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Hallmarks of peripheral nerve function in bone regeneration
Ranyang Tao 1,2, Bobin Mi1,2, Yiqiang Hu1,2, Sien Lin 3, Yuan Xiong1,2, Xuan Lu3, Adriana C. Panayi4, Gang Li3✉ and Guohui Liu1,2✉

Skeletal tissue is highly innervated. Although different types of nerves have been recently identified in the bone, the crosstalk
between bone and nerves remains unclear. In this review, we outline the role of the peripheral nervous system (PNS) in bone
regeneration following injury. We first introduce the conserved role of nerves in tissue regeneration in species ranging from
amphibians to mammals. We then present the distribution of the PNS in the skeletal system under physiological conditions,
fractures, or regeneration. Furthermore, we summarize the ways in which the PNS communicates with bone-lineage cells, the
vasculature, and immune cells in the bone microenvironment. Based on this comprehensive and timely review, we conclude that
the PNS regulates bone regeneration through neuropeptides or neurotransmitters and cells in the peripheral nerves. An in-depth
understanding of the roles of peripheral nerves in bone regeneration will inform the development of new strategies based on
bone-nerve crosstalk in promoting bone repair and regeneration.
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INTRODUCTION
Different species have developed unique biological functions that
allow them to survive in specific environments through evolution.
The ability of most organisms to regenerate or repair tissue after
injury or loss has also been significantly impacted by natural
selection. In contrast to anthropocentric thinking, animals that
possess the capacity for regeneration did not seem to obtain
enough evolutionary advantages to make this trait highly
conserved. The ability to regenerate is widely but not uniformly
distributed among different species.1 Some organisms, such as
teleost fishes, can regenerate all severed appendages and even
vital organs, such as the heart, while many other species, including
humans, cannot.2–4

In addition to stem cells, which are well-known players, many
animal studies of tissue regeneration have suggested the
important roles of peripheral nerves in the regeneration of
various tissues. Peripheral nerves can be functionally divided into
three categories: the autonomic nervous system (ANS), the
somatic nervous system, and the enteric nervous system.5

Peripheral nerves classically function as links between central
and peripheral organs through ligands secreted by terminal
axons, establishing a pathway for central-peripheral communica-
tion and allowing the central nervous system (CNS) to perceive
the external environment. Numerous studies have demonstrated
that the ANS and somatic nervous system may be linked to the
regeneration process, while the enteric nervous system has been
recently shown to play an important role in the regulation of
intestinal homeostasis and mucosal regeneration.6,7 Nerve fibers
in each fascicle are protected by a connective tissue called
endoneurium, which contains many cells, such as fibroblasts,
macrophages, and vasculature-associated cells.8 There is

increasing interest in the contributions of resident cells in nerves,
Schwann cells (SCs), and endoneurial mesenchymal cells, as well
as the nonclassical functions of peripheral nerves, such as the
regulation of homeostasis,9–12 effects on development,13,14 and
roles in tissue regeneration.15–18

The role of peripheral nerves in regeneration was first
discovered in salamander limb regeneration,19 which is one of
the most common models in regenerative medicine.20 Salaman-
der limb regeneration is often considered to reproduce part of the
developmental process. The process of regeneration is initiated by
wound closure through the wound epithelium (WE). Under the
newly formed WE, stump cells dedifferentiate and proliferate to
form a blastema, which is a collection of various types of stem
cells or progenitor cells. Later, under precise control, the distal
blastema forms the apical ectodermal cap and gradually
differentiates into a new limb.20,21 As the close connection
between limb regeneration and the peripheral nervous system
(PNS) in the salamander was gradually explored,21,22 revealing that
reinnervation is indispensable for the restoration of lost or
damaged tissues, more attention has been given to the role of
the PNS in regeneration, particularly in humans.
Although many mammals, including humans, lack the ability to

reconstruct a severed limb, their bone tissue can recover from
trauma without scar formation. Bone fracture healing proceeds
through four phases: hematoma, soft callus, hard callus, and hard
callus remodeling.23 Bone healing starts with inflammation
resulting from high-energy trauma, and immediate activation of
the coagulation cascade leads to hematoma formation at the
injured site. With the gradual resolution of inflammation,
intramembranous ossification occurs at the periosteum where
there is a good blood supply close to the fracture site, whereas
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areas under hypoxic conditions undergo endochondral ossifica-
tion. The differentiation of mesenchymal stromal cells (MSCs) from
marrow, muscle, and especially the periosteum into bone-lineage
cells drives the formation of callus. Finally, the dynamic balance of
osteoblast and osteoclast activity remodels newly formed woven
bone into lamellar bone. Bones are richly innervated by peripheral
nerves, and parallel findings on the role of the PNS in limb
regeneration in distant spices and bone regeneration point to the
common role of nerves in regeneration.24,25 Despite the fact that
the role of the PNS in many other processes associated with bone
metabolism has not been fully characterized, the inevitable
question now applies to bone regeneration: how does commu-
nication occur between the PNS and other tissues in the bone
regenerative microenvironment?
In this review, we focus on the conserved role of nerves in

regeneration during evolution and summarize the innervation of
bone under normal physiological conditions and during bone
regeneration following trauma. We emphasize the presence of
neuro-skeletal, neurovascular and neuroimmune interactions at
different stages of bone regeneration and discuss the possible
nerve-associated cellular and molecular mechanisms involved in
osteogenesis and other processes that are essential for bone
formation. We address the limitations and challenges in current
studies with the hope of inspiring further research.

FUNCTION OF PERIPHERAL NERVES IN TISSUE REGENERATION
Because the regeneration of amputated limbs in salamanders,
from the blastema to the entire appendage, reflects the ideal
outcome of regenerative medicine, efforts have been made to
investigate whether the nerve-dependent mechanism is wide-
spread in nature and to identify the animal model that is most
similar to humans. In a salamander study, regeneration of the
upper limb was inhibited by denervation at the brachial plexus
level.26 Diverting nerves toward the damaged site could promote

limb regeneration27 and even the growth of supernumerary
limbs.28 It is noteworthy that the extent of denervation positively
correlated with the impairment of limb regeneration,21 suggesting
that peripheral nerves may be involved in the precise regulation of
limb regeneration.
Regarding the mechanisms by which peripheral nerves regulate

salamander limb regeneration, diffusible nerve factors were
shown to cross the filter and promote blastema cell proliferation.29

In response to initial nerve injury signals, SCs undergo phenotypic
changes, downregulating myelin proteins, such as Krox20, Sox10,
and neuregulin 1. Similar to their progenitors, negative regulators
of myelination and growth-promoting proteins, such as Notch and
c-Jun, are upregulated in SCs. These changes facilitate the
transition of SCs from typical peripheral glial cells to repair cells.
Together with blastema-infiltrating nerve fibers, repair SCs release
a variety of molecules in the microenvironment of the blastema.
Although poorly understood, many diffusible nerve factors have
been shown to regulate regenerative processes in the salamander,
including substance P (SP),30,31 platelet-derived growth factor
(PDGF),32 fibroblast growth factors, bone morphogenetic protein
(BMP),33,34 glial growth factor,35 newt anterior gradient (nAG),36

transferrin,37 and neuregulin.38,39 These paracrine factors are
produced by neurons or repair SCs and provide signals to immune
cells or stem/precursor cells to support regeneration.40

The participation of peripheral nerves in regeneration is not,
however, limited to salamanders or amphibians but is found in
many other species, from lower organisms such as sea
anemones,41 hydras (Cnidaria),42 planarians (Platyhelminthes),43

and starfish (Echinodermata),44 to vertebral organisms such as
zebrafish,45 which possess the capacity for regeneration under
neural effects (Fig. 1). Notably, the existence of species such as
Placozoa and Porifera, which have the ability to regenerate
without the nervous system, is coincident with the observation of
the aneurogenic limb, which regenerates without a nerve supply
but develops nerve-dependent regeneration after nerve
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Fig. 1 Distribution of regeneration and its nerve dependence in animals from lower to higher species. This phylogenetic tree topology
contains almost all animal species. The yellow arrow at the bottom from left to right indicates the gradient from animals that emerged earlier
in evolutionary history (lower organisms) to those that evolved later (higher organisms). The distribution of regeneration capacity in most
animal phyla could be confirmed in at least one member. “Presence of regeneration” means that there is at least one verified taxon in the
corresponding phylum that has the ability to regenerate complex parts of the body; it does not refer to all the taxa included. “Presence of
nerve dependence” means that there is at least one well-substantiated report indicating the function of the nervous system in regeneration.
“No documentation” means that more reliable studies are needed on the topic. Tree topologies and regeneration data are based on ref. 292

Data on nerve dependence are based on refs. 21,22,41–45,293–296
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transplantation and innervation.22 New findings in mammals are
consistent with previous studies. For example, MRL/MpJ mice can
regenerate injured ear tissue through blastema-like structures,
while denervation inhibits the formation of the blastema.46

Furthermore, in murine digit tip regeneration, SCs in injured
nerves have been shown to dedifferentiate and promote blastema
proliferation in a paracrine manner.47 The process from blastema
formation to appendage regrowth also requires complex regula-
tion, such as cell pattern and polarity,48 which depends on the
location (distal or proximal, dorsal or ventral) of cells within the
newly formed tissue. Patterning defects have also been noted in
denervated and regenerating murine digits.17 Taken together,
these results indicate the widespread participation of peripheral
nerves in mammalian tissue regeneration.
Advances in the understanding of tissue regeneration in other

species have shed light on regeneration mechanisms in mammals.
nAG, which is mainly produced by repair SCs during salamander
limb regeneration, binds to its receptor Prod1 to stimulate
blastema cells to enter the S phase of the cell cycle and promote
blastema expansion.36 The administration of nAG rescues 50% of
the effect of denervation on salamander limb regeneration.36

Unfortunately, although it is heralded as the key to the field of
regenerative medicine, nAG has no orthologous protein in
humans.49 The closest proteins in humans are anterior gradient
protein 2 (AGR2) and AGR3, but their potential role in regenera-
tion remains unclear, as these factors lack the features of secreted
proteins.49 Nevertheless, cells in the blastema were once
considered to be multipotent and homogeneous based on
studies of salamander regeneration.50 Genetic lineage tracing
and single-cell transcriptomic profiling of mammalian digit
regeneration, however, have shown that the heterogeneous
blastema consists of many cell types.51,52 Later studies indicated
that the origin cells of the blastema were developmental lineage-
restricted, which is prevented across germline lineages51,53 but is
relatively flexible in the consequent generated mesenchymal
lineage,54 suggesting that the newly formed tissue differentiated
from blastema cells depending on their respective origin and
regenerative microenvironment. Distinct from the paracrine
pathway, most endoneurial mesenchymal cells in peripheral
nerves have multipotential differentiation abilities, as shown by
upregulated expression of genes such as Aldh1a2, Col11a1, Cthrc1,
Inhbb, Kng2, and Wif1 and downregulated expression of genes
related to connective tissue after nerve injury. These neural crest-
derived cells (NCCs) not only contribute to blastema formation
but also subsequently differentiate into dermis or bone in
response to specific environmental cues.55

Overall, studies on both mammals and phylogenetically
distant animals, such as amphibians, show how peripheral
nerves can regulate regeneration: (1) the secretion of neuropep-
tides, neurotransmitters, and other neural molecules21,56 and (2)
the differentiation of stem/precursor-like cells and/or transdif-
ferentiation from endoneurial mesenchymal cells in injured
peripheral nerves.5

DISTRIBUTION OF PERIPHERAL NERVES IN THE SKELETAL
SYSTEM
The afferent nerves of the peripheral system are collectively
known as sensory nerves. The efferent nerves consist of motor
nerves and autonomic nerves, which can be further categorized
into the sympathetic nervous system (SNS) and the parasympa-
thetic nervous system (PSNS) (Fig. S1). Sensory nerves extend from
their cell bodies in the dorsal root ganglia (DRGs) of the spinal
cord, and cranial bone is innervated by sensory nerves emanating
from cranial nerve ganglia, such as the trigeminal ganglion.
Depending on their diameter and myelination, sensory nerves can
also be classified into thin, nonmyelinated C fibers and myelinated
A fibers.57,58 It has been shown that pain after bone fracture is

mainly detected by Aδ fibers and C fibers59 because Aδ fibers and
C fibers account for almost all sensory nerves that innervate
bone.60–62 C fibers can be further divided into peptidergic and
nonpeptidergic fibers, which can transduce noxious chemical and
thermal stimulation.57 Postganglionic fibers of the ANS are similar
to C fibers, as they are thin and nonmyelinated.63

Peripheral innervation in the skeletal system has gradually been
outlined using immunoreactivity to biomarkers of anabolic
processes of postganglionic representative neurotransmitters
(Fig. 2a, b). The distribution of the SNS in bones can be visualized
through norepinephrine (NE), which is synthesized from the
amino acid tyrosine by two important enzymes: tyrosine hydro-
xylase (TH) and dopamine β-hydroxylase.64,65 Neuropeptide Y
(NPY) is mainly released by sympathetic terminals and accom-
panied in the periphery by NE,66 which is associated with NPY on
SNS visualization. The location of acetylcholine (ACh) in the
vesicular ACh transporter (VAChT) and choline acetyltransferase
(ChAT) allows mapping of PSNS distribution.67,68 Major sensory
neurotransmitters, such as calcitonin gene-related peptide (CGRP)
and SP, can be used to identify peptidergic sensory nerves
because of their relatively exclusive origins.69–72 Other primary
molecules of sensory nerves, such as tropomyosin receptor kinase
A (TrkA), neurofilament 200, and isolectin B4, are biomarkers of
different sensory lineages (Fig. 2c).73–75 It has been reported that
the proportions of CGRP+ peptidergic sensory axons and TH+

sympathetic adrenergic axons in the total nerve population
innervating the skeleton were at least 20%–30% and 25%–50%,
respectively.76 Reliable characterization of non‐peptidergic sen-
sory axons that innervate bone is needed.
The presence of the SNS and sensory nerves in the skeletal

system has been visualized by immunolabeling techni-
ques.61,71,72,77,78 However, since a group of postganglionic
sympathetic neurons exhibits a cholinergic phenotype in
bone,79,80 the accuracy of innervation of the PSNS in the bone
as delineated by positive VAChT and ChAT immunoreactivity is
compromised. Ingeniously, injection of a recombinant pseudora-
bies virus into the distal femoral metaphysis labels the inter-
mediolateral column at the thoracic level with SNS innervation, as
well as the intermediolateral column at the sacral spinal cord
segment where PSNS preganglionic neurons are located, which
establishes a strong connection between PSNS and bone
innervation.81 Direct evidence tracing the autonomic postganglio-
nic nerves in the bone to parasympathetic ganglia is expected to
provide further support for their relationship.
The involvement of the PNS with the skeleton has been

reported as early as embryonic development. Mesenchymal
condensation directly differentiates into bone via intramembra-
nous ossification during embryonic development to form flat
bones, whereas during endochondral ossification, cartilaginous
tissues form and are then replaced by mineralized bone.82 During
the embryonic development of long bones in mice, endochondral
ossification begins on approximately embryonic day 15 (E15), and
secondary ossification occurs on approximately postnatal day 5
(P5).13,83 TrkA+ sensory nerves innervate the developing femur at
the perichondrial region adjacent to sites of primary ossification
on E14.5 and are present at the epiphyseal surface of the femur on
P0.13 Nerve growth factor (NGF), which supports neuronal survival
and guides axonal growth, is expressed in perichondrial cells as
early as E14.5.13 The requirement of TrkA signaling in sensory
nerves for the formation of primary and secondary ossification is
further suggested by the reductions in innervation, angiogenesis,
and osteogenesis resulting from the disruption of NGF-TrkA
signaling.13 After birth, the density of nerves continues to increase
in growing bones, but NPY + nerve fibers could not be detected
until P4.84 In addition to long bone development, innervation also
participates in osteogenesis through intramembranous ossifica-
tion. The mandibular branch of the trigeminal nerve develops
preferentially in the primordium of the lower jaw,85 and the
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ossification center of the mandible is just adjacent to the nerve
bundle, extending along the inferior alveolar nerve.86 Genetic
disruption of TrkA signaling in sensory nerves leads to early
closure of cranial sutures.87

Generally, peripheral nerves are thought to accompany blood
vessels,88 and this holds true in mature bones. Sensory nerves, as
well as the SNS, parallel the vascular structures to reach bone as a
mixture of motor, sensory and sympathetic nerves.89 The major
nerves consist of mixed neural components innervating the
periosteum in a meshwork pattern,71 particularly the inner
cambium layer, which possesses a high cell density consisting
mainly of periosteum-derived MSCs, osteoclasts and osteo-
blasts.90,91 Through nutrient canals, vertical Haversian canals,
and transverse Volkmann’s canals, sensory and sympathetic nerve

fibers penetrate into the cortical bone parallel to the vasculature
and then into the bone marrow.92–94 Rodent studies have
demonstrated that the periosteum has the highest density of
innervation, followed by the bone marrow and mineralized
cortical bone.76,77,92 Although there is a possibility that rodents
and humans share a similar innervation pattern,95,96 consistent
innervation density of the bone in humans has not been shown
until recently.97 The significant predominance of CGRP+ nerves
relative to TH+ nerves in the periosteum is reversed in bone
marrow,76 indicating the different roles/mechanisms of sensory
nerves and the SNS in regulating bone hemostasis and regenera-
tion. When running parallel with the vasculature, the sensory
nerves and SNS tend to run linearly or spirally around vessels,
respectively.92,98 The distribution of peripheral nerves in bone
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constitutes the foundation of PNS-mediated regulation of the
skeletal system. PSNS have been shown to exist in bone,81 but
detailed and quantitative experiments are still lacking. Further-
more, the same subcompartment may exhibit heterogeneity in
innervation when there is active metabolism, which is associated
with more innervation, such as in epiphyseal trabecular bone.77

The physiological innervation of the PNS in different compart-
ments of bone begins during embryonic development, facilitates
the regulatory potential of peripheral nerves, and participates in
various physiological or pathological processes in bone.

DISTRIBUTION OF PERIPHERAL NERVES IN THE SKELETAL
SYSTEM FOLLOWING THE FRACTURE
Following injury, molecular and cellular changes are observed in
the neuronal body, cells resident in peripheral nerves, and at the
site of injury. These changes in peripheral nerves after bone
fracture are prerequisites for the initiation of bone regeneration.

Changes in peripheral nerves after fracture
Bone fractures are common injuries caused by external forces or
pathological changes that weaken the bone structure, and the
PNS responds actively to the damage signal.99 The PNS interrupts
synapses and switches to a regenerative state,100–102 reducing the
production of neuropeptides for regeneration-associated meta-
bolism, as shown by the downregulation of synthesis in the
perikarya.103–106 However, neuropeptides, such as CGRP and SP,
are thought to be increased in the fracture region.107,108 Apart
from the fact that activation of the PNS directly contributes to the
release of neurotransmitters,109 synthesis in injured axons (axonal
synthesis) rather than the perikarya during regeneration partly
accounts for the increase in neurotransmitters.110 When peripheral
nerves are injured at a bone fracture site, injury signals travel in a
retrograde manner along the proximal axon to the cell bodies to
initiate regeneration.111 The distal axon undergoes Wallerian
degeneration, in which the axon degenerates, myelin breaks
down, the blood–nerve barrier is permeabilized, and the resultant
myelin debris containing axonal growth inhibitory signals is
cleared first by SCs and later by recruited macrophages.111,112 The
roles of macrophages in peripheral nerve regeneration have been
exhaustively reviewed recently.113 Other immune cells, such as
mast cells, neutrophils, and T cells, are also recruited to the injured
site as well as the distal stump and are involved in pain induction,
but their role in nerve regeneration is still obscure.114 Regenerat-
ing proximal axons extend to the target organ following the
guidance of SC basal lamina tubes, which are provisional channels
formed by the proliferation of repair SCs.111 Delayed reinnervation
of the target organ results in regeneration failure because of the
degeneration of SC tubes.111

The mechanical deformation associated with bone fractures or
defects activates the Aδ or C fibers, which transmit initial pain
stimuli to the relevant cortical areas,115 and then central signals
descend to the fracture site, resulting in local regulation such as
the release of catecholamine by sympathetic arousal. Inflamma-
tion at the fracture site sensitizes the sensory nerves, which lowers
the response threshold to noxious mechanical, chemical and
thermal stimuli.109,116–118 There is a wide range of receptors at the
terminals of sensory nerves that detect specific inflammatory
mediators and growth factors,119 and the activation of these
receptors triggers a series of downstream changes, such as the
phosphorylation, gating, and upregulation of ion channels (e.g.,
Nav1.7, Nav1.8, Nav1.9, TRPV1, and TRPA1),109 leading to
sensitization as well as further neurotransmitter release.109,120

Cytokines (histamine, TNF, IL-1β, IL-6, IL-17A), lipid mediators
(prostaglandin E2 (PGE2), leukotriene B4), and growth factors
(NGF, brain-derived neurotrophic factor (BDNF)) are produced
mainly by mast cells, neutrophils, macrophages, and Th17 or
γδT cells and contribute substantially to the sensitization of

sensory nerves.121 For example, the binding of TNFα and its
receptor (TNFα receptor 1, TNFR1) on the terminals phosphor-
ylates Nav1.8 channels to facilitate channel opening.122 In short,
Wallerian degeneration and inflammation are the primary
responses of peripheral nerves during bone fracture.

Changes in peripheral nerves during bone repair and regeneration
Bone regeneration completely restores the original microarchi-
tecture and is accompanied by reinnervation. These two
seemingly independent processes are tightly intertwined in
reality. Using growth-associated protein 43,123 which is more
prevalent in differentiating and regenerating neurons than in
mature neurons,124 or Thy-1,110 a pan-neural gene,125 the changes
in peripheral nerves during reinnervation at the fracture site can
be clearly observed. The reinnervation process precedes angio-
genesis at the early stage of bone repair/regeneration.126,127

Previous studies have reported that ectopic sprouting of sensory
and sympathetic nerve fibers after bone trauma greatly con-
tributes to the hyperinnervation of all the compartments at the
fracture site.123,127–129 Moreover, researchers concluded that an
adequate density of innervation was the prerequisite for initiating
regeneration in salamanders,22,130 indicating that hyperinnerva-
tion after bone fracture may be required for regeneration. During
callus formation and maturation, peripheral nerves sprout while
the bone matrix is deposited, gradually reduced, and finally
restricted to the outer fibrous capsule of the hard callus when
injured nerves are trimmed.123 Both CGRP+ and TH+ spouting
nerve fibers can participate in reinnervation, and CGRP+ nerve
fibers contribute the most.123,129,131 Reinnervation of bone has
also been confirmed by findings in calvarial bone defect
regeneration.132 After bone repair, the PNS fibers in bone typically
return to physiological levels. However, in fracture nonunion,
hyperinnervation remains around the bone, periosteum, cortical
bone, and bone marrow.128 At present, the remaining hyper-
innervation is viewed as a pathological state associated with
chronic pain.133 These observations suggest an interdependent
relationship between bone regeneration and PNS regeneration
after bone fracture.

PERIPHERAL NERVE REGULATION OF BONE REGENERATION
Physiological innervation of different compartments and the
intertwined schedule of regeneration make the PNS a strong
candidate for the regulation of bone regeneration. With contin-
uous research on the role of the PNS in bone regeneration, the
emerging importance of the PNS echoes the well-known role of
nerves in limb regeneration. Early relevant denervation experi-
ments provided insight into this phenomenon. Sciatic nerve
resection results in defective callus formation in rats and rabbits.25

Inferior alveolar denervation impairs regeneration of the mandib-
ular bone defect in rats.26 The administration of high-dose
capsaicin to destroy capsaicin-sensitive sensory nerves decreases
Mg2+-mediated promotion of fracture healing.108 Similarly,
disruption of TrkA signaling blunts angiogenesis and delays callus
formation in mice.124 Knockout of GGRP in mice inhibits bone
healing.134 Sympathectomized mice have delayed cartilaginous
callus formation and callus mineralization.135,136 The findings of
these in vitro and animal experiments are compatible with clinical
observations of bone development. Congenital insensitivity to
pain with anhidrosis, which is a hereditary neurodevelopmental
disorder caused by mutations in TRKA,134 is associated with short
stature and delayed fracture healing.137 In regard to unsuccessful
bone regeneration, initial injury of the nerve or vasculature may
be associated with a secondary operation after nonunion repair.136

The nonhealing area in spondylolisthesis patients has been shown
to coincide with the region lacking innervation.138 In addition,
postoperative absorption has been a challenge in the use of
vascularized iliac bone to reconstruct the jaw,139 and 10 out of 22
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patients who were treated with neurorrhaphy between the
ilioinguinal nerve and the inferior alveolar nerve or auricular
nerve during the reconstruction of the mandibular bone exhibited
reduced bone absorption.140 These clinical observations indicate
the involvement of peripheral nerves in regulating osteogenesis
from the embryonic phase to adulthood.
The discovery of relevant neuropeptides and their receptors in

bone-lineage cells is a cornerstone of their crosstalk with the PNS
(Table 1), but how are the regulatory signals transported from
neurons to the bone? Although osteocytes, osteoblasts, osteo-
clasts, and vascular endothelial cells are located in close proximity
to free nerve endings,98,141,142 the rarity of these direct connec-
tions casts doubt on the hypothesis of synaptic connections,
which has not yet been found.141,143,144 It is uncertain whether the
effects of PNS fibers on bone regeneration occur in a direct or
indirect manner or both. Currently, two main ways whereby the
PNS regulates bone regeneration have been proposed, as shown
in Fig. 3.

NEURO-SKELETAL REGULATION DURING BONE
REGENERATION
After bone trauma, nerve activation in bone and nerve regenera-
tion at the injured site occur simultaneously. The upregulation of a
wide variety of neuropeptides or neurotransmitters in activated
sensory nerves and in the ANS is regulated by signals to the CNS
and contributes to shaping the dynamic microenvironment of
bone regeneration (Fig. 4). In addition, neurotrophins and axon
guidance family proteins, which are highly active during nerve
regeneration and are regulated by the PNS and other cells in the

bone microenvironment, are also responsible for mediating bone
regeneration. Cells in nerves, such as SCs and endoneurial
mesenchymal cells, convert to a regenerative phenotype that is
more similar to their precursor state. Through paracrine signaling
or possible redifferentiation, these transcription-altered cells not
only participate in nerve regeneration but also communicate with
bone-lineage cells for bone regeneration.

CGRP
CGRP, which is the major neurotransmitter of sensory nerves, is
produced by alternative splicing of the CALC gene.145,146 CGRP is
transcribed from different regions in the CALC gene and exists in
two forms: αCGRP and βCGRP. βCGRP is mainly found in the
enteric nervous system,70,147 which is consistent with the
observation that αCGRP is the main cause of elevated levels of
CGRP in serum after the fracture in mice.148 The CGRP receptor is a
heterodimer of calcitonin receptor‐like receptor (CRLR), which is a
G‐protein coupled receptor (GPCR), and its coreceptor, receptor
activity‐modifying protein 1 (RAMP1).70 CGRP is increased in
injured bone tissues, and the expression of its receptor also
increases at the early stages of bone regeneration.107,148 The
administration of CGRP promoted the migration of bone marrow
mesenchymal stem cells (BMSCs) to the fracture site and
osteogenic differentiation in rats.149 Disruption of CGRP signaling
with receptor antagonists such as CGRP 8–37 and nonpeptide
CGRP antagonists (BIBN4096BS) or with short interfering RNA
significantly inhibited new bone formation.107,149 Further studies
demonstrated that CGRP activated the cAMP/protein kinase A
(PKA) signaling pathway and subsequently inhibited BMSC
apoptosis and promoted BMSC proliferation and osteogenic
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differentiation by enhancing Wnt/β‐catenin in vitro.150,151 The
overexpression of RAMP1 in BMSCs enhances the osteogenic
differentiation of BMSCs, while blocking Yap1 blocks this effect,
indicating that CGRP can promote BMSC differentiation via the

Hippo/Yap pathway.152 Impairment of cartilaginous callus remo-
deling and callus bridging in CGRP−/− mice is linked to the low
expression of key mediators (adiponectin, adipocyte protein 2,
and adipsin) of the PPARγ pathway,134 the inhibition of which

Table 1. Expression of receptors involved in PNS-mediated regulation of bone regeneration in corresponding bone cell lineages

Molecule Receptors Bone cell lineage Action

α-CGRP CRLR, RAMP1 Rat PDSCs Promote osteogenic differentiation107

Rat BMSCs Enhance osteogenic differentiation149,150

Enhance proliferation149

Mouse BMSCs Promote osteogenic differentiation152

Mouse osteoblast precursors Promote osteogenic differentiation148

Human osteoblasts Decrease apoptosis of osteoblasts151

Decrease OPG secretion154

SP NK‐1R Rat BMSCs Promote BMP-2 and VEGF expression and induces osteoblastic differentiation161

Promote migration161,163

Rat osteoblasts Increase the ratio of RANKL to OPG expression156

Induce proliferation156

Mouse BMSCs Promote BMSCs proliferation and osteogenic differentiation158

Mouse osteoblasts Increase RANKL expression158

Mouse BMMs Activate NF-κB in BMMs158

MC3T3-E1 cells Enhance osteoblastic differentiation162

NE α1-AR Rat BMSCs Stimulate proliferation178

MC3T3-E1 cells Stimulate osteoblastic proliferation169

β2-AR Mouse osteoblast progenitor cells Increase RANKL secretion173

Mouse osteoblasts Reduce osteoblast proliferation290

Suppress osteoblast activity144

Inhibit osteoblasts differentiation171

MLO-Y4 cells Increase the ratio of RANKL to OPG174

Human BMSCs Reduce cell proliferation174

ACh nAChRs Mouse osteoblasts Stimulate proliferation81

Mouse osteoclasts Promote apoptosis81

Mouse BMMs Inhibit osteoclastogenesis185

NPY Y1 Rat BMSCs Y1 antagonist promotes osteogenic differentiation of BMSCs193

Mouse BMSCs Inhibit BMSC differentiation192

Mouse osteoblasts Inhibit function of osteoblasts190,192

Human BMSCs Inhibition of Y1 receptor signaling enhances osteogenic differentiation191

VIP VPAC1 Rat BMSCs Promote osteogenic differentiation197

NGF TrkA Mouse chondrocytes Promote ossification210

Mouse osteoblasts Promote differentiation123

MC3T3-E1 cells Stimulate differentiation207

Decrease apoptosis208

BDNF TrkB MC3T3-E1 cells Promote migration216

Human BMSCs Promote osteogenic differentiation215

Increase the level of RANKL217

NT-3 TrkC Rat BMSCs Promote osteogenic differentiation206

Sema3A Plexin-A Mouse osteoblasts Promote differentiation223,224

Mouse osteoclasts Decrease differentiation223,224

Mouse BMMs Inhibit migration224

Human BMSCs Promote osteogenic differentiation291

Sema3E Plexin-D1 Mouse BMMs Decrease the formation of osteoclasts227

Mouse osteoblasts Inhibit migration227

Sema4D Plexin-B1 Mouse osteoblasts Inhibit differentiation and migration228

EphB2 Ephrin-B1 Mouse BMSCs Knockout suppresses BMSCs differentiation235

Mouse osteoblasts Promote differentiation231

Human BMSCs Promote BMSCs migration and chondrogenic differentiation232

EphB4 Ephrin-B2 Mouse chondrocytes Lack of Ephrin-B2 or EphB4 decreases osteoblastic differentiation of chondrocytes233,236

Mouse osteoblasts Lack of Ephrin-B2 or EphB4 decreases osteoblast differentiation233,236

Kusa 4b10 cells Promote osteoblast differentiation234

At least one in vivo study of bone regeneration is required before a molecule can be listed in the table
CGRP calcitonin gene-related polypeptide, SP substance P, NE norepinephrine, ACh acetylcholine, NPY neuropeptide Y, VIP vasoactive intestinal peptide, NGF
nerve growth factor, BDNF brain-derived neurotrophic factor, NT-3 neurotrophin-3, Sema Semaphorin, Eph erythropoietin-producing hepatocellular carcinoma,
PDSC periosteum-derived stem cell, BMSC bone marrow mesenchymal stem cell, BMM bone marrow-derived macrophage
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impairs the osteogenesis effect of BMP-2.153 CGRP also has a
negative effect on osteoclastogenesis by suppressing osteoprote-
gerin (OPG) production in osteoblasts.154 Preclinical use of
electrical stimulation of lumbar DRGs can promote the release of
CGRP and effectively enhance femoral fracture healing, providing
an innovative strategy for further clinical use.155

Substance P
SP is another major neurotransmitter that is released by activated
sensory nerves and is usually released with CGRP.153 SP is
encoded by the tachykinin precursor 1 (TAC1) gene and binds to
its receptor neurokinin‐1 receptor (NK‐1R) to regulate target cells.
NK-1R has been identified in BMSCs,135 osteoblasts and
osteoclasts.156–158 SP+ nerve fibers are increased following a
fracture or bone defect,108,159 as is the expression of SP in injured
bone.160 SP has been reported to improve the osteoblastic
differentiation of BMSCs and MC3T3-E1 cells by activating the
Wnt/β-catenin signaling pathway.161,162 Furthermore, SP
embedded on titanium substrates can also promote BMSC
recruitment during bone healing.163 On the other hand, blocking
NK-1R reduces the expression of osteocalcin and collagen 1A2
and 2A1 during bone regeneration, resulting in significantly
impaired biomechanical strength.164

While having an impact on osteogenesis differentiation, SP also
modulates osteoclastogenesis. SP can promote osteoclastogenesis
independently of RANKL by inducing NF‐κB in osteoclast
precursors165 or by stimulating osteoblast lineage cells to produce
RANKL.158 This effect has been reported to be dose dependent: SP

promotes osteoblast differentiation and matrix mineralization
when the concentration is greater than 10−8 mol·L−1 and
suppresses these processes at less than 10−8 mol·L−1.135 Investi-
gation of the regenerative process of TCA1−/− mice provided new
evidence. Compared to bone regeneration in WT mice, TAC1−/−

mice showed a decrease in the total area of cartilaginous soft
callus tissue, reduced numbers of osteoclasts and osteoblasts at
the fracture site, and impaired resistance to torsional failure
load.135 Furthermore, recent observations in ovariectomized
TAC1−/− mice contradict previously published results with regard
to the hypertrophic chondrocyte area, but the number of
osteoclasts in the fracture site was consistent with the final
outcome.166 Whether these discrepancies are the result of
ovariectomy is not yet clear.

Norepinephrine
NE is an important neurotransmitter that is released by noradre-
nergic nerves, which are mainly postganglionic fibers of the SNS.
There are two forms of the receptor, the α‐adrenergic (α‐AR) and β‐
adrenergic receptors (β‐AR), each containing many subtypes.89

These receptors have been observed in various bone-lineage
cells.144,167–170 High sympathetic tone increases epinephrine, which
can be detected in urine, resulting in the suppression of osteoblast
activity, as evidenced by abnormal morphology and reduced Ki67
expression in osterix+ cells.171 A β2-AR antagonist has been shown
to rescue these changes, highlighting the negative effect of NE on
osteoblastic differentiation.171 NE may also inhibit the proliferation
of hBMSCs through β2-AR-induced phosphorylation of ERK1/2 and
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PKA.172 In addition, NE induces osteoclastogenesis by activating
RANKL/OPG.173,174 The nonselective β‐AR blocker propranolol has
been shown to enhance bone healing in rats;175 interestingly,
administration of propranolol to posttraumatic stress disorder
(PTSD) mice with femur fractures ameliorated the defect in new
bone formation.176 However, given that the effect of nonselective
β-AR blockade differs greatly between mice and humans in the
context of bone metabolism,177 further evidence on the effects of
NE and β‐AR on human bone regeneration is still needed. For α‐AR,
DNA synthesis in BMSCs is reported to increase in rats via α1-AR.

178

The administration of phenylephrine, a nonspecific α1-AR agonist,
promotes the proliferation of MC3T3-E1 cells by increasing the
expression of the transcription factor CCAAT/enhancer-binding
protein δ (Cebpd).169 Its detailed role in bone regeneration requires
further elucidation.
Significantly, α- and β-ARs are GPCRs, and downstream

binding to α-AR decreases cAMP and subsequently inhibits PKA,
while binding to β-AR induces the opposite effects. However,
the binding affinity of NE largely depends on its concentra-
tion:179 at concentrations less than 10−8 mol·L−1, NE preferen-
tially binds to α‐AR, while at concentrations higher than
10−6 mol·L−1, β‐AR is preferred. The concentration of NE in
bone marrow ranges from 10−9 mol·L−1 (physiological) to
10−5 mol·L−1 (pathological).179,180 Therefore, the effect of NE
during the process of bone regeneration may vary dynamically
depending on the stage of the regenerative process.

Acetylcholine
Identifying the involvement of PSNS in the skeletal system draws
attention to the role of ACh in bone regeneration. As previously
described (Fig. 2b), ACh can function as a transmitter in the PSNS by
binding to nicotinic (nAChRs) and muscarinic acetylcholine recep-
tors (mAChRs),68 both of which have been found in bone-lineage
cells.181–183 Past studies demonstrated that ACh promoted osteo-
blastic proliferation81,182 but had little effect on osteoblastic
differentiation.81 Unexpected negative effects on alkaline phospha-
tase (ALP) activity in osteoblasts have also been reported.181 An
increase in bone resorption was observed in α2nAChR

−/−mice
through increased osteoclast numbers, and nAChR agonist admin-
istration increased apoptosis.81 Furthermore, RANKL-induced Ca2+

oscillation, the well-established osteoclastogenesis process,184 is
inhibited by activation of nAChR, and subsequent weakened Ca2+-
NFATc1 signaling leads to a negative regulatory effect on
osteoclastogenesis.185 Donepezil, an acetylcholinesterase inhibitor
(AChEI) that suppresses ACh degradation and increases the
concentration of ACh, impairs bone healing by decreasing immune
cell infiltration during the inflammation phase and reducing new
bone formation.186 In a retrospective cohort study on Alzheimer’s
disease patients with hip fracture, AChEI users had better radio-
graphically observed union at the fracture site; better bone quality;
and fewer healing complications, such as infection and delayed
healing, than nonusers.187 Notably, the specific functions of the
mAChR subtypes in the skeletal system should be clarified.81,182,188

Moreover, the M3 muscarinic acetylcholine receptor (M3AChR) in
nerves plays an important role in bone metabolism.188

Neuropeptide Y and vasoactive intestinal peptide
The receptors for NPY are GPCRs, and according to a rodent study,
two of the five types (Y1 and Y2) are associated with the
regulation of the skeletal system.189 Y1 has been observed in
osteoblasts, while Y2 is located in the brain.190 Previous studies
have demonstrated that NPY decreases cAMP levels in osteoblasts,
impairing mineralization,190 while the administration of a Y1
antagonist promotes BMSC osteoblastic differentiation.191 Simi-
larly, BMSCs isolated from Y1-silenced mice exhibited increased
ALP activity and calcium nodule formation with increased
expression of COL1, OCN, and Runx2, further illustrating the
effect of NPY on the proliferation and apoptosis of BMSCs.192 The

use of the Y1 receptor antagonist PD160170 on the femur
improved the healing of bone defects.193 Recently, osteocytes
from aging mice were shown to secrete NPY at high levels to
induce adipogenesis in BMSCs, which is consistent with previous
investigations.194

Vasoactive intestinal peptide (VIP), which is produced by
enteric neurons, is also released by other peripheral nerves195,196

and is mediated by three types of GPCRs (VPAC1, VPAC2,
PAC1).196 VIP can promote BMSC osteogenic differentiation
through the Wnt/β‐catenin signaling pathway in rats.197 Although
reported to inhibit BMSC proliferation,198 VIP-containing MeHA
hydrogels increase the expression of vascular endothelial growth
factor (VEGF), ultimately improving the healing of rat skull
defects.197 Similarly, impaired bone regeneration after chemical
sympathectomy can be rescued with VIP treatment, resulting in
an increase in mineralized callus and improved callus bridging.199

Neurotrophins
Neurotrophins are crucial for neuronal development and normal
function and are involved in the formation of almost all neural
circuits.200 Four types of neurotrophins have been discovered in
mammals: NGF, BDNF, neurotrophin-3 (NT-3), and neurotrophin-4/
5 (NT-4/5). All types can bind to the low-affinity receptor p75NTR

and to the specific high-affinity tropomyosin-related kinase
(TRK).200,201 These factors function mainly through TRK; NGF binds
to TrkA, BDNF and NT-4/5 bind to TrkB, and NT-3 binds to TrkC.201

Neurotrophins have been shown to be involved in bone
regeneration through relevant receptors in recent years, especially
NGF, BDNF, and NT-3.202–206

NGF is upregulated at the very early postfracture stage.123 In vitro,
NGF can promote osteoblastic differentiation207 and has an
antiapoptotic effect on MC3T3-E1 cells.208 A recent study demon-
strated that most cells located in the periosteal callus, mainly
periosteal/stromal cells and macrophages, were NGF+ cells during
callus ossification, and the number of cells decreased during
mineralization,123 which is consistent with the reinnervation of the
injured PNS as previously described. Chemical disruption of NGF-TrkA
signaling impairs the regeneration of the PNS and bone by reducing
osteoblast activity and delaying callus mineralization.123 The admin-
istration of exogenous NGF improved healing in rabbit mandible
fractures by increasing BMP-9 and VEGF levels.209 Similarly, entochon-
drostosis is enhanced by β-NGF supplementation, as evidenced by
the increased expression of marker genes, such as Ihh, Alpl, and Sdf-1,
which are associated with endochondral ossification. Local injection of
NGF consequently promotes bone regeneration with deceased
cartilage and increased bone volume.210 However, there are also
controversial results suggesting that blockade NGF or TrkA by
neutralizing antibodies reduces fracture-induced pain but has no side
effect on bone healing as changes on biomechanical properties and
callus formation and maturation are not observed in mice.211,212 A
recent study showed that NGF has been used to treat traumatic
nonunion in clinical trials, showing encouraging outcomes in
promoting callus formation and fracture healing.213 A high-quality
clinical trial with a large sample size is still needed to verify the effect
of anti-NGF agents on bone pain and regeneration.
BDNF, which is critical in the development of the nervous

system,201 was found in the brain after the discovery of NGF. BDNF
also has an effect on the regulation of bone regeneration and can
be released by inflammation-activated TrkA+ nerve fibers after
bone trauma.214 BDNF can promote the proliferation and
differentiation of hBMSCs.215 The promotion of bone regeneration
by BDNF is achieved through the upregulation of integrin β1 via
TrkB‐mediated ERK1/2 and AKT signaling.216 BDNF also enhances
the production of RANKL by hBMSCs, contributing to osteoclas-
togenesis.217 These seemingly conflicting effects on bone may be
due to the epigenetic regulation of BDNF transcription, whereby
different physiological or pathological conditions induce alter-
native splicing and polyadenylation.201
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The role of NT-3 in bone regeneration has been recently noted.
The upregulated expression of NT-3 and its receptor TrkC has
been verified during bone regeneration.206 By enhancing the
expression of BMP-2 through Erk1/2 and Akt phosphorylation, NT-
3 promotes osteogenesis in rat bone marrow stromal cells
in vitro.206 Treatment with NT-3 during tibial fracture regeneration
in rats promoted the expression of BMP-2 and TGF-β1, resulting in
increased maximum load capacities.218 Systemic administration of
NT-3 reduced the bone volume at the defects through immuno-
neutralization.206 It has been demonstrated that NT-4/5 is involved
in pulp cell differentiation and regulating the function of
periodontal ligament cells,219,220 but the association of NT-4/5
with bone regeneration remains unclear.

Axon guidance family proteins
Axon guidance family proteins were initially identified during the
development of the nervous system and provide attractive or
repulsive cues to nerves during development or regeneration. Axon
guidance family proteins guide the nerve to reach the correct
target.221,222 Different from the previously described molecules,
many members of this family and their ligands are membrane-
bound. Class 3 semaphorins, a secreted class of axon guidance
proteins, have long been linked to bone regulation. Semaphorin 3A
(Sema3A), the receptor Nrp1, and the coreceptor Plxna1–3 have
been found in bone tissue. Sema3A derived from sensory nerves has
independent effect on bone by expediting innervation of sensory
nerves and Sema3A promotes osteoblastic differentiation, enhances
new bone formation, and inhibits RANKL-induced osteoclastogenesis
via the Rac1 and Wnt/β-catenin pathways.223,224 The administration
of Sema3A improved the formation of new bone in a similar way
during calvarial defect healing in rats.225 The promotion of tibial
fracture healing by Sema3A has also been observed in osteoporotic
rats.226 Other Semaphorin 3 proteins also have effects on bone.
Sema3E may inhibit the migration of osteoblasts and suppress the
osteoclastogenesis of bone marrow-derived macrophages (BMMs).227

Furthermore, Sema4D has been demonstrated to exhibit negative
effects on osteogenesis. By binding to the receptor Plexin-B1 on
osteoblasts, osteoclast-derived Sema4D inhibits insulin-like growth
factor-1 signaling, as well as migration, and consequently impairs
bone formation.228 Disrupting Sema4D signaling increases the
regeneration of defects in osteoporotic mice.229

The remaining classical axon guidance family proteins include
ephrins, slits, and netrins. Erythropoietin-producing hepatocellular
carcinoma (Eph) receptor tyrosine kinases and their ligands, ephrins,
are important in bone formation. When Eph receptors on nerves
mediate signal transduction, ephrins can also elicit a reverse signal in
ephrin-expressing cells,230 such as bone-lineage cells (Table 1).231–234

Knocking out ephrin-B1 or -B2 in osteogenic progenitors significantly
inhibited fracture healing.235,236 SLIT3 can promote the proliferation
and migration of osteoblasts while suppressing the maturation of
osteoclasts.237 Netrin-1 is involved in osteoclast differentiation,238 and
as a part of bone-lineage cells that coordinates the PNS, osteoclasts
can produce netrin-1 to guide the PNS.239 Studies on the effects of
slits and netrins on bone-lineage cells during bone regeneration are
still lacking. Moreover, a large number of axon guidance family
proteins are theoretically needed to assist nerve growth, but very few
new members have been discovered, such as draxin and
phosphatidyl-β-D-glucoside.222

PGE2 signaling
The initial inflammatory phase drives bone regeneration, during
which inflammatory mediators are produced to initiate a cascade of
bone repair. PGE2 is a lipid mediator that is a member of the
prostaglandin family. The key enzymes associated with PGE2
biosynthesis are prostaglandin E2 synthase-1 (mPGES-1) and COX.
Inflammation-induced COX-2 expression contributes most to the
catalysis of arachidonic acid into PGE2.240 PGE2 functions by
binding with the receptors EP1–4, which are GPCRs that activate

downstream effectors.240 PGE2 activates the EP4 receptor on
sensory nerves and signals to the hypothalamus, downregulating
sympathetic tone by activating the transcription factor cAMP
response element-binding protein. Consequently, the adipogenic
differentiation of BMSCs is inhibited, and osteoblastic differentiation
is enhanced. Disruption of PGE2/EP4 signaling significantly impairs
bone regeneration.171,241 Clinical administration of NSAIDs to
reduce pain delays fracture healing and increases bone nonunion,
providing further supporting evidence.242 Similarly, treatment with
opiates, another effective class of analgesic drugs whose receptors
are widely expressed on central and peripheral nerves,243 also leads
to impaired bone healing.244,245 These clinical observations
complicate pain management after the bone fracture, urging more
intensive studies to support clinical strategies. Given the critical role
of the inflammatory environment after bone trauma, this pathway
holds great importance in the regenerative process. Although PGE2
is not released by neurons, neuro-skeletal regulation is initiated by
PGE2. Moreover, direct effects of PGE2 on bone-lineage cells have
also been reported.246–248 PGE2 signaling indicates that sensory and
sympathetic nerves act as a circuit, and the collaboration of sensory
and sympathetic nerves as parallel efferent regulators to maintain
hematopoietic stem cells in BM niches has also been reported
recently.249 The full picture of the relationship between sensory and
sympathetic nerves in bone regeneration has yet to be revealed.
Great progress has been made in identifying the roles of
neuropeptides and neurotransmitters in bone regeneration, but
the exact mechanisms whereby neuropeptides and neurotransmit-
ters regulate specific bone regenerative processes are still under
investigation (Fig. 5).

SCs and endoneurial mesenchymal cells
SC secretion has been given the greatest attention in peripheral
nerve regeneration.8 Paracrine effects also contribute to the function
of SCs during bone regeneration. Transplantation of SCs into the
denervated mandibular defects of mice effectively mitigates
impaired defect regeneration, resulting in significantly increased
bone formation.25 PDGF-AA, oncostatin M, and parathyroid hormone
have been shown to promote bone formation following the
implantation of SCs in denervated mice.25 The paracrine effect is
also substantiated by the observation that conditioned medium from
SCs promoted the proliferation and migration of BMSCs and
improved fracture healing.250 Exosomes derived from SCs showed
a similar promoting effect on BMSCs and bone regeneration.251

Furthermore, a developmental link between the nervous and
skeletal systems through SCs has been established.252 SC precursors
(SCPs) detach from nerve fibers and differentiate into chondrocytes
and mature osteocytes.253 SCs detach from injured nerves and
dedifferentiate, exhibiting a phenotype that mimics that of stem
cells. Using a clonal color-coding technique to trace peripheral glia
showed that SCPs and SCs were dormant NCCs that could be
recruited from injured nerves.253 In addition, SC-derived dental
MSCs can ultimately differentiate into odontoblasts, contributing to
tooth regeneration after damage.253 Whether adult SCs directly
contribute to bone formation in other parts of the skeletal system is
a question that needs further investigation.
As previously described, cells reside in peripheral nerves that

actively participate in regeneration (Fig. 3a). Recent single-cell RNA
sequencing identified the cells in nerve fibers: SCs, fibroblasts,
immune cells, and vasculature-associated cells.254 SCs and endo-
neurial fibroblasts are believed to be the main cells involved in PNS
regeneration.254 A recent experiment identified a group of PDGFRα+

mesenchymal cells, including NCCs, in the endoneurium that
displayed characteristics of mesenchymal precursor cells and could
dramatically proliferate and differentiate into osteoblasts in vitro and
in vivo after nerve injury, promoting regeneration of the digit tip.55

Neuropeptide interactions are noteworthy, and communication
between CGRP and SP has also been reported. Bisphosphonates
(BPs), which are typically used to treat certain bone diseases, can
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impair bone regeneration in the jaw by inhibiting osteoclastic
bone resorption.255 BPs disturb the neuropeptide balance of CGRP
and SP by decreasing CGRP levels and increasing SP levels in the
callus. However, the administration of CGRP or SP alone had no
effect on the BP-mediated decrease in a macrophage-like cell line
(RAW 264.7 cells) in vitro, while concomitant application reduced
toxicity.256 The ratio of CGRP to SP is tightly correlated with BP
administration.256 SP or CGRP alone promotes BMP-2 signaling in
MC3T3 preosteoblasts, but when combined, these factors inhibit
osteogenic differentiation.257

It should be noted that many neuropeptides and neurotransmit-
ters released by the PNS after bone trauma can also be produced by
nonneuronal cells, such as osteoblast-derived CGRP,258 osteocyte-
derived SP,108 osteocyte-derived NPY,194 and callus-derived NGF.259 In
particular, macrophage-derived NGF stimulates the ingrowth of
skeletal sensory nerves as a key mediator of cranial bone
regeneration.132 These factors could function as supplements to
neuro-skeletal regulation or via a feedback loop, but the exact effect
remains to be clarified. Therefore, conclusions on the function of the
PNS in skeletal regeneration should be made with caution. The
increased production of neuropeptides during bone healing is shown
in Fig. 6, showing differential distributions in the inflammatory, soft/
cartilaginous callus, hard/bony callus, and remodeling phases. These
bioactive molecules produced by bone-lineage cells during regen-
eration will not only act on the PNS but also the vasculature and
immune system and coordinate bone regeneration processes.

NEUROVASCULAR INTERACTIONS IN BONE REGENERATION
The vasculature develops prior to the nervous system during early
embryonic development.260 However, studies in developing limb
skin during later embryonic stages show that the alignment of nerve
and blood vessels occurs via mesenchymal intrinsic cues or by blood
vessels following the routes of peripheral nerves,261–263 which is
consistent with observations in the fracture callus in bone repair.
Neurovascular interactions have been indicated as early as the
embryonic period, when nerves and vessels are guided by shared

signals such as NGF, VEGF, and four classic axon guidance family
proteins (semaphorins, ephrins, netrins, and slits) and corresponding
receptors to their destinations.88 Similar pathfinding is mediated by
common molecular cues and wiring patterns between blood vessels
and sensory nerves. VEGF is released from sensory nerves or SCs and
guides blood vessel formation locally during embryonic develop-
ment and tissue repair. An association between neurovascular
interactions and various pathologies, such as tumors21,264 and
osteoarthritis (OA) (see below), has also been noted. Recently,
precisely orchestrated neurovascular communication has been
indicated in the context of bone regeneration, further verifying and
extending the molecular portfolio involved in this interaction.
The anabolic effect of neuropeptides occurs through direct

binding to bone-lineage cells and through their effects on
endothelial cells. Close contact between sensory neurons and
bone marrow-derived endothelial cells in cocultures has been
observed.265 The administration of CGRP and SP, which are two
important neuropeptides released by sensory nerves, upregulates
VEGF, type 4 collagen, and matrix metalloproteinase 2.265

Interestingly, Mg2+ can induce CGRP to phosphorylate focal
adhesion kinase, increasing VEGF expression and vessel and bone
formation.266,267 CGRP also increases the number of endothelial
progenitor cells differentiated from BMSCs in vitro via the PI3K/
AKT signaling pathway and promotes blood vessel formation at
defect sites in a DO model.268 The role of neurotrophins in
neurovascular interactions during bone regeneration has also
been reported. Inhibiting NGF/TrkA signaling blunts revasculariza-
tion during bone regeneration, as shown by reduced numbers of
CD31+ vessels within fracture sites.123 Systemic treatment with
NT-3 immunoneutralization suppresses vascularization at the
injury site, while recombinant NT-3 potentiates the expression of
VEGF and CD31 in rat endothelial cells.206 The regulatory effect of
osteoblast-derived SLIT3 on level of CD31hiEMCNhi skeletal
endothelial cells is mediated by SLIT3/ROBO1 pathway, which
actively participate in osteogenesis, promotes bone formation,269

and the common pathway of SLIT3 may contribute to the
alignment of the reconstructed nerve fibers and newly formed
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blood vessels during bone regeneration. In addition, deletion of
Slit3 in mice significantly impaired bone regeneration, and
intravenous injection of SLIT3 in mice led to improved vascular-
ization of the fracture callus and biomechanical properties.269 SC-
conditioned medium can promote the proliferation, migration and
tube formation of endothelial cells derived from BM-MSCs.250

Taken together, this evidence suggests that peripheral nerves are
closely involved in angiogenesis during bone regeneration, but
the questions of when and how this aligned pattern of nerves and
blood vessels is recovered in complex but sequential bone
regenerative processes remain unanswered.

NEUROIMMUNE INTERACTIONS DURING BONE REPAIR/
REGENERATION
The nervous system and immune system are traditionally thought
to work independently, but the role of the nervous system in the
host immune response to infection or injury has led to more new
discoveries. The expression of Toll-like receptors, which were
previously thought to be specific to the immune system, has been
identified on sensory nerve fiber terminals.265,266 The sensitization
of sensory nerves in the inflammatory phase during bone
regeneration, as described previously, has suggested additional
shared molecules, such as TNF, IL-1β, and IL-17A.121 The nervous
system communicates with the immune system through neuro-
transmitter receptors, such as muscarinic and nicotinic acetylcho-
line receptors and α- and β-adrenergic receptors, which usually act
on the nervous system but have also been identified on
macrophages, dendritic cells, T and B lymphocytes, and even
endothelial cells.267 The concept of the neuroimmune cell unit,
which refers to a place in which immune and neuronal cells are
present and closely communicate, provides further clarity.270

Emerging studies on neuroimmune regulation in bone regenera-
tion have focused on the phenotypic switch from proinflammatory
M1 to regenerative M2 macrophages. Macrophages are involved in
all bone regenerative processes, but the underlying mechanisms that
control the switch are still not clear, despite studies in this field.271,272

The axon reflex may contribute to the neuroimmune interaction in

which sensory nerves initiate the transmission of neural signals at the
fracture site, and then this neuronal activation reverses to local
axonal terminals before being received by the CNS. This will increase
the release of neuropeptides. Receptors of SP and CGRP have been
detected on mouse BMMs.158,273 After M1 activation induced by
lipopolysaccharide and IFN-γ, BMMs harvested from CGRP-deficient
mice showed higher expression of the M1 macrophage marker CD86
and lower expression of the M2 macrophage marker CD206 than
BMMs from wild-type mice, and the expression of M1-associated
factors, such as TNF-α, iNOS, and IL-1, was also increased.
Supplementation of CGRP in CGRP-deficient BMMs in vitro reversed
these changes.274 CGRP lentiviral vector transfection into CGRP−/−

mice promoted the expression of M2-associated markers, such as
Arg1 and CD206, in recruited macrophages at the injury site after
tooth extraction.274 Moreover, inferior alveolar nerve transection prior
to tooth extraction increased the number of recruited neutrophils
and reduced the cellular elongation of macrophages, which is
associated with the M1 phenotype,275 creating a proinflammatory
environment.276 Implantation of CGRP-loaded microbeads into the
socket after tooth exaction increased the expression of IL-10 and
suppressed TNFα expression in macrophages. Local macrophage
blocking by anti-F4/80 antibodies virtually eliminated the previous
CGRP-induced effect.276 Recent work shows that CGRP can regulate
the secretion of many osteogenic factors in M2 macrophages and
promote the osteogenic differentiation of MSCs by activating p-Yap1
in M2 macrophages.277

The CNS mediates reflexes in which responses generated in the
CNS travel down to the autonomic nerve fiber terminals. In a
clinically relevant mouse model of PTSD, mice have increased
numbers of Ly6G+ neutrophils in the fracture hematoma and later
callus, and this effect could be ameliorated by treatment with
propranolol to improve impaired fracture healing.176 Postoperative
administration of donepezil significantly lowers the infiltration of
lymphocytes and macrophages but hinders new bone formation.186

These results indicate that ANS regulates recruitment in the
inflammatory phase of bone regeneration. Moderate inflammation
in bone regeneration has been shown to be necessary for bone
regeneration. The observation of neuroimmune interactions in bone

Inflammatory 
phase

Soft/cartilagious 
callus

Hard/bony 
callus

Remodeling
phase

NPY

Sema3A

BDNF

CGRP

NGF

SP

BMSC Osteoblast Macrophage Chrondrocyte Osteoclast

Fig. 6 Increased production of neuropeptides in bone healing. Various neuropeptides (NGF, BDNF, CGRP, SP, NPY, and Sema3A) are
differentially distributed during the four corresponding phases (inflammatory, soft/cartilaginous callus, hard/bony callus, and remodeling) of
bone healing with blood vessel and nerve regeneration. Cells (BMSCs, osteoblasts, macrophages, osteoclasts, and chondrocytes) listed in the
relevant boxes have been identified as targets of specific neuropeptides during bone regeneration
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regeneration provides initial evidence for a new immune regulator
in the skeleton. However, these results are far from clarifying the
cellular or molecular mechanisms of neuroimmune cell interactions
and the specific role of this interplay during bone regeneration.
The aforementioned observations are partly consistent with the

neuroimmune regulation seen in other organs. In collaboration with
macrophages, CGRP can regulate the activation of PKA, reduce TNF-α
production, and induce the expression of IL-10 in skin wounds.109

TRPV1+ nerves suppress immune activity by releasing CGRP.278 Other
neuropeptides associated with neuroimmune regulation, including SP
and VIP, have also been identified in other physiological or
pathological processes and are well documented.109,120 The necessity
of the “nerve, immune, bone” triad is demonstrated by the association
between injured nerves, macrophage-derived NGF, and bone
regeneration.132 Further examination of neuroimmune regulation in
the unique bone niche should continue.

PARTICIPATION OF PERIPHERAL NERVES IN OTHER BONE
DISORDERS
A large body of preclinical data suggests multiple functions of
peripheral nerves in bone pathophysiological conditions, includ-
ing regenerative processes after injury. Peripheral nerves have
been suggested to participate in osteoporosis, OA, bone-related
tumors (especially bone metastasis),279 and bone changes related
to psychosomatic illness.280,281 The interactions between periph-
eral nerves and cells in the bone microenvironment in different
bone diseases may provide a holistic perspective of the functions
of peripheral nerves in bone.
Osteoporosis is usually characterized as an aging-related

endocrine disease. In fact, aging can function as a separate process
with distinct mechanisms that shape the bone environment, as
connecting aged mice to a youthful circulation via heterochronic
parabiosis did not improve aging-induced bone loss.282 In addition
to senescent cells,283 changes in nerves in bone with aging have
also been noted. Leptin, a hormone that is found exclusively in
adipose tissue and regulates food intake, has been discovered in
hypothalamic centers and is associated with bone loss in obese
mice, supporting the close link between the nervous system and
bone homeostasis.284 Further research showed that low sympa-
thetic tone resulting from leptin deficiency increased bone mass by
regulating the proliferation of osteoblasts and the expression of the
osteoclast differentiation factor RANKL in osteoblasts.144,173 Poor
peripheral nerve function is also related to lower bone mineral
density in patients.285 In osteoporosis and aging-related osteo-
pathic disorders, innervation in bone is impaired. The peroneal
nerve, which innervates the lower leg, has increased sympathetic
tone in osteoporosis patients and is inversely correlated with bone
quality.286 Reduced nerve fibers in the tibia are reported in mice
with ovariectomy-induced bone loss and reduced expression of
neuronal factors and neurotransmitters.287

OA is a chronic degenerative joint disease characterized by
excruciating pain. Increased nerve ingrowth along with newly
formed blood vessels in the synovium, osteophytes, and menisci
are thought to be associated with OA development and
progression.288 OA pain is related to increased sensory nerve
fibers, and increased levels of factors such as neuropeptides, VEGF,
and NGF may also induce additional pain sensation.288 Osteoclasts
can release netrin-1 to induce the growth of sensory nerves and
lead to pain in OA.239 Despite many new findings on anti-NGF
therapy, the roles of the PNS in rapidly progressive OA and OA
with severe joint degeneration require further investigation, as do
the serious adverse effects of treatment.289

CONCLUSION
Bone regeneration is a nerve-dependent process. Continuous
discoveries regarding the roles of the PNS in bone repair and

regeneration shed light on musculoskeletal biology. Neurotrans-
mitters, neuropeptides, and nerve cell redifferentiation are the
main features of neuro-skeletal regulation and have complex
molecular mechanisms. New technologies allow in-depth investi-
gations of the interplay of nerves and various cells in the bone at
different stages of repair and regeneration.
With further understanding of the multiple functions of nerves

in bone homeostasis and regeneration, new therapies to promote
nerve-bone interactions will significantly improve bone repair
management outcomes and reduce patients’ pain and suffering.
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