotypes. At 16 months, the growth plate of the KO mice
was larger than that of the WT mice (Fig. 2a, b).
In the 4-month-old KO mice, the calcified cartilage layer was

thinner in the medial tibial plateau and thicker in the tibial lateral
plateau than in the WT (Fig. 2c, e). The ratio of calcified cartilage/
total cartilage for the medial tibial compartment of the KO mice
was significantly lower than that in the WT and UP mice at each
time point (Fig. 2d). In the tibial lateral plateau, this ratio was
higher in the 4-month-old KO and UP mice than in the WT mice
and in the 16-month-old KO mice than in the UP mice (Fig. 2f).
Furthermore, this ratio decreased with age in the KO and UP
genotypes, while it remained stable in the WT. The thickness of
the cartilage (including uncalcified and calcified cartilage) was not
different between genotypes except in the medial plateau of 8-
month-old KO mice, in which the cartilage was thinner than in the
WT (Fig. S2). Our data showed that Omd was able to influence the
cartilage microarchitecture.

Effect of Omd on bone structure
Metaphysis of the tibia: The total volume of the trabecular bone
was lower in the KO mice than in mice with other genotypes (Fig.
3a, b). The trabecular BV/TV ratio was not significantly different
between genotypes at 4 months. In contrast, this ratio was
significantly higher in the KO mice than in the UP mice at 8 and
16 months and lower in the UP mice than in the WT mice at
8 months (Fig. 3a, b). The number of trabeculae of the KO mice
was higher at 8 and 16 months than that of the WT and UP mice,
while no difference was observed at 4 months (Fig. 3c). The UP
mice had significantly fewer trabeculae at 16 months compared to
the WT. The porosity was lower in the KO and higher in the UP
mice than in the WT at all ages. The porosity was significantly
lower in the KO at 8 and 16 months than in the UP mice (Fig. 3c).
The space between the trabeculae was greater in the UP than in
the KO mice at 16 months, but no difference between genotypes
was observed for the trabecular thickness. At 16 months, the
structure model index of the UP mice was significantly higher than
that of mice of another genotype, which indicated a shift from a
plate to rod-like geometry of the trabecular bone (Fig. S3A).
In the cortical bone, the BV/TV ratio was higher in the KO mice

than in the UP mice at 8 and 16 months and in the WT mice at
16 months (Fig. 3d, e). The cortical bone thickness increased with
age in all genotypes but was significantly higher in the KO relative
to the UP mice at 8 months and then relative to the WT and UP
mice at 16 months (Fig. 3f). Cortical bone porosity was also
affected by Omd expression. The porosity was consistently the
lowest in the KO and the highest in the UP mice. The cortical bone
porosity was significantly lower in KO mice than in UP mice at 8
and 16 months and then compared to that in WT mice at
16 months (Fig. 3c, f). In addition, the tibial crest was longer in KO
mice than in WT and UP mice (Fig. S3B).
Both the loss-of-function and overexpression of Omd lead to

interesting bone phenotypes. The KO mice had better conserved
bone volume and had less porous bone, while the UP mice
displayed more severe loss with a decrease in the trabecular
number and an altered trabecular shape, and the WT mice
adopted an intermediate phenotype. In addition, morphological
changes have been reported between genotypes, with tibiae from
the mutant not only being smaller and narrower but also showing
a dissimilar shape as well as an extended tibial crest.
The microarchitecture modifications due to the loss-of-function

of Omd reflected the bone’s physical properties. The biomecha-
nical test showed a higher whole bone strength of the KO mouse
tibia at 16 months, consistent with better bone volume
conservation, which could endure a higher maximal load
compared to WT and UP mice. The stiffness of the KO mice was
also significantly greater than that of the UP mice at 16 months
(Fig. S4).

Epiphysis of the tibia and the effect of Omd on the development
of bone sclerosis: KO mice had a greater lateral subchondral
bone BV/TV ratio than the UP mice at 8 and 16 months and
compared to the WT at 16 months. In the medial tibial plateau, BV/
TV was more elevated in KO mice than in UP mice but only at
16 months (Fig. 4a, b). Computed tomography illustrated that
bone volume was higher in the KO mice than in the WT and UP
mice (Fig. 4c).
Omd deficiency leads to a thicker bone at the tibial epiphysis

and subchondral bone sclerosis. In contrast, overexpression of
Omd by osteoblasts was associated with a decrease in bone
volume. The differences between genotypes were clearly exacer-
bated in older mice.

Omd may play a beneficial role against articular degradation and
prevent subchondral bone sclerosis
To study the role of Omd in the pathology of OA, we compared
the spontaneous development of structural bone and cartilage
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changes in KO, WT and UP mice during aging and after
destabilization of the medial meniscus. In nonoperated mice,
cartilage lesions appeared with aging, and a higher OARSI score
was observed in the medial tibial plateau of KO mice than in WT
mice (Fig. 5a). This observation was consistent with the greater
loss of proteoglycans in the medial tibial plateau of KO mice than
in that of WT mice (Fig. 5b, c). No differences were observed in the
lateral tibial plateau and femoral condyles in 16-month-old mice.
In the DMM model, the lesions of the medial tibial plateau were
severe, and no difference between genotypes was observed (Fig.
5d, g). Cartilage lesions were less severe in the lateral tibial
plateau, and KO mice tended to have a greater OARSI score than
WT mice (Fig. 5d, g), but the difference was not significant

(P value= 0.058 5). No significant difference was observed for the
scored loss of proteoglycans (Fig. 5e).
In WT mice with DMM-induced OA, the BV/TV ratio of the

subchondral bone of the medial tibial plateau was significantly
higher than that in nonoperated mice, while it was not affected in
the lateral plateau. For the medial tibia, the source of variation
analysis confirmed the highly significant effect of the surgery on
the BV/TV ratio but also confirmed that the results were genotype
dependent. The comparison of the medial subchondral bone BV/
TV ratio between genotypes in DMM groups showed that it was
lower in the UP mice than in the WT mice. Moreover, the UP mice
from the DMM group displayed a BV/TV ratio remaining similar to
that of the nonoperated WT mice. The two-way ANOVA
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Fig. 1 Localization of OMD in the murine knee joint. a Immunostaining of OMD (in brown) in the knee joint (medial tibial plateau) of KO, WT,
and UP male mice at 4, 8, and 16 months. Scale bar= 100 µm. Zoom on specific areas from WT of 16 months. Scale bar= 25 µm for (b) and
50 µm for (c, d). Representative pictures with n= 3 for each group. b Uncalcified articular cartilage (ac) and calcified cartilage (cc), separated by
the tidemark (td—dotted line); chondrocytes (arrowheads). c Subchondral bone (sb), growth plate (gp) and lining cells (lc). d Metaphysis of
the tibia showing the cortical bone (cb), the outer medial tibial side and the inner tibial side facing the bone marrow are indicated with (*)
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comparison of the DMM model with the nonoperated mice
showed no interaction between the two groups, which indicates
that expected values are not related between both groups (Fig. 5f,
g). These results suggest that the expression of Omd helps to
prevent the development of subchondral bone sclerosis asso-
ciated with OA.
Omd protects against the onset of subchondral sclerosis and

may play a role in the prevention of subsequent articular damage,
particularly for spontaneous OA.

Loss of Omd expression induces gait abnormalities in mice
The gait pattern of mice was assessed at all ages using the
CatWalk XT platform. At 4 months, the print area was reduced in

the KO mice compared to the WT mice, and at 8 months, the print
area was smaller in the KO than in the WT and UP mice. The
difference between the KO and other genotypes was no longer
significant at 16 months, yet it is due to the reduced values of the
WT and UP mice at 16 months, while the print area of the KO mice
remained similar at each time-point. The swing, which is the
duration of no contact of the paws with the walking platform, and
the single stance, defined as the duration of contact of the paws
with the walking platform, were shorter in the KO mice than in
other genotypes at 8 and 16 months. Finally, the intensity of the
contact of paws toward the glass platform was higher in the KO
mice than in the WT mice at 8 and 16 months and compared to
the UP mice at 8 months (Fig. 6 and Table S1).
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Fig. 2 Histomorphometry of the cartilage was performed with QuPath at 4, 8, and 16 months. Knee joints of male mice were stained with
Toluidine blue and areas corresponding to the total cartilage, the calcified cartilage, and the growth plate were measured for the medial tibial
plateau and the lateral tibial plateau. a Measures of the growth plate area of both medial and lateral tibial plateaus were plotted to display the
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indicated by the arrowhead. Scale bar= 100 µm. f Histomorphometry of the subchondral bone on Safranin-O Fast Green of the knee joint of the
DMM mice was performed with QuPath on the medial and lateral plateaus separately. Each genotype was compared to a similar age group of 8-
month-old mice. At 8 months: n= 8 for each genotype; for the DMM: n= 9 for the KO, n= 10 for the WT, and n= 8 for the UP. The data were plotted
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The gait analysis clearly showed that KO mice have different
gait behavior than other genotypes. Their abnormal gait could be
explained by their distinct bone structure and worse cartilage
degradation.

omd is expressed in the zebrafish skeleton, and its mutation
induces articular cartilage lesions and impaired bone remodeling
The zebrafish genome presents a single homolog to the human
OMD gene, the ortholog omd encoding a 401 amino acid protein
presenting 46% identical and 63% similar amino acids.
We characterized the localization of omd expression in larval

zebrafish using whole-mount in situ hybridization at 48 h post
fertilization (hpf), 5 days post fertilization (dpf) and 8 dpf. We
observed strong expression of omd specific to craniofacial
cartilage, including the jaw joint, during development (Fig. S5).
To gain first insights into the function of omd in zebrafish

cartilage development, we studied the overexpression of omd by
microinjecting 0.4 ng and 0.8 ng of its mRNA into zygotes. At 24
hpf, omd induced ventralization of embryos that was not observed
upon microinjection of control GFP mRNA (Fig. S6A, B).
Furthermore, larvae injected with omd developed deformities at
4 dpf, mostly affecting axial symmetry. Larvae presenting axial
deformities demonstrated evident cartilage defects with abnormal
development of the craniofacial cartilage (Fig. S6C). As omd
overexpression induced developmental defects, we designed a
zebrafish omd mutant line (omd−/−) for further characterization in
adults. In situ hybridization of omd−/− individuals revealed that
the mutation led to the absence of omd mRNA in the craniofacial

structures (Fig. S5), indicating that no Omd protein was produced
in the mutants.
We then compared the lubricated synovial jaw joints in 1-year-

old omd−/− zebrafish to those in WT zebrafish to detect articular
cartilage damage. For the palatoquadrate, the OARSI score of
mutants (ranging from 1 to 3) was greater than that of the WT,
and clefts on their articular cartilage were observed (Fig. 7a). As
the murine model showed that the level of expression of Omd was
related to the onset of subchondral bone sclerosis and that
zebrafish display lubricated synovial joints with similar articular
degradation and subchondral bone modifications as in the
physiopathology of OA,32,33 we took advantage of zebrafish to
assess osteoclasts in vivo. We used this model to investigate the
expression of cathepsin K, a marker of osteoclasts, in the
regenerating caudal fin at 7 days postamputation, a condition
associated with osteoclastogenesis. Cathepsin K expression was
significantly higher in Tg(ctsk:Citrine); omd−/− zebrafish, indicating
that more osteoclasts were generated in the absence of omd
expression (Fig. 7b). Furthermore, osteoclast activity was studied
in elasmoid scales through TRAP staining. More TRAP staining was
present on the elasmoid scale of omd−/− zebrafish. The staining
appeared to be more evenly distributed throughout the scales of
the mutant and particularly localized on the edges and along the
grooves of the scale. The circularity of the scales was also
impacted. The scales of the omd−/− zebrafish were more circular
than those of the WT zebrafish (Fig. 7c).
Our observations of the zebrafish confirmed our observations of

the mouse model. The omd mutant zebrafish showed more severe
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spontaneous articular cartilage degradation in the synovial jaw
joint. They also demonstrated that the regulation of osteoclasto-
genesis was a possible mechanism of action for Omd.

OMD inhibits osteoclastogenesis by binding to RANKL
We investigated the effects of OMD treatment on gene expression
in cultured human primary trabecular osteoblasts. RNA-seq
revealed that only 35 genes (with Padj < 0.05) were differentially
expressed after 10 ng·mL−1 OMD treatment, with relatively
modest changes in expression (Fig. S7 and Table S2). GSEA using
WebGestalt on GO terms revealed an increase in some genes
linked to the response to acidic chemicals (genes AKR1C1, AKR1C2,
AKR1C3) and a decrease in a few genes involved in extracellular
structure organization (GO:0043062) and ossification (genes ACAN
and IBSP) and in the molecular function of actin binding. The
Reactome database revealed an upregulation of genes respon-
sible for collagen network degradation and a downregulation of
ECM proteoglycans, ECM organization, collagen formation, and
integrin cell-surface interactions.
These observations led us to explore the interaction of OMD

with RANKL, which is the regulator of osteoclast differentiation,
using a solid phase binding assay. These experiments revealed a
clear interaction between the two proteins, which correlated with
the increasing amounts of both OMD and RANKL, demonstrating
that they bind directly to each other (Fig. 8a). The potential
biological effects of this interaction were tested in primary murine
osteoclast culture. We showed that OMD added at 10 and
40 ng·mL−1 reduced osteoclast number. No difference between 10
and 40 ng·mL−1 of OMD was observed, both reducing the
osteoclast number by 50% on average (Fig. 8b). Furthermore,
serum markers for bone formation (N-terminal propeptide of type
I procollagen: P1NP) and osteoclast number (TRAcP 5b) showed
impaired bone turnover in the KO mice at 16 months. The serum
level of P1NP was significantly higher in the KO mice than in the
UP mice, and the KO mice showed significantly increased TRAcP
5b compared to the WT and UP mice (Fig. 8c).
We propose a model in which osteoblasts secrete OMD in the

ECM to trap RANKL and prevent it from binding to the
preosteoclast receptor RANK to inhibit their differentiation into
fully committed osteoclasts. In this model, OMD depletion induces
uncoupled bone remodeling, in which increased osteoclast
number and bone resorption, further associated with the
stimulation of bone formation, lead to subchondral bone sclerosis
(Fig. 8d).

DISCUSSION
OMD is a small proteoglycan involved in bone and dental matrix
mineralization but also in ectopic mineralization of other tissues,
such as arteries,34–38 suggesting that it could be involved in
cartilage mineralization and degradation during aging and OA.
We previously demonstrated that osteoblasts located in the

sclerotic area of OA subchondral bone produced less OMD than
neighboring osteoblasts from the nonsclerotic area. Interestingly,
OMD levels were also lower in the serum of OA patients.8 To study
the impact of Omd expression on bone remodeling, skeletal
development and architecture, we followed mice deficient in Omd
and mice overexpressing Omd for 16 months.
While the presence of OMD in bone has been previously

reported,26,30 we showed for the first time that OMD is localized in
mineralized tissues of the murine knee joint and is identified in
calcified cartilage and tidemarks. Interestingly, we observed that
the calcified cartilage layer was thinner in the medial tibial
compartment but thicker in the lateral tibial compartment of KO
mice than in other genotypes, indicating that OMD plays a key
role in cartilage mineralization. The consequences of calcified
cartilage thickness on cartilage degradation in OA remain
controversial. One study showed that the calcified cartilage was

thinning with OA, resulting in a reduction in the cartilage elastic
modulus.39 However, other studies showed that the calcified
cartilage thickness increased with the progression of OA.40,41 The
presence of more severe cartilage lesions in the medial tibial
plateau of aging KO mice, where the calcified cartilage was
thinner, supports the hypothesis that a thinner layer of calcified
cartilage is a factor promoting cartilage degradation. Of course,
this theory needs to be confirmed in other models. In the DMM
OA model, there was no significant difference in cartilage damage
between genotypes. This finding contrasted with the observation
made in the aging KO mice, in which the cartilage lesion severity
was higher in KO mice than in mice of other genotypes. This
observation can be explained by the higher severity of the lesions
in the DMM model reflecting more of a late stage of OA. We can
anticipate a ceiling effect in the DMM-induced OA model because
the cartilage lesions were too severe. However, considering that
most of the phenotypic changes induced by the modification of
the expression of Omd worsened with age, the experimental
design of the DMM model does not make it possible to exclude an
effect of Omd on the articular cartilage degradation occurring at
the stage set for the surgery.
At the bone level, 8- and 16-month-old KO mice had greater

trabecular and cortical BV/TV than the WT mice, while inversely, UP
mice had a reduced ratio. This finding highlights that Omd plays a
key role in bone remodeling. More precisely, maintaining the
homeostatic expression of Omd helps to preserve its volume and
structure. Omd overexpression not only reduced BV/TV but also
increased the structure model index, which is an indicator of the
altered shape of trabeculae, and led to higher bone porosity. Over
time, aging aggravated those observations. This indicates that when
overexpressed, Omd may cause detrimental effects on skeletal
tissues. In the KO, the global bone morphology was affected. Their
tibiae were narrower, and their tibial crests were longer. This
morphological change may affect muscle insertion and, therefore,
the muscle-to-bone relationship. Furthermore, KO mice were more
prone to spontaneously develop subchondral bone sclerosis, as
indicated by higher BV/TV, similar to sclerotic subchondral bone in
OA. The modifications of the bone microarchitecture affected the
bone’s physical properties as well, important features relative to the
bone quality, with KO mice showing higher whole bone strength of
the tibia at 16 months, an expected finding following the
observations from the µCT analysis.
We also observed sclerosis of the subchondral bone following the

DMM procedure in all genotypes. However, the subchondral bone of
the medial tibia of the UP mice was thinner than that of the KO and
WT mice, suggesting that Omd could prevent subchondral bone
sclerosis in OA. Although these observations indicate that the
overexpression of Omd would protect against the onset of OA-
associated sclerosis, we are still willing to be cautious about the
efficiency of the protective effect, as the BV/TV ratio is initially
slightly lower in the UP mice showing altered bone microarchi-
tecture. Nonetheless, our data suggest that Omd plays a role in
subchondral bone sclerosis, a key feature of OA, which is involved in
cartilage degradation. Therefore, we hypothesize that the impact of
Omd on cartilage degradation could be secondary to its effect on
bone. In the spontaneous model, the loss-of-function of Omd was
associated with articular cartilage degradation, suggesting that Omd
might prevent cartilage degeneration. This hypothesis has to be
verified in a larger number of animals or a more advanced aging-
related OA model where more pronounced differences with a
higher articular degradation in the KO mice are anticipated.
Gait analysis with Catwalk XT identified different motor patterns

between the genotypes. The gait pattern of KO mice, including the
print area, swing, intensity of contact, and single stance of paws
toward the glass platform, was modified. More precisely, for their
hind paws, the KO mice had a reduced print area, a shorter swing
and single stance, and a higher intensity of the contact of the paw.
This may result in pain, discomfort, or mechanical disorders
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into osteoclasts. In parallel, osteoblasts also secrete OMD which displays the ability to capture RANKL and would prevent its binding to RANK
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associated with joint damage or skeletal tissue abnormalities. It is
important to highlight that a decreased hind print area is considered
the best predictor for spontaneous OA.42 Furthermore, the single
stance was reported to be significantly decreased in OA mice,43 and
the swing may also be reduced with OA.44 Our report on gait
parameters is consistent with previous observations found in the
literature and corroborates the susceptibility of KO mice to develop
further OA joint damage. On the other hand, the gait patterns at
16 months may be affected by the initiation of OA, leading to
abnormal loading on affected limbs.
To corroborate our findings from the mouse model, we studied

mutant adult zebrafish that did not express omd. In zebrafish, we
found cartilage lesions in the articular cartilage in the jaw joint.
Again, this suggests that omd prevents spontaneous cartilage
lesions during aging and that a decrease in OMD production by
osteoblasts and hypertrophic chondrocytes could be deleterious
for cartilage. Altogether, these findings support the idea that a loss
of OMD contributes to OA development. We then investigated by
which mechanism of action OMD could regulate bone and
cartilage metabolism. Our transcriptomic data revealed that OMD
is unlikely to perform its function on osteoblasts through direct
gene expression regulation, as very few genes were modified and
with a low magnitude. It remains noteworthy to specify that
among the regulated genes, IBSP was downregulated by OMD.
IBSP overexpression by hypertrophic chondrocytes is associated
with OA.45 Consequently, OMD could control cartilage calcification
in OA by downregulating IBSP production.
Direct binding of OMD to key bone regulatory factors is

another possible mechanism of action. SLRPs are known to bind
cytokines, growth factors, and ligands such as RANKL.9,24 Herein,
we showed that OMD not only enhances the differentiation of
osteoblasts30 but is also able to bind directly to RANKL and block
its biological activity on osteoclasts. Measures of bone markers in
the serum of 16-month-old mice corroborated the elevated
osteoclast number and higher bone turnover in the loss-of-
function model. The UP mice showed the lowest P1NP level,
which might indicate that their poor conservation of bone
volume was due to low bone formation rather than bone
resorption. The mutant zebrafish model confirmed the role of
omd in osteoclastogenesis. The number of cathepsin K-positive
osteoclasts increased in the regenerating caudal fin of the
mutants. Furthermore, observations of elasmoid scales, which
share a similar transcriptomic profile with the mammalian
skeleton, including genes related to human diseases,46 high-
lighted higher TRAP staining and more circular scales in zebrafish
lacking omd. As osteoclasts induce Omd expression in mature
osteoblasts,31 OMD exerts negative feedback regulation on
them. Moreover, sulfated GAGs are known to inhibit the
differentiation of osteoclasts, and the sulfation level of OMD is
higher during the ECM mineralization process.47,48 Our findings
present OMD as a novel regulator of the bone remodeling
process that is able to protect against subchondral bone sclerosis
in pathological conditions such as OA. These observations are
crucial since we know that bone remodeling plays a key role in
the bone-driven OA phenotype, with uncoupled bone remodel-
ing leading to impaired bone resorption and bone deposition
functions, resulting in subchondral bone sclerosis with an
elevated number of osteoclasts.49–51 We identified OMD as a
novel player in the uncoupled bone remodeling associated with
OA. Finally, we can point out that the bone and cartilage
phenotypes due to the loss-of-function of Omd are consistent
with other murine SLRP-deficient models.16–24 This ultimately
reinforces previous statements declaring overlapping functions
within the SLRP family.
In conclusion, alterations in Omd expression modify bone and

cartilage metabolism and structure. OMD helps to preserve bone
and cartilage integrity, and a local decrease in its production leads
to the development of OA mainly by increasing subchondral bone

sclerosis and thinning the calcified cartilage, while its over-
expression alleviates subchondral bone sclerosis. OMD is able to
directly bind to RANKL and inhibit osteoclastogenesis to regulate
bone remodeling and limit subchondral bone sclerosis. Our
previous and current studies, making use of both in vitro and
in vivo experiments either with human, mouse or zebrafish
models, build a strong and compelling body of evidence that
OMD is a key factor in OA associated with subchondral bone
sclerosis.

METHODS
Mouse strains and housing
The mutant mouse strain deficient for Omd used for this
research project, C57BL/6 Omdtm1Lex/Mmucd, RRID:
MMRRC_011749-UCD, was obtained from the Mutant Mouse
Resource and Research Center (MMRRC) at the University of
California at Davis, an NIH-funded strain repository, and was
donated to the MMRRC by Lexicon Genetics Incorporated. The
mutation targeted coding exons 1 and 2 by homologous
recombination. The genotyping protocol from MMRRC was
applied. The overexpressing mouse strain for Omd used for this
research project, C57BL/6 Tg(Bglap-Omd)1Kieg, EMMA ID
EM:02120, was obtained from the European Mouse Mutant
Archive (EMMA), a repository supported by the national research
programs and by the EC’s Research and Innovation program
Horizon 2020. The transgenic line expressed Omd under the
osteocalcin promoter in addition to its natural expression; hence,
Omd overexpression was only osteoblast specific. Strains were
crossed with WT C57BL/6 mice to maintain the line. Transgenic,
WT, and mutant mice were maintained on a 12-h light/dark cycle
with food and water supplied ad libitum. To simplify the
nomenclature in the paper, we refer to the Omd-deficient mice
as “KO” and to the Tg(Bglap-Omd) as “UP”. The ethics committee
of the University of Liège approved all experimental procedures
(reference no. 19-2090).

Mouse model of OA
Posttraumatic OA was induced by DMM in the UP, WT, and KO
strains at 16 weeks. The surgical transection of the medial
menisco-tibial ligament of the right knee was performed to
induce mild instability of the knee.52 The mice were euthanized
12 weeks after surgery, and their knees were histologically
analyzed.
For spontaneous OA, UP, WT, and KO mice were euthanized at

16 months, and their knees were histologically analyzed.

Knee joint histology and histomorphometry
Knee joints of the mice, at 4, 8, 16 months, and 28 weeks from the
DMM model, were fixed for 24 h in 4% paraformaldehyde (PFA) at
4 °C, followed by decalcification in hydrochloric acid (DC2
medium; Labonord) for 2 h and 30min at 4 °C and then washed
in Milli-Q water overnight at 4 °C before embedding in paraffin.
Coronal sections of 5 μm were cut within the central area with
3 sections at least 80 μm apart selected for analysis with Safranin-
O Fast Green staining. An additional central section was used for
Toluidine blue staining. Each compartment of the knee joint was
scored by two readers following OARSI guidelines for the mouse
model as described in ref, 53 and the mean score from the
3 sections was calculated.
Histomorphometry of the sections was performed with QuPath

version 0.3.2 software.54 The sections were photographed at ×10
magnification. Cartilage histomorphometry analysis was per-
formed on sections stained with Toluidine blue. The total cartilage,
calcified cartilage, plate length, and growth plate area were
measured. For the growth plate, the area was measured inside a
consistent circle of a fixed size under the articular plateau. The
subchondral bone area analysis was performed on the 3 sections
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stained with Safranin-O Fast Green. The bone area was measured
under the tibial plateau according to its length, and the bone
marrow area was removed. The measured region of interest (ROI)
is explained in Fig. S8.

Immunohistochemistry
Epitope retrieval was performed using chondroitinase ABC
(50 units per mL, Sigma-Aldrich) in 60 mmol·L−1 sodium acetate
and 100 mmol·L−1 Tris (pH 8) for 30 min at 37 °C. Animal-free
blocking solution (Cell Signaling Technology, dilution 5X) was
used to block the sections prior to overnight incubation with the
primary polyclonal goat antibody anti-mouse OMD (R&D
Systems, AF3308, 0.8 μg·mL−1) in antibody diluent (Dako,
S2022). The sections were then incubated for 30 min with the
secondary polyclonal rabbit antibody anti-goat coupled with
HRP (DakoP0449, dilution 1:400) diluted in Antibody diluent.
Visualization of the secondary antibody was performed by using
DAB (Cell Signaling Technology, 8059) for 2 min. Sections were
counterstained with hematoxylin from Carazzi (Sigma-Aldrich)
for 4 min.

Microcomputed tomography (µCT) and image analysis
Tibiae from mice were dislocated and fixed for 24 h in 4% PFA at
4 °C and transferred into phosphate-buffered saline (PBS) for
storage at 4 °C. Samples were imaged using a Phoenix NanoTom
M (GE Measurement and Control Solutions, Germany). A diamond
target was applied, and scans were operated at a voltage of 60 kV,
a current of 170 μA, and a voxel size of 3 µm. An aluminum filter of
0.2 mm was used to reduce beam hardening during the
acquisition. The exposure time was 500ms, and 1 800 images
were acquired over 360° using the fast scan mode (frame
averaging= 1; image skip= 0). During reconstruction (Datos|x,
GE Measurement, and Control Solutions), we applied a beam
hardening correction of 8. After reconstruction, scans were
oriented in the same plane using DataViewer (Bruker MicroCT,
Kontich, Belgium). Images were analyzed using CTAn (Bruker
MicroCT, Kontich, Belgium). For assessment of the trabecular
architecture, we selected 150 images (450 µm height) starting at
30 μm below the growth plate level. Using 3D analysis, the
trabecular volume (BV), total ROI volume (TV), number of
trabeculae, porosity, and structure model index (SMI) were
calculated. For analysis of the cortical architecture, we selected
100 images (300 µm height) starting at 1 500 μm below the
growth plate level and corresponding to the mid-shaft. Using 3D
analysis, the BV, TV, cortical thickness, porosity and tibial crest
length were calculated. 3D visualization was performed using
CTVox (Bruker MicroCT, Kontich, Belgium). The subchondral bone
of the tibia, showing a coronal view of the medial and lateral
plateaus, was also visualized in 3D using CTVox, and a 2-D
visualization was generated using DataViewer.

CatWalk XT
The gait analysis of the mice was performed using the CatWalk XT
System (Noldus, Netherlands; software version XT 10.5). The CatWalk
XT platform was placed in a dark and silent environment to
enhance the quality of the recording and reduce animal stress. The
same detection settings were used for each mouse: camera gain of
18.99 dB, green intensity threshold of 0.1, detection threshold of 0.1
a.U, red ceiling light of 17.2 V, and green walkway light of 16.5 V.
The gait was recorded, and the CatWalk XT software automatically
labeled the footprint and generated the various associated gait
parameters for the compliant runs. A compliant run was defined as
a run where the mouse did not stop while going through the
walkway with at least 12 footprints, the maximum variation was set
at 60%, and the speed was between 10 and 45 cm·s−1. At least 3
runs for each mouse were recorded, and the data represent the
mean value. The data from the left and right paws were pooled for
the front and hind paws to simplify the run parameter visualization.

Zebrafish husbandry and strains
Zebrafish (Danio rerio) were raised in standard conditions as
described in ref. 55 Mutant lines deficient for omd were generated
using CRISPR‒Cas9 mutagenesis with the guide RNA 5’-CAA-GAG-
CTG-CGC-CAA-TG-TCA-3’. The gRNAs targeting omd were incu-
bated with Cas9 protein (Thermo Fisher Scientific) before
microinjections into 1-cell stage zygotes. The mutation targeted
the START codon. The reporter line used to visualize osteoclasts is
the transgenic line TgBAC(ctsk:Citrine)56 and was kindly provided
by Prof. Stefan Schulte-Merker. The ethics committee of the
University of Liège approved all experimental procedures
(references no. 16-1961 and 19-2133).

Injection of mRNA of omd in the Zebrafish
For omd overexpression, zebrafish omd mRNA and GFP mRNA,
serving as a control, were microinjected into 1-cell stage zygotes.
The following primers were used to generate the omd mRNA:
forward 5’-CGA GAG AGA TAT TCA ATC CCA CAG-3’ and reverse 5’-
TCA ACC AAC AAG GAA TGG AAG-3’. The T7 promoter sequence for
in vitro mRNA synthesis with the mMessage mMACHINE®T7 Ultra
kit (Invitrogen) was added afterward with nested PCR using the
forward primer 5’-GCG AAT TGT AAT ACG ACT CAC TAT AGG GCC
ACC ATG ACA TTG GCG CAG-3’. Fertilized eggs were injected with
either 0.4 ng or 0.8 ng of mRNA. Phenotypic characterization was
performed at 24 hpf and 4 dpf. At 4 dpf, the larvae were fixed with
4% PFA overnight at 4 °C and then stained with Alcian blue as
described in ref. 57

Whole-mount in situ hybridization in zebrafish
Zebrafish larvae at 48 hpf, 5 dpf and 8 dpf were used for whole-
mount in situ hybridization. Larvae were raised in the presence of
0.003% 1-phenyl-2-thiourea until 5 dpf to avoid pigmentation
development. Larvae were fixed overnight in 4% PFA at 4 °C and
stored in 100% methanol at −20 °C until use. Visible in situ
hybridizations were performed as described in ref. 58 with a
digestion step with Proteinase K (Thermo Scientific) at 40 μg·mL−1

for 30 min at 37 °C for the 48 hpf larvae, at 50 μg·mL−1 for 30 min
at room temperature, and at 40 μg·mL−1 for 50 min at room
temperature for the 8 dpf larvae.

Histology of the zebrafish jaw joint
One-year-old zebrafish were fixed with 4% PFA at 4 °C for a
minimum of 24 h and decalcified in 1 mol·L−1 EDTA solution for
20 days. Zebrafish were dehydrated in ethanol, embedded in
paraffin, and sagittally sectioned at 5 µm. Sections showing the
jaw joint were stained with Toluidine blue. The OARSI score was
attributed to 1 section per jaw joint as described in ref. 32

Zebrafish osteoclast assay in the caudal fin
The omd x TgBAC(ctsk:Citrine) mutants were used at 1 year for the
osteoclast analysis. Their caudal fins were cut, and the fins were
allowed to regenerate for 7 days. Regenerated caudal fins were
cut for analysis and incubated for 20min with 0.01% Alizarin red S
(Sigma‒Aldrich) to stain the mineralized bone matrix. Quantifica-
tion of fluorescence from regenerated rays was performed using
ImageJ software.59

TRAP staining of the zebrafish scales
Ontogenetic scales of 1.6-year-old fish were plucked from the
flank of the zebrafish and fixed with 4% PFA at room temperature
for 30 min. Scales were incubated for 2 h in the TRAP staining
solution as described in ref. 60 Quantification of TRAP staining was
performed using ZFBONE software on FIJI.61

Human trabecular osteoblast culture and RNA-seq analysis
Tibial bones were obtained from 6 male and 5 female patients
undergoing total knee replacement surgery for OA. The age of the
patients ranged from 58 to 89 years. All tissue samples used in this
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study were obtained after receiving approval from the University
of Liege Medicine Faculty ethics committee (No. B70720108313,
reference 2010/43), and written informed consent was obtained
from each subject. Nonsclerotic trabecular bone was easily
removed from the tibia with surgeon pliers and enzymatically
processed to obtain digested bone pieces cultured as described in
ref. 62 At confluence, osteoblasts were collected by trypsinization
and seeded (22 000 cells per cm2) in 12-well plates (Nunc).
Osteoblasts were cultured until confluence and then switched into
differentiation media as described in ref. 62 for 3 days in the
presence of 10 ng·mL−1 human recombinant OMD (R&D Systems,
2884-AD) or its absence for the same patient, serving as its own
control.
Total RNA was extracted from osteoblast cultures, with RNA

quality indicator scores (RIN) of 9.3, and RNA-seq for differential
gene expression analyses was performed with a false discovery
rate (FDR) of 0.01 to assess the statistical significance as described
in ref. 63

Solid phase binding assay
Human recombinant RANKL (OriGene, Germany) was bound for
2 h under constant agitation to Well-Coated™ Nickel (G-Bios-
ciences) previously washed with PBST. Unbound protein was
removed by repeated washing with PBST. RANKL-coated plates
were incubated overnight at 4 °C with human recombinant OMD
(R&D Systems). The OMD bound to the coated plate was detected
using the primary biotinylated polyclonal goat antibody anti-
human OMD (R&D Systems, ref: BAF2884, 0.4 μg·mL−1). Plates
were incubated with streptavidin-POD (Roche, dilution 1:25 000)
for 30min for detection. Finally, plates were read at 450 nm after
applying TMB (TMBplus2, D-Tek, Denmark) for 8 min. The direct
binding between OMD and RANKL was assessed with a fixed
concentration of RANKL (0.2 μg·mL−1) and decreasing concentra-
tions of OMD (1 000 to 15.65 ng·L−1 by serial 2X dilution), with the
negative control missing RANKL; and with decreasing concentra-
tions of RANKL (800 to 6.25 ng·mL−1 by serial 2X dilution) and
fixed concentration of OMD (0.5 μg·mL−1), with the negative
control missing OMD.

Mouse osteoclast culture
WT mice of at least 4 months of age were used to collect bone
marrow cells. The bone marrow of the femur and the tibia was
flushed with 10 mL of αMEM containing 10% FBS, 100 U per mL
penicillin, and 100mg·mL−1 streptomycin. Cells were strained
through a 70 µm filter and then centrifuged at 1 200 r·min−1 for
7 min at 22 °C. After centrifugation, cells were suspended in 12mL
of media containing 5 ng·mL−1 M-CSF in a petri dish and
incubated overnight at 37 °C. The nonadherent cells were
centrifuged at 1 200 r·min−1 for 7 min at 4 °C the next day. The
cells were suspended in the osteoclast differentiation medium
αMEM containing 10% FBS, 100 U per mL penicillin, 100 mg·mL−1

streptomycin, 30 ng·mL−1 M-CSF and 10 ng·mL−1 RANKL. For the
treatment conditions, 10 and 40 ng·mL−1 recombinant mouse
OMD (R&D Systems) were preincubated for at least 15 min with
RANKL and M-CSF prior to addition to the suspension of the cells.
Cells were seeded (525 000 cells per cm2) in 24-well plates. Cells
were maintained until 4 days of differentiation and were stained
with a TRAP staining kit (Sigma-Aldrich) according to the
manufacturer’s instructions.

Assay in the serum for bone turnover markers
Serum was extracted from the blood of 16-month-old mice
collected at euthanasia. The level of P1NP was measured by Rat/
Mouse P1NP ELISA (Immunodiagnostic Systems, Boldon, UK), and
the level of TRAcP 5b was measured by the Mouse TRAP Assay, a
solid phase immunofixed enzyme activity assay (Immunodiag-
nostic Systems, Boldon, UK), according to the manufacturer’s
protocol.

Mechanical testing
The biomechanical properties of the tibia of 16-month-old mice were
determined using a three-point bending test in an Instron 5565
tensile testing machine. Tibiae were stored in PBS, and the remaining
soft tissues and fibulae were carefully removed. The samples were
assessed at room temperature on a special holding device on their
anteroposterior axis. Force was applied on the midpoint of the tibia
diaphysis with a 100 N load cell at 8mm separation (span length) with
a perpendicular constant speed of 0.05mm·s−1 and with a preload of
1 N until it fractured. From the load‒deformation curve, the values for
the maximal load (N) and stiffness (N·mm−1) were obtained.64

Statistical analysis
The results were statistically analyzed using GraphPad Prism 6.0.
The tests performed and statistical significance are indicated in
the figure legends, with P values < 0.05 considered statistically
significant.
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