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Reversal of the diabetic bone signature with anabolic therapies
in mice
Silvia Marino1,2, Nisreen Akel1,2, Shenyang Li2, Meloney Cregor1,2, Meghan Jones1, Betiana Perez1, Gaston Troncoso1, Jomeeka Meeks1,
Scott Stewart 3, Amy Y. Sato1,2, Intawat Nookaew4,5 and Teresita Bellido 1,2,5✉

The mechanisms underlying the bone disease induced by diabetes are complex and not fully understood; and antiresorptive
agents, the current standard of care, do not restore the weakened bone architecture. Herein, we reveal the diabetic bone signature
in mice at the tissue, cell, and transcriptome levels and demonstrate that three FDA-approved bone-anabolic agents correct it.
Diabetes decreased bone mineral density (BMD) and bone formation, damaged microarchitecture, increased porosity of cortical
bone, and compromised bone strength. Teriparatide (PTH), abaloparatide (ABL), and romosozumab/anti-sclerostin antibody (Scl-Ab)
all restored BMD and corrected the deteriorated bone architecture. Mechanistically, PTH and more potently ABL induced similar
responses at the tissue and gene signature levels, increasing both formation and resorption with positive balance towards bone
gain. In contrast, Scl-Ab increased formation but decreased resorption. All agents restored bone architecture, corrected cortical
porosity, and improved mechanical properties of diabetic bone; and ABL and Scl-Ab increased toughness, a fracture resistance
index. Remarkably, all agents increased bone strength over the healthy controls even in the presence of severe hyperglycemia.
These findings demonstrate the therapeutic value of bone anabolic agents to treat diabetes-induced bone disease and suggest the
need for revisiting the approaches for the treatment of bone fragility in diabetes.
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INTRODUCTION
The global prevalence of diabetes mellitus (DM) around the world
is high with more than 500 million adults living with the disease (1
in 10, ages 20–79), and it is estimated to increase to 783 million by
2045.1 The American Diabetes Association declared DM a nation-
wide epidemic, being the 7th leading cause of death in the US. In
2019, ~11% of Americans had DM and ~50% of Americans 65
years and older had prediabetes. The disease impacts all tissues
and organ systems, accounting for substantial morbidity and
mortality. In 2021, over 400 billion dollars were spent in the US on
DM-related health-care costs. DM is characterized by high glucose
levels due to insufficient production or inefficient utilization of
insulin in Type 1 (T1-DM) or T2-DM, respectively.2–4 Regardless of
the cause, a major complication of DM is the bone disease and
increased fragility with a 32% increased risk of bone fractures in
diabetic patients compared to non-diabetics .5,6,7

The mechanisms underlying DM-induced bone disease are
complex and uncertain. Patients with T1-DM can exhibit low
bone mass, measured as bone mineral density (BMD), whereas
those with T2-DM can exhibit normal or even increased BMD.
Yet, bone fragility is increased potentially due to accumulation
of advanced glycation end products (AGEs) in collagen and
other bone matrix proteins, which decreases bone toughness
and resistance to fracture.8 Cortical bone micro-architectural
deterioration secondary to reduced thickness and increased
porosity is another feature of diabetic bone.6,9,10 Thus, bone
fragility in DM is associated with deteriorated intrinsic as well as

extrinsic properties of bone accompanied or not by changes in
BMD.
A common feature of the bone disease with T1 or T2-DM is

reduced osteoblast number and function and low bone forma-
tion.5 However, the standard of care are anti-resorptive agents,
bisphosphonates or denosumab, which stop bone loss but do not
increase bone formation, thus failing to repair the deteriorated
bone architecture. In the current study, we investigated the
effectiveness of the three agents with bone anabolic properties
approved by the FDA for the treatment of osteoporosis:
teriparatide/parathyroid hormone 1-34 (PTH), abaloparatide/PTH-
related peptide 1-34 (ABL), and romosozumab/anti-sclerostin
antibody (Scl-Ab)], in restoring the weakened bone structure
using a preclinical murine model of established T2-DM.
The current study reveals the signature of the diabetic bone at

the tissue, cell, and transcriptome levels and demonstrates that all
anabolic agents reverse it, rebuilding the bone lost with DM,
increasing bone formation, correcting the elevated cortical
porosity, and restoring bone strength. However, whereas PTH/
ABL increased resorption, the Scl-Ab decreased it leading to
further bone gain. In addition, all agents restored bone area,
increased cortical thickness and corrected the weakened structural
properties of diabetic bone. Furthermore, ABL and Scl-Ab
increased toughness, a measure of the energy absorbed by bone
before breaking associated with fracture risk. Our findings
demonstrate the efficacy of increasing bone formation (indepen-
dently on the effects on resorption) to restore the damaging
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effects of diabetes on bone mass and structure, and to increase
bone strength.

RESULTS
PTH and ABL restored the bone lost with T2-DM
The bone anabolic agents were tested in a model of T2-DM
induced by a combination of high fat diet (HFD) and streptozo-
tocin (STZ) in skeletally mature male C57BL/6 J mice (Fig. 1a). HFD/
STZ (T2-DM) caused persistent overt hyperglycemia with blood
glucose > 250mg·dL−1 compared to non-diabetic mice fed low fat
diet (LFD, C mice), which was first detected 4 weeks after initiating
the STZ injections (at t2) and remained elevated for the entire
study (Fig. 1b). Body weight was increased in T2-DM mice
compared to C after 4 weeks of HFD (at t1) (Fig. S1a), due to a gain
in fat mass. T2-DM caused significant reduction in BMD as
quantified by longitudinal DEXA analysis, confirming the devel-
opment of bone disease (Fig. 1c and Fig. S1b). Decreased BMD
was first detected in the spine at t1 and in total body at t2, and
remained reduced compared to C throughout the study, whereas
the decreased femoral BMD was detected at the end of the study.
Four weeks of treatment with equimolar doses (24 pmol·g−1

per day) of PTH (100 μg·kg−1 per day) or ABL (95 μg·kg−1 per day)
restored the bone lost caused by T2-DM at all sites (Fig. 1e). Similar
increases in BMD were induced by half dose of ABL (ABL-low,

12 pmol·g−1 per day or 47.5 μg·kg−1 per day). Blood glucose, body
weight, and fat mass remained elevated in T2-DM mice receiving
PTH or ABL (Fig. 1d and Fig. S1c).

PTH and ABL corrected the architectural deterioration induced by
diabetes in cancellous and cortical bone and increased bone
strength
T2-DM mice exhibited a reduction in bone volume/total volume
(BV/TV) in cancellous bone of the distal femur measured by micro-
CT compared to C mice, which was corrected by both doses of
ABL and by PTH (Fig. 1f and Table S1). Further, ABL increased bone
over healthy C and PTH did not. However, PTH and both doses of
ABL were equally potent in increasing trabecular thickness (Tb.Th)
in T2-DM mice, reducing trabecular number (Tb.N) and increasing
trabecular separation (Tb.Sp), suggesting trabecular fusion. In
addition, ABL significantly increased trabecular connectivity
density (Conn D.). In cancellous bone of the spine (L6), PTH and
ABL increased BV/TV to a similar extent (Table S2). PTH and ABL
also increased vertebral trabecular thickness and reduced the
structural model index (SMI), suggesting geometrical benefits
provided by more plate-like structures versus more rod-like
structures.
In cortical bone, T2-DM mice exhibited decreased cortical

thickness (Ct.Th) and BA/TA (Fig. 2a). PTH and ABL were equally
potent in restoring cortical thickness and bone area/total area
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Fig. 1 PTH and both doses of ABL restored BMD and increased cancellous bone in diabetic mice. a Study design depicting the preclinical T2-
DM model. Male C57BL/6 mice were fed a low-fat diet (LFD) or a high fat diet (HFD) starting at t0 until the end of the experiment. At t1, HFD-
fed mice were injected with streptozotocin (STZ) (T2-DM) and LFD-fed mice, with buffer (C). At t2, blood glucose was measured to confirm
DM, and following an additional month to fully develop the bone disease at t3, mice were administered with vehicle, PTH or ABL daily for
4 weeks (t4). Longitudinal analysis showing the effect of DM on b blood glucose, and c total bone mineral density (BMD). d Glucose levels after
treatment (at t4). e Total, femoral and spinal BMD before treatment (at t3, grey bars) and after treatment (at t4) with vehicle (white bars), PTH
(green bars) or ABL (blue and pink bars). f Micro-CT analysis of femur cancellous bone: trabecular bone volume/tissue volume (BV/TV) and
trabecular thickness (Tb.Th), after treatment with PTH or ABL and representative images. n= 12–15 mice per group. Data are presented as box
& whisker plots where each dot represents a mouse. ^P < 0.05 versus C mice by one-way ANOVA with post hoc Dunnet’s correction; *P < 0.05
versus T2-DM mice treated with vehicle; and #P < 0.05 versus t3, by one-way ANOVA with post hoc Tukey’s correction
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(BA/TA) and further increasing these indexes as well as bone area
(BA) over C (Fig. 2b). ABL increased bone area even further
compared to PTH. In addition, T2-DM increased porosity at the
femoral mid-diaphysis and PTH and ABL corrected it (Fig. 2a and
Table S1). Restoration of cortical thickness by PTH vs ABL might
result from bone surface-specific mechanisms, as PTH reduced
marrow area (MA) whereas ABL increased tissue area (TA).
Consistently, ABL but not PTH increased the polar moment of
inertia (pMOI), resulting from a change in bone geometry leading to
increased strength. Further, T2-DM induced marked changes in the
geometry of the vertebra (L6), which were overall improved by the
anabolic agents (Table S2). Specifically, T2-DM bones exhibited
decreased vertebral cross-sectional area (CSA) which was corrected
by PTH or ABL treatments. In addition, T2-DM decreased vertebral
cortical thickness, which was corrected by ABL but not PTH.
T2-DM deteriorated the structural properties of the femur

without affecting its material properties, quantified by three-point
bending, and the anabolic agents corrected the structural changes
and improved both structural and material properties (Fig. 2c, d
and Table S1). Specifically, T2-DM bones exhibited lower stiffness,
which was increased by PTH and ABL. The treatments also
increased ultimate force and only ABL increased energy to
ultimate load. Remarkably, PTH and ABL increased ultimate stress

and ABL also increased material toughness above C levels. No
differences in structural or mechanical properties of the vertebral
bone were detected in T2-DM (Table S2). However, PTH increased
ultimate force, PTH and ABL increased energy to ultimate load,
and ABL increased energy to yield, over healthy C.
In summary, PTH and ABL restored and further increased

cancellous and cortical bone volume and improved microarchi-
tecture and extrinsic and intrinsic bone properties despite the
ongoing hyperglycemic status.

PTH and ABL converted the low bone remodeling disease in
diabetes into a high bone remodeling condition with bone gain,
and ABL was more potent
Circulating levels of the bone formation marker P1NP were
reduced in T2-DM mice compared to C before treatment at t3
(Fig. 3a); and PTH and ABL-low were equally potent in increasing
P1NP (130% vs C and 129% vs T2-DM; P < 0.05) whereas the
equimolar dose of ABL increased it further (240% vs C and 50% vs
PTH/ABL-low; P < 0.05) (Fig. 3b). In cortical bone, bone formation
rate (BFR) was reduced in T2-DM mice compared to C in both the
periosteal and endocortical surfaces, resulting from a reduction in
MS/BS (BFR −50% and −35%, and MS/BS −40% and −24%,
respectively; P < 0.05) (Fig. 3c and Fig. S2b). ABL and PTH were
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Fig. 2 PTH and ABL corrected the cortical architectural deterioration induced by diabetes and increased bone strength. Micro-CT analysis of
femur cortical bone microarchitecture and 3-point bending analysis of bone strength after treatment with PTH or ABL. a Cortical bone area/
tissue area (BA/TA), thickness (Ct.Th) and porosity and representative images. b Bone area (BA), medullary area (MA), total area (TA) and polar
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(ultimate stress and toughness). n= 12–15 mice per group. Data are presented as box & whisker plot where each dot represents a mouse.
^P < 0.05 versus C mice by one-way ANOVA with post hoc Dunnet’s correction; *P < 0.05 versus T2-DM mice treated with vehicle and ϮP < 0.05
versus T2-DM mice treated with PTH by one-way ANOVA with post hoc Tukey’s correction
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equally potent in increasing all indexes of bone formation on both
surfaces in T2-DM, far beyond the C non-diabetic mice. On the
periosteal surface, PTH/ABL increased MS/BS by 200% and BFR by
700% vs vehicle-treated T2-DM mice. In addition, periosteal MAR
was increased by PTH (160% vs vehicle-T2-DM mice; P < 0.05) and
further enhanced by either dose of ABL (20% vs PTH; P < 0.05). The
treatments increased to the same extent MAR, MS/BS, and BFR on
the endocortical and cancellous bone surfaces (Fig. S2b, c).
Regarding resorption, T2-DM mice exhibited high levels of

circulating CTX before treatment (Fig. 3a), which remained
elevated in vehicle-treated T2-DM mice and were further
increased by PTH and either dose of ABL (100% vs C and 40%
vs T2-DM; P < 0.05). Similarly, T2-DM mice exhibited increased
circulating levels of TRAP 5b, a marker of osteoclast number, and
PTH/ABL further increased it (700% vs C and vs 200% vs T2-DM;
P < 0.05). In contrast, osteoclasts were decreased in bone sections
from T2-DM mice compared to non-diabetic mice at the end of
the study. And, although PTH or ABL-low did not change
osteoclast number in T2-DM mice, the high dose of ABL increased
osteoclast surface (Fig. 3d and Fig. S2d). These findings are

consistent with a decrease by diabetes and conversely an increase
by PTH/ABL in processes associated with resorption detected by
gene ontology (GO) analysis (Fig. 4f). Overall, these findings at the
tissue level support the notion that established diabetes is a low
bone remodeling disease; and that PTH/ABL reverse it towards a
high bone remodeling condition with bone gain.

PTH and ABL corrected the diabetic transcriptome signature of
low bone remodeling and decreased Wnt signaling
Bone transcriptome analysis, based on a cutoff of log2 fold change
(FC) > 2 or <−2, P < 0.01, revealed a high number of genes
downregulated by T2-DM and, conversely, a high number of
genes upregulated by treatments, in particular by ABL shown in
the volcano plots (Fig. 4a). From the 112 differentially expressed
genes (DEG) in diabetic bones, 102 were downregulated and 10
up-regulated. Treatment of T2-DM mice with the PTH1R ligands
change the bone transcriptome. A limitation of the transcriptome
signature is that hematopoietic cells were included in the RNA-seq
analysis, potentially masking some of the effects of PTH/ABL on
mesenchymal cells. PTH increased the expression of 78 genes and
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decreased the expression of 20 genes; ABL-low increased the
expression of 72 genes and decreased the expression of 79 genes;
and ABL increased the expression of 402 genes and decreased the
expression of 6 genes (Fig. 4a). Four of the genes upregulated in
diabetic bone have been previously associated with glucose
homeostasis, lipid metabolism, or pancreatic β cell function
(Table 1).11–13 Among the genes downregulated by T2-DM,
Stearoyl–coenzyme A desaturase-1 (Scd1) was the most signifi-
cantly downregulated (−2.9 fold), and it was conversely sig-
nificantly upregulated only by ABL (+ 1.4 fold) (Fig. 4a and
Table 1). Scd1 has previously shown to stimulate osteogenic
differentiation,14 and to be downregulated in bone marrow
stromal cells from T2-DM patients.15 Regulator of G protein
signaling like 1 (Rgsl1) and Forkhead box protein F1 (Foxf1) were
also downregulated in T2-DM bones and were upregulated by
both PTH and ABL. Future studies will be required to establish the
role of these conversely regulated genes in diabetes-induced
bone disease and/or PTH/ABL action in bone.
Consistent with the role of the PTH1R in osteocytes,16,17 all

treatments increased the expression of several osteocytic genes,
being phosphate regulating endopeptidase X-linked (Phex) the
most significantly upregulated (PTH+ 2.3 fold; ABL-Low + 2.3;
ABL+ 3.0) (Fig. 4a). In addition, common and unique set of genes
were transcriptionally regulated by PTH vs ABL. Twenty-five genes
were transcriptionally regulated by all treatments, while PTH
exclusively regulated 28 genes, ABL-low 94 genes, and ABL 326
genes (Fig. 4b). These findings demonstrate that ABL induced the
most significant modification of the bone gene transcriptome
compared to PTH in the frame of diabetes.

To further evaluate the transcriptional responses of the ligands of
the PTH1R, we compared the gene expression signatures of PTH,
ABL-low and ABL in the context of T2-DM using the threshold-free
approach Rank-Rank Hypergeometric Overlap (RRHO).18 The RRHO
analysis detected no discordant transcriptional patterns among
treatments (top-left and bottom-right quadrants, Fig. 4c–e). In
contrast, it detected high concordance in the transcriptionally up-
regulated and down-regulated genes (bottom-left and top-right
quadrants, respectively) by PTH and ABL, as analyzed by pairwise
comparisons. Moreover, the bigger size of the bottom-left quadrant
compared to the top-right quadrant indicates that the majority of
the genes regulated by the treatments were up-regulated.
GO enrichment mapping identified biological processes

affected by T2-DM and/or the treatments with PTH1R ligands.
Among them, three biological processes were selected: bone
formation, bone resorption, and Wnt signaling (Fig. 4f). The GO
term groups of genes related to these three processes were
overall decreased by T2-DM and, conversely, increased by the
different treatments to the same extent, as shown in the heat
maps. The gene signatures of bone formation and resorption are
consistent with the tissue-level responses to diabetes and the
treatments with the PTH1R ligands. Specifically, bone formation
rate (BFR) and osteoclast number are decreased in diabetic bone
and increased by administration of PTH/ABL.

Scl-Ab antibody restored the bone lost with diabetes by increasing
bone formation and reducing osteoclasts
The GO enrichment mapping also identified Wnt signaling, a
pathway that pays a central role in osteogenesis and the control of
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bone mass, as a biological process downregulated by T2-DM and,
conversely, upregulated by PTH/ABL (Fig. 4f). Earlier findings
showed that bones from T1-DM mice exhibited increased
expression of Sost, the osteocyte-derived Wnt signaling antagonist
and inhibitor of bone formation.19 In contrast, in the current study
T2-DM mice exhibited similar Sost expression in bone or sclerostin
levels in serum compared to C mice (Fig. 5a). Nevertheless, PTH
and both doses of ABL decreased bone mRNA Sost expression and
ABL also reduced circulating sclerostin protein levels (Fig. 5a),
suggesting a potential role of Sost/sclerostin downregulation in
the anabolic function of the PTH1R ligands in the context of
diabetes.
We next therefore investigated whether sclerostin inhibition per

se was sufficient to reverse the bone deterioration induced by T2-
DM. The humanized monoclonal anti-sclerostin antibody
(Scl-Ab)20 was administered to non-diabetic or T2-DM mice for
4 weeks (Fig. 5b and Fig. S3a, b). Scl-Ab increased BMD at all sites in
C mice; and in T2-DM mice, Scl-Ab not only restored the bone lost
with diabetes but further increased BMD over the value of C mice
(Fig. 5c). Scl-Ab treatment increased the expression of Sost in C and
T2-DM mice (Fig. 5d). Blood glucose, body weight, and fat mass
remained elevated in T2-DM mice treated with Scl-Ab (Fig. S3d, e).
Scl-Ab reversed the T2-DM-induced architectural changes in

trabecular and cortical bone of the femur as well as improved
bone architecture in C mice. In trabecular bone, Scl-Ab corrected
and further increased BV/TV and connectivity density, increased
trabecular thickness, and number and reduced separation, SMI,
and material density (Fig. 5e and Table S3). In cortical bone, Scl-Ab
increased BA/TA, and cortical thickness by both increasing tissue
area and reducing marrow area (Fig. 6a and Table S3). These
effects resulted in structural changes leading to increased pMOI.
Moreover, Scl-Ab reduced cortical porosity in C mice and
corrected the increased porosity in diabetic bone (Fig. 6a, b and
Table S3). Scl-Ab also corrected the structural changes induced by
diabetes and improved both structural and material properties of
bone in both T2-DM and C mice (Fig. 6c, d and Table S3). The
effect of diabetes was more pronounced in the vertebra, as

L6 BV/TV and trabecular number were reduced in T2-DM mice
(Table S4). Nevertheless, Scl-Ab efficiently corrected vertebral
trabecular bone deterioration as in the femur.
As shown in the PTH/ABL study, P1NP was decreased in T2-DM

mice before treatment (at t3, Fig. S4a), but was similar to C levels
at the end of the experiment (at t4, Fig. 7a); and treatment with
Scl-Ab increased P1NP in both T2-DM (52%, P < 0.05) and C mice.
Moreover, T2-DM mice exhibited the expected increase in
circulating levels of TRAP5b (200% vs C, P < 0.05) and CTX (115%
vs C, P < 0.05), and the Scl-Ab decreased TRAP5b levels but not
CTX.
Furthermore, Scl-Ab increased BFR on both periosteal (Fig. 7b)

and endocortical (Fig. S4b) bone surfaces of femoral mid-
diaphysis. In contrast with the effects of the PTH1R ligands,
treatment with the Scl-Ab markedly reduced osteoclast number/
surface on bone (Fig. 7c and Fig. S4c).

DISCUSSION
The bone fragility syndrome associated with diabetes causes
substantial morbidity, decreases quality of life, and diminishes life
expectancy of patients, with the associated high health-care costs.
Yet, diabetes-induced bone disease is under-recognized, under-
treated, and of unclear underlying mechanisms. Furthermore, anti-
resorptive agents stop the bone loss but do not rebuild bone nor
restore the deteriorated architecture of the diabetic skeleton.
Herein, we report the diabetic bone signature characterized by
low bone remodeling and decreased Wnt signaling and demon-
strate that the three FDA-approved bone anabolic agents correct
it at the tissue, cellular and transcriptome levels. The bone
protective effects of the anabolic therapies were independent of
the diabetic status, as the loss of mineral, the damaged
architecture, and the low activity of the bone-forming cells were
corrected despite the presence of overt hyperglycemia. Our pre-
clinical mechanistic evidence suggests the need for revisiting the
current treatment recommendations for bone fragility in diabetes
and highlights the potential applicability of bone anabolic

Table 1. Differentially expressed genes in T2-DM mice treated with PTH or ABL (Fig. 4a)

GENE T2-DM+ veh vs control T2-DM+ PTH vs T2-DM T2-DM+ABL-low vs T2-
DM

T2-DM+ ABL vs T2-DM

UP-REGULATED logFC log10 (P.val) logFC log10 (P.val) logFC log10 (P.val) logFC log10 (P.val)

Angptl4 2.40 9.68 0.37 1.00 0.60 1.94 0.43 1.22

Acot1 2.35 7.00 0.32 0.58 0.53 1.02 0.43 0.77

BC048679 2.92 6.57 −0.41 0.50 0.03 0.03 −0.67 0.97

Fbp2 2.07 6.05 0.37 0.62 0.58 1.14 0.34 0.56

Tmco5b 3.89 3.03 −3.37 2.49 −2.32 1.49 −1.83 1.07

Kcnmb3 3.80 2.08 −0.38 0.18 0.54 0.27 −0.60 0.31

DOWN-REGULATED logFC log10 (P.val) logFC log10 (P.val) logFC log10 (P.val) logFC log10 (P.val)

Scd1 −2.94 6.66 0.35 0.41 0.56 0.76 1.43 2.80

Timd4 −2.39 4.25 0.85 1.04 −0.12 0.10 0.80 0.96

Cyp2e1 −2.17 3.92 −0.57 0.63 0.50 0.53 0.19 0.16

Reg4 −3.50 3.57 3.95 4.16 0.42 0.22 3.14 3.10

Rgsl1 −4.31 3.54 3.72 2.92 3.48 2.67 4.82 4.07

Vmn1r21 −4.10 3.53 1.28 0.72 2.01 1.33 4.03 3.46

Scgb3a1 −2.26 3.38 2.77 4.35 3.66 6.01 3.77 6.20

Hsf3 −3.47 3.26 2.97 2.65 1.28 0.82 3.80 3.67

Tescl −3.74 3.25 1.54 1.18 3.40 3.50 3.47 3.58

BC061237 −3.22 3.08 3.11 2.68 1.78 1.23 3.06 2.62

Foxf1 −3.79 2.95 3.03 2.94 2.38 2.11 3.54 3.60

Gpr101 −3.45 2.93 2.15 1.94 1.99 1.75 3.08 3.18
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regimens to restore skeletal strength regardless of the presence or
not of active diabetic disease.
Our non-genetic model of T2-DM uses skeletally mature mice,

mimics the adult onset of diabetes, and closely mirrors the course
of the bone disease induced by diabetes observed in humans.
Hyperglycemia in T2-DM can result from insulin resistance and/or
insulin deficiency.21 As shown earlier by Eckhardt et al.,22 the HFD/
STZ mouse model is characterized by persistent hyperglycemia,
body fat accumulation, dysfunctional insulin secretion, and loss of
pancreatic β cells, but not high insulinemia. Moreover, it is vastly
documented that HFD alone is not sufficient to achieve
hyperglycemia and that combination of HFD with STZ is required
to mimic T2-DM in wild-type rodents.23 Therefore, despite the
limitations of every model, the HFD/STZ combination is currently
the most reliable model of T2-DM in rodents.
The initial high bone resorption leading to bone loss in our

model is evidenced by elevated levels of circulating markers of
resorption, which remain high throughout. However, at the end
of the study, osteoclasts on bone are low and the expression of

resorption-associated genes detected by transcriptome analysis
is reduced. This temporal change indicates a transition from
high resorption to the low resorption condition that charac-
terizes the bone disease in humans with established diabetes.
The apparent discrepancy between serum markers and resorp-
tion at the tissue level at the end of the study might be
explained by the dynamics of the protein marker turnover in the
circulation. On the other hand, bone formation is suppressed
throughout the entire disease progression, as evidenced by low
serum bone formation markers and at the tissue level by the
decreased bone formation rate and gene ontology enrichment
mapping. Thus, similar to humans, established diabetes in our
model is a low bone remodeling disease.24–26 Further, the model
reproduces the architectural characteristics of the disease in
humans including increased porosity of cortical bone, thinning
of cortices and trabeculae, and decreased vertebral cross-
sectional area.27 These features are accompanied by a decrease
in stiffness, a structural/extrinsic property and key component of
overall bone strength.
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Based on the underlying mechanisms of the skeletal disease in
diabetes, bone anabolic agents capable of increasing bone
formation and repairing the lost bone should be preferred
compared to antiresorptive agents. We indeed demonstrate in
the current study the effectiveness of two bone anabolic
pathways: activation of the PTH1R and neutralization of the
osteocyte-derived inhibitor of bone formation sclerostin. Our
findings are consistent with post hoc analysis of large clinical
osteoporosis trials demonstrating that teriparatide, ABL, or
romosozumab increased BMD and trabecular bone score and
reduced non-vertebral fracture incidence similarly in diabetic and
non-diabetic patients.28–31

We compared and contrasted for the first time the efficacy of
two anabolic ligands of the PTH1R: PTH(1-34) and ABL on
restoring bone health in established diabetes, and found that
ABL is more potent and provides better bone geometry benefits
compared to PTH. Thus, half a dose of ABL was sufficient to
restore bone mass, increase bone formation, and correct
architectural deterioration and bone strength in diabetic mice
to a similar extent than PTH, and the equimolar dose of ABL did
not provide additional advantages compared to the half dose. In
addition, although both PTH and ABL restored cortical bone
thickness, they acted on different surfaces, as PTH reduced

marrow area whereas ABL increased tissue area, with the
consequent change in bone geometry and polar moment of
inertia, leading to increased strength with ABL. Overall, PTH and
ABL increased to a similar extent BFR on all bone surfaces. Thus,
the higher levels of the bone formation marker P1NP in
response to the high dose of ABL a priori cannot be attributed
to overall changes in BFR at the tissue level. However, ABL
compared to PTH induced a greater increase in MAR, one of the
components of BFR, on the periosteal surface of cortical bone,
leading to the changes in bone geometry. Therefore, higher
P1NP might reflect this differential effect of ABL vs PTH on
cortical bone surfaces.
The greater gain in bone induced by ABL compared to PTH in

the clinic was originally attributed to lack of increase in bone
resorption by ABL shown in preclinical reports.32,33 Also, both
peptides increased formation markers to the same extent, but ABL
induced less prominent increases in resorption compared to PTH
in clinical studies.34 In contrast, other studies showed that similar
doses of PTH and ABL increase resorption markers and osteoclasts
to the same level.35,36 Our study in the context of diabetes
demonstrates that PTH and ABL increased resorption markers at
comparable levels when tested at equimolar doses, and that even
half dose of ABL induced a similar response. Furthermore, the high
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Fig. 6 Scl-Ab restored and further increased cortical bone volume and improved microarchitecture and extrinsic and intrinsic bone properties
in both control and diabetic mice. Micro-CT analysis of femur bone microarchitecture and 3-point bending analysis of bone strength after (t4)
treatment with Scl-Ab. a Cortical bone area/tissue area (BA/TA), thickness (Ct.Th) and porosity and representative images. b Bone area (BA),
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to ultimate load) and d bone material properties (ultimate stress and toughness). For all analyses, n= 10–12 mice per group. Data are
presented as box & whisker plot where each dot represents a mouse. ^P < 0.05 versus control LFD mice and *P < 0.05 versus respective
vehicle-treated mice by two-way ANOVA with post hoc Bonferroni’s correction for multiple comparisons
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dose of ABL increased osteoclasts on bone. Thus, the bone gain
induced by activation of the PTH1R with either ligand in diabetes
is characterized by increased bone formation in the presence of
sustained bone resorption. On the other hand, bone restoration
and the increased bone formation in diabetes by the anti-
sclerostin antibody are accompanied by decreased resorption,
consistent with the profile of Scl-Ab in preclinical33 and clinical
studies with osteoporotic patients.37,38

In closing, our findings demonstrate the efficacy of increasing
bone formation to restore the damaging effects of diabetes on
bone (Graphical Abstract). The dysregulated bone remodeling
and deteriorated microarchitecture of diabetic bone were
corrected by all three FDA-approved agents with bone anabolic
properties, and simultaneous inhibition of resorption with the
dual action agent Scl-Ab led to superior bone gain and strength
compared to the purely anabolic ligands of the PTH1R. This
evidence opens new avenues to treat the skeletal fragility in
diabetic patients.

MATERIALS AND METHODS
Animals
All animal procedures were approved by the Institutional
Animal Care and Use Committee at University of Arkansas,
and animal care was carried out in accordance with institutional
guidelines.
Twelve-week-old male C57BL/6 J mice (The Jackson Laboratory,

Bar Harbor, ME) were housed 5 mice/cage, received water ad-
libitum and were exposed to a 12 h light/dark cycle. Mice were fed
a low-fat diet (LFD, 10 kcal% fat, D12450J) or high-fat diet (HFD,
60 kcal% fat, D12492) throughout the experiment. At t1, type 2
diabetes (T2-DM) was induced in HFD-fed mice by 5 daily
injections of streptozotocin (STZ, 45 mg·kg−1 i.p. in 50 mmol·L−1

citrate buffer, pH 4.5) while control LFD-fed mice received citrate
buffer (C), adapted from.22 At t2, 4 weeks after initiating the STZ
injections, DM was confirmed in fasted animals by blood glucose
values > 250 mg·dL−1.19 After 4 weeks at t3, C and T2-DM mice
were stratified based on BMD, glucose levels, and weight into
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treatment groups. Then, mice were injected s.c. 7 days a week
with vehicle (0.9% saline, 0.01 mmol·L−1 β-mercaptoethanol,
0.1 mmol·L−1 acetic acid), PTH (100 μg·kg−1 per day, Bachem,
Torrance, CA), or ABL (47.5 and 95 μg·kg−1 per day, Radius
Pharmaceutical, Boston, MA); or i.p. once a week with vehicle
(saline) or human Scl-Ab (100 mg·kg−1 per week romosozumab,
©Amgen Inc). The dose of PTH (100 μg·kg−1 per day or
24 pmol·g−1 per day) was chosen to attain optimal responses
based on earlier studies.39–42 The dose of ABL (95 μg·kg−1 per day
or 24 pmol·g−1 per day) was chosen to allow a direct mole to mole
comparison with PTH. Half dose of ABL (47.5 μg·kg−1 per day or
12 pmol·g−1 per day) was also used based on our earlier study
with the PTHrP (1-37) and diabetic mice19 and studies using ABL in
ovariectomized rats.32,43 The dose of Scl-Ab (100mg·kg−1 per
week) was chosen to maximize the bone anabolic response and
prevent immunogenicity against the human monoclonal
antibody.44

Endpoint measurements were performed 28 days after the first
injection of the anabolic agents (t4), followed by euthanasia and
tissue harvesting (Figs. 1a and 5b).

Analysis of skeletal phenotypes
Bone mineral density measurements. Longitudinal study was
performed at t0, t1, t2, t3, and t4 by dual-energy x-ray
absorptiometry (DEXA) using a PIXImus densitometer (G.E. Medical
Systems,Lunar Division, Madison, WI). BMD measurements
included total BMD (excluding the head and tail), L1–L6 vertebra
(spinal BMD), and entire femur (femoral BMD).19 Mice were
stratified to the experimental groups based on BMD, glucose
levels and body weight measured at t0, t1, t2, and t3.

Bone microarchitecture analysis. For microcomputed tomography
(μCT) analysis, bones were dissected, cleaned of soft tissue, and
stored in saline at −20 °C. The femurs and L6 vertebrae were
scanned in a μCT scanner. Bones from the PTH/ABL experiment
were analyzed using a μCT40 (E= 55 kVp, I= 145 uA, integration
time= 200 ms, Scanco Medical, Switzerland) at an isotropic voxel
size of 10 µm. Bones from the Scl-Ab experiment were analyzed
using a vivaCT80 (E= 70 kVp, I= 114 uA, integration
time= 200 ms, Scanco Medical, Switzerland) at an isotropic voxel
size of 10.4 µm. For the trabecular analysis a Gaussian filter
(sigma= 1.2, support= 1) was applied and a threshold of
285mg·cm−3 was used. Femoral distal cancellous bone measure-
ments were analyzed beginning 10 slices away from the growth
plate to avoid the primary spongiosa for 151 slices.
L6 cancellous bone measurement were performed using a VOI

spanning from the upper to the lower growth plate excluding
primary spongiosa. Cortical bone was measured at a threshold of
260mg·cm−3. Femoral mid-diaphysis cortical analysis was per-
formed for 20 slices region located at the calculated femoral
midpoint. L6 cortical bone analysis was performed starting
10 slices away (towards caudal growth plate) from where the first
spinous process attaches to the vertebral bod for 10 slices.45 All
nomenclature, symbols, and units adhered to guidelines in the
literature.46

Bone histomorphometric analysis. To measure the dynamic
histomorphometric indexes mineralizing surface to bone surface
(MS/BS), mineral apposition rate (MAR), and bone formation rate
normalized to bone surface (BFR/BS), bone multicolor fluoro-
chrome labeling47 was performed by i.p. injections with calcein
green (G, 30 mg·kg−1 bw) and alizarin red (A, 50 mg·kg−1 bw) in
the order of G-A at days 18 and 25 (initiation of PTH/ABL, Scl-ab or
VEH on day 0), followed by euthanasia at day 28. Left femurs were
fixed in 10% buffered formalin, cut in half at the midshaft, then
embedded undecalcified in methyl methacrylate. Thick cross-
sections at the mid-diaphysis were prepared using a diamond-
embedded wire saw (Histosaw, Delaware Diamond Knives,

Wilmington, DE, USA) and grounded to a final thickness of
30–40 µm for periosteal and endosteal bone formation measure-
ments.48

For static bone histomorphometric analysis, longitudinal
sections of the distal femurs were stained for TRAPase and
counterstained with Toluidine blue as previously published.49

TRAPase+ cells with three or more nuclei attached to the femoral
cancellous bone region (starting 350 μm from the distal growth
plate and ending 1 750 μm proximal to the distal growth plate)
were quantified as osteoclast. Histomorphometric analysis was
performed using OsteoMeasure High Resolution Digital Video
System (OsteoMetrics, Decatur, GA) interfaced to an Olympus
BX51 fluorescence microscope (Olympus America Inc., Center
Valley, PA).48 Terminology and units are those recommended by
the Histomorphometry Nomenclature Committee of the ASBMR.50

Analyses were performed in a blinded fashion.

Bone turnover markers
Blood was collected at t0, t1, t2, and t3 from the facial vein of 3 h
fasted mice. Procollagen type 1 N-terminal propeptide (P1NP), C‐
telopeptide fragments of type I collagen (CTX), tartrate-resistant
acid phosphatase form 5b (TRAP 5b) (RatLaps, Immunodiagnostic
Systems Inc., Fountain Hills, AZ, USA), and SOST/Sclerostin (R&D
Systems, Minneapolis, MN, USA) were measured following the
manufacturer’s instructions.

Biomechanical testing
Following microCT scanning, femurs and L6s were subjected to
mechanical test to assess the mechanical and material proper-
ties. The femurs were subjected to 3-point bending on an
Instron model 5542 with a ramp rate of 1 mm per minute and an
8.1 mm support span (L) until failure. The analysis was run using
Bluehill2 software ver. 2.35. The vertebrae were subjected to a
vertebral compression test on the Instron 5542 with a ramp of
0.5 mm per minute.51 Structural or extrinsic properties (energy
to ultimate load, ultimate load, and stiffness) of the femur and
L6 were derived from the load/displacement curves obtained
during the three-point bending tests. Cross-sectional polar
moment of inertia (I) and anterior-posterior diameter (d) were
determined by µCT and were used to calculate material or
intrinsic properties including ultimate stress (FLd/8I, where
F= ultimate load, L= span length, d= anterior-posterior dia-
meter, and I= cross-sectional moment of inertia), modulus (SL3/
48I, where S= stiffness) and toughness (0.75 ∗ AUC d2 /LI, where
AUC= area under curve [i.e., energy to ultimate load] and
b= diameter).

RNA extraction and quantitative PCR (qPCR)
Dissected murine bone tissues were snap-frozen in liquid nitrogen
and stored at −80 °C. Lumbar vertebrae, tibial diaphysis and
calvarial bones were homogenized in Trizol Reagent (Life
Technologies # 15596018), and RNA was isolated using a Direct-
zol RNA Miniprep Plus Kit (Zymo Research, # R2072) according to
the manufacturer’s instructions. RNA concentrations and the 260/
280 ratios were determined using a Nanodrop instrument
(Thermo Fisher Scientific). 1 µg of RNA from each tissue was used
to synthesize cDNA using a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems #4368814) according to
the manufacturer’s instructions.
Gene expression was quantified by qPCR as described earlier52

using sets of primers and probes designed using the Assay Design
Center (Roche Applied Science, Indianapolis, IN, USA) or commer-
cially available, carried out in an ABI PRISM 7500 system (Applied
Biosystems, Foster City, CA, USA). Relative mRNA expression was
normalized to the housekeeping glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) using the ΔCt method. Ratios between
genes of interest and housekeeping gene are expressed as fold
change compared with mice receiving placebo.
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RNA-seq analysis
For each experimental group, n= 5 high-quality RNA samples
from the 4th lumbar vertebrae were subjected to RNA-seq analysis
on an Agilent platform (Agilent Technologies). The RNA samples
that have RIN number > 7 were used for further step. Preparation
of RNA sequencing library (mRNA) and transcriptome sequencing
was conducted by Novogene Co., LTD (Beijing, China). The libraries
were sequenced in Illumina NovaSeq platforms to generated
paired-end 150 bp read length.

Data acquisition and analysis
The RNA-seq analysis was performed follow our bioinformatic
pipeline.53 FastQ files were align to the reference genome of Mus
musculus version GRCm39 with gene annotation version 105,
downloaded form Ensemble genome database, using STAR
software version2.7.9a.54 The gene count table were generated
using BEDTools version 255 and imported to R suite software
version 4.02. for further analysis. The count data was normalized
using voom method56 with quantitative quality weights.57 Limma
package58 was employ for differential gene expression analysis
using the moderate Student’s t-test to compare the different
groups with the control group at each time point, and the P-values
were further adjusted for multiple testing using the Benjamini-
Hochberg method. Changes in expression induced by the PTH and
ABL were calculated by dividing the log2 expression value of each
individual adjuvant-treated group by the log2 expression value of
the T2-DM group.
The statistical π-value59 was calculated by multiplying the

-log10Pvalues and log2 fold changes of individual genes. The π-
values were used to assess the concordant and discordant gene
expression patterns induced by the treatments in the frame of T2-
DM using Rank-Rank Hypergeometric Overlap (RRHO) method
(RHHO2 package).18 Results were plotted as the spited heatmap.
A directional gene set gene ontology (GO) enrichment analysis

was performed using the PIANO package.60 GO relationships were
retrieved from Ensemble database as was used as a scaffold to
integrate the differentiation gene expression results. The enrich-
ment results were plotted as a heatmap of the enrichment score
[−log10 (enrichment P-value)]. https://dataview.ncbi.nlm.nih.gov/
object/PRJNA895324?reviewer=8m72hr7tk1mkjg3h012pto6sq6

Statistical analysis
Statistical analysis was performed using GraphPad Prism 9.3.0
(GraphPad Software, Inc., CA, US). For each measure of interest,
Levene’s test was employed to investigate homogeneity of variance
between groups. In case of equal variances, ANOVA methods were
employed. When homogeneity of variance assumptions were not
satisfied, non-parametric methods (Kruskal-Wallis test) were utilized.
When overall effects were significant (P < 0.05), two-sided post- hoc
pairwise comparisons were performed (parametric: Tukey, Bonfer-
roni or Dunnett test, as appropriate; non-parametric: Wilcoxon rank
sum test). Statistical details of each experiment (test used and value
of n) can be found in Figure and Figure Legend sections. Data are
presented as boxplots overlayed with dot plots, where each dot
represent a mouse.
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