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Characterizing the tumor microenvironment at the single-cell
level reveals a novel immune evasion mechanism in
osteosarcoma
Weijian Liu1,2, Hongzhi Hu1,2, Zengwu Shao1, Xiao Lv1, Zhicai Zhang1, Xiangtian Deng3, Qingcheng Song3,4,5, Yong Han6, Tao Guo7,
Liming Xiong 1✉, Baichuan Wang1✉ and Yingze Zhang1,2,3,4✉

The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the
landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data,
which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS.
The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in
OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were
downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential
mechanism of tumor immune escape. Of note, CD24 was identified as a novel “don’t eat me” signal that contributed to the immune
evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted
immunotherapy could be a promising approach to treat OS.
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INTRODUCTION
Osteosarcoma (OS), a common primary malignant bone tumor,
mainly occurs in children and teenagers.1 Advances in surgical
technology and neoadjuvant chemotherapy have significantly
increased the overall survival rate of OS. Nevertheless, improving
the survival rate of recurrent and metastatic diseases still remains a
challenge (less than 30% within two years).2 Immune checkpoint
blockade (ICB) is regarded as a promising therapy for numerous solid
tumors, including melanoma, non-small cell lung cancer and kidney
cancer.3 Recently, immune checkpoint inhibitors that target PD-1 or
CTLA-4 have also been tested in OS.4–6 However, only a limited
number of patients have demonstrated a response to anti-PD-1
immunotherapy in recent clinical trials. Moreover, the impact of anti-
CTLA-4 immunotherapy in clinical application for OS remains unclear.7

In OS, cancer cells interact with both immune cells and stromal
cells to form an immunosuppressive tumor microenvironment
(TME), thus enhancing cancer cell immune evasion. The inter-
tumoral heterogeneity is also an important feature of OS, leading
to treatment resistance and divergent therapeutic outcomes
among patients.8 Understanding cancer cell heterogeneity as well
as the dynamic tumor immune microenvironment could provide
new therapeutic targets to treat OS.
The advent of deep sequencing technology has revolutionized

the diagnosis and treatment of diseases. The accumulation of
genomic and transcriptomic datasets from large cohorts of clinical

samples in TCGA, ICGC and NCBI GEO databases enables
researchers to characterize novel therapeutic targets. Conven-
tional bulk RNA sequencing (RNA-seq) is normally performed to
determine the mixed gene features of all cellular populations in
one sample. Therefore, this method is less likely to detect
transcriptional and immunogenic heterogeneity among cell.
The emergence of single-cell RNA-sequencing (scRNA-seq)

technology has fundamentally changed the field of tumor biology
and provided a strategy to demonstrate TME heterogeneity as
well as intercellular communication at the single-cell level.9,10

Zhou et al. performed scRNA-seq of 11 patients with OS, and their
results revealed the transdifferentiation of malignant cells along
with the heterogeneity of tumor-infiltrating T lymphocytes (TILs).11

However, the immunoregulatory characteristics of myeloid cells,
which might account for most of the tumor-infiltrating immune
cells in OS, have not yet been fully investigated.12 Myeloid cells,
including macrophages, dendritic cells (DCs) and monocytes, play
a vital role in tumor immune surveillance through phagocytosis,
antigen processing and presentation. Tumor-associated macro-
phages (TAMs) may also play a critical role in regulating tumor
inflammation and angiogenesis to accelerate tumor progression.
Given that these myeloid cells can be polarized toward a
protumor/antitumor response,13 we hypothesize that regulating
myeloid cells in the TME can be a promising strategy for OS
immunotherapy.
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To identify the profile of tumor-infiltrating myeloid cells and the
immune heterogeneity of OS, we analyzed published scRNA-seq
datasets from the GEO database and bulk RNA-seq data from the
Therapeutically Applicable Research to Generate Effective Treat-
ments (TARGET, https://ocg.cancer.gov/programs/target) database
to explore the diverse phenotypes and functions of subtypes
within the TME. In this study, we identified a tumor-educated
“betrayer” DC that suppressed the immune response, deciphered
heterogeneous myeloid cells in OS, and predicted the cell‒cell
interaction network. Through systematic analyses, our work helps
to elucidate the biology of the TME in OS and contributes to the
development of immunotherapy in clinical applications.

RESULTS
Overview of the osteosarcoma tumor microenvironment at a
single-cell resolution
In the published single-cell dataset (GSE152048), there are seven
primary tumor lesions, two recurrent tumor lesions and two lung
metastases. The scRNA-seq data were included in this study and
were combined with bulk RNA-seq data of tumor tissue from
eighty-five patients (Fig. 1a). After the quality control process (Fig.
S1a; b) and removal of the batch effects between patients (Fig.
S1c) (see “Materials and Methods”), we identified eight clusters of
cells. Briefly, myeloid cells (LYZ+), lymphocytes (CD3D+), osteo-
clasts (ACP5+), endothelial cells (CLDN5+), perivascular-like cells
(PVL) (RGS5+TAGLNhigh), cancer-associated fibroblasts (CAFs)
(TAGLNlowACTA2+) and proliferative cells (MKI67+) were identified
in the study (Figs. 1b; c; S2). Among the myeloid cell population,
macrophages (APOE+CD68+), monocytes (S100A8+S100A9+), and
DCs (HLA-DQA1highCD14-) were annotated. For lymphocytes, we
classified CD4 T cells (IL7R+), CD8 T cells (CD8A+), regulatory
T cells (Tregs) (TNFRSF4+), natural killer cells (NK) (GNLY+GZMB+),
and B cells (CD79A+JCHAIN+). Furthermore, PDGFRA+CXCL12+

CAFs were annotated as inflammatory CAFs (iCAFs) as described
by Öhlund D et al.,14 while myofibroblast-like CAFs were
characterized by high expression of ACTA2 but negative expres-
sion of PDGFRA- (Figs. 1d; S2).15

Tumor-associated DCs promote tumor immune tolerance by
recruiting Tregs
Three DC subsets were characterized in OS, including conven-
tional class 1 DCs (cDC1s) (XCR1+CLEC9A+) and conventional class
2 DCs (cDC2s) (CD1C+CLEC10A+) (Figs. 2a, b; S3a). In addition, a
cluster of CD83+CCR7+LAMP3+ DCs was found in OS and can be
referred to as mature regulatory DCs (mregDCs) (Fig. 2a–c).16 To
investigate whether these mregDCs are tumor specific, we
aggregated the DCs from normal peripheral blood mononuclear
cells (PBMCs) (GSE94820) and two OS cohorts (GSE152048 and
GSE162454) through Harmony packages (Fig. 2d).17 We found that
mregDCs preferentially existed in the two independent OS cohorts
but were nearly absent in normal PBMCs, indicating that mregDCs
may be a tumor-associated DC population (Fig. 2d, e). In addition,
the number of CD83+CCR7+LAMP3+ DCs was higher in OS than in
normal bone marrow, as shown in Fig. 2f, g. These results together
suggest the existence of a group of tumor-specific DCs in OS.
After reclustering of DCs, we used the function TransferData

from the Seurat v3 package to calculate the similarity of cells from
PBMCs to different subsets identified in the OS dataset. This result
suggests similarity between mregDCs and cDC1 subsets (Fig. 3a).
To examine the lineage relationship of mregDCs with other DC
populations, we performed Monocle2 analysis of DC clusters in OS.
The results suggest that mregDCs in OS may originate from cDC1,
consistent with previous findings of Cheng et al. and Zhang et al.
(Fig. 3b).18,19 In addition, the coinhibitors CD274, LAG3, LGALS9,
SIRPA, TIGIT, and PDCD1LG2 were upregulated along the
pseudotime trajectory (Fig. 3b). Compared with cDC1s and cDC2s,
mregDCs exhibited an “activated” phenotype with a higher

capacity of migratory ability as well as immune-regulatory ability,
indicating that this variable DC subset is mature regulatory DCs
(Fig. 3c). More importantly, mregDCs specifically expressed CCR7,
CCL17, CCL19 and CCL22, which can recruit multiple types of
infiltrating T cells (Fig. 3d).20,21 Because the current single-cell
RNA-Seq dataset includes only 11 patients, we calculated the
correlation between the mregDC signature and T-cell signatures in
85 OS patients from the TARGET website to expand the sample
size. The results showed a strong correlation between mregDCs
and Tregs (Fig. 3e). Interestingly, staining of tumor sections further
confirmed the existence of mregDCs and revealed the physical
juxtaposition of mregDCs and Tregs (Fig. 5f). Moreover, the
number of Tregs within 100 μm was significantly higher than that
in the distant areas (Fig. 3g). To investigate the clinical role of the
variable DC subset identified in the present study, we estimated
the fraction of every cell type in samples from the TAGET
osteosarcoma cohort with CIBERSORTx (Fig. S4a, b).22 The score of
mregDCs was found to be related to a poorer overall survival rate,
and the accumulation of Tregs was correlated with the event-free
survival rate (Fig. S3b). In addition, the cell fraction evaluated by
CIBERSORTx suggested a positive correlation between mregDCs
and Tregs (Fig. S3c). These results suggest the possibility that
mregDCs promote tumor immune tolerance through recruitment
of Tregs in the OS TME.

The heterogeneity of cancer cell immunogenicity
Copy number variations (CNVs) have been shown to be an effective
strategy to identify more aggressive clones of cancer cells. Zhou
et al. revealed that more canonical CNVs accumulated in
chondroblastic OS lesions, suggesting that chondroblastic cancer
cells are a less differentiated OS type.11 However, whether high CNV
leads to immune escape remains unclear. Thus, we examined the
relationship between CNV and the immune response in OS in the
current study. We integrated the stromal cells (Fig. S5a) and
estimated the CNV of each cell by the inferCNV package (Figs. 4a, b;
S5b). The results revealed that cancer cells accumulated a larger
number of CNVs than fibroblast cells. Interestingly, we observed a
cluster of low CNV cancer cells in the stromal cells. PySCENIC23 was
applied to perform transcription factor and motif analysis.
Transcription factor (TF) motifs, including CEBPB (+), FOSB (+),
SAP30 (+) and ATF4 (+), were significantly upregulated in CNV high
cancer cells, while IRF3 (+), ETV7 (+), STAT1 (+) and IRF7 (+) were
downregulated (Fig. S5c), indicating promising new regulatory
networks driven by TFs in OS cells. In addition, both Gene Ontology
(GO) enrichment analysis24 and gene set variation analysis (GSVA)25

of MSigDB hallmark gene sets revealed that the interferon-gamma
response was relatively enriched in CNV low cancer cells (Fig. 4c, d).
As transcriptional downregulation of MHC-I is one of the most
important factors that impairs the antitumor effect of IFN-γ
signaling,26 we subsequently examined the expression of MHC-I
molecules at the mRNA level. We found that cancer cells with higher
levels of CNV displayed lower levels of MHC-I genes (HLA-A, HLA-B
and HLA-E) and the B2M gene, suggesting that these cancer cells
were less immunogenic (Fig. 4e). To further examine whether the
downregulation of MHC-I can be generalized across osteosarcoma,
we evaluated the expression of MHC-I and B2M through
immunohistochemistry (IHC) staining in sections from OS patients.
The results showed that high-grade OS downregulated the
expression of MHC-I and B2M (Fig. 4f, g). Based on these findings,
we believe that the downregulation of the interferon signaling
pathway and MHC class I molecules in high-grade OS may lead to
immune evasion.

CD24 signaling regulates the macrophage-mediated immune
response to OS
Accumulating evidence suggests that the TME polarizes macro-
phages toward a protumor phenotype in multiple types of
cancers.27 In the current study, the results of the analysis of
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Fig. 1 Overview of the osteosarcoma tumor microenvironment at a single-cell resolution. a Overall design for investigating the tumor
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macrophage subsets revealed robust expression of MRC1 (encod-
ing CD206) and CD163 (Fig. S6a–c). In addition, MHC-II genes were
downregulated in C1QC+ TAMs and SPP1+ TAMs (Fig. S6d). These
results indicate the existence of an M2-like phenotype in most
macrophages in OS. However, the underlying mechanisms that
drive immune tolerance are not yet fully understood.
Cancer cells were reported to evade clearance by immune cells

through the overexpression of antiphagocytic surface proteins,
including CD47 and programmed cell death ligand 1 (encoded by
CD274). CD24 is a novel “don’t eat me” signal that inhibits Toll-like-
receptor-mediated inflammation and cellular engulfment by macro-
phages.28 The expression of CD24 and CD47 was stronger than that
of CD274, indicating a role of macrophage-mediated immune escape
rather than T-cell-mediated immune evasion in OS (Fig. 5a, b). At the
single-cell resolution, we found that CD47 was highly expressed by
almost all cell types, while CD24 was preferentially expressed by OS
cells (Fig. 5a). CD24 exhibited higher mRNA expression in OS tissues
than in normal bone marrow from the same patients, as shown by
fluorescence in situ hybridization (FISH) (Fig. 5c). Moreover, high CNV
cancer cells were found to express higher CD24 than low CNV cancer
cells and fibroblasts (Fig. 5d). IHC staining also demonstrated
stronger expression of CD24 in high-grade OS (Fig. 5e, f). These
results together illustrate that CD24 is a potential immunotherapy
target in OS.
To investigate the role of CD24 in regulating the macrophage-

mediated immune response in OS, we treated bone marrow-
derived macrophages (BMDMs) with IL-4 to generate M2-like
macrophages and cocultured these less phagocytic macrophages
with the GFP+ K7M2 osteosarcoma cell line for 36 h. We found
that interference with Cd24a in the K7M2 cell line potentiates
phagocytosis as measured by live-cell microscopy (Fig. 5g, h).
Similarly, fluorescence-activated cell sorting (FACS)-based mea-
surements revealed a significant increase in phagocytosis upon
transfection with Cd24a siRNA compared to the scramble siRNA
(Fig. 5i, j). In addition, the BMDMs cocultured with Cd24a
knockdown cancer cells had a more inflammatory phenotype
(Fig. 5i, k). To investigate whether the protection of phagocytosis
conferred by downregulating CD24 could be recapitulated in vivo,
we treated mice bearing periosteal osteosarcoma with
cholesterol-modified Cd24a siRNA or scramble siRNA at a dose
of 1 OD every two days through intratumor injection. Three weeks
after engraftment, we observed significantly reduced tumor
tumorigenicity in the Cd24a siRNA group compared to the
scramble siRNA group as measured by micro-CT scanning (Fig.
6a, b). Moreover, robustly increased MHC-II+ cells and infiltrating
CD4 T cells were observed in the Cd24a siRNA group, as shown by
IHC staining (Fig. 6c–e). FACS analysis also revealed increases in
phagocytosis as well as antigen presentation phenotype (Fig.
6f–h). In summary, our results revealed that OS cells evade the
macrophage-mediated immune response through CD24 signaling.

Cell‒cell interactions within OS
Given that exploring the cell‒cell interaction LR pairs can provide
new information about the OS TME, we calculated the attraction
strengths of ligand‒receptor pairs in the scRNA-seq dataset. The
cell‒cell interactions in OS were also interrogated by CellPho-
neDB.29 The enrichment of the CD24-SIGLEC10 LR pair between
cancer cells and multiple macrophage subsets revealed the
immunoregulatory role of CD24 in OS, as we described above.
In addition, the robust expression of SPP1 and ITGAV in SPP1+

TAMs and CAFs suggested that SPP1+ TAMs may promote
directional cancer cell migration by aligning fibronectin in CAFs
(Fig. 7a).30,31 Next, we focused on the heterogenetic cell‒cell
interactions of DC subsets. We found that cDC1 had a strong
ability to induce multiple T-cell infiltration through CXCL10-CXCR3,
whereas mregDCs showed the highest immunosuppression
potency through CD274-PDCD1 and PVR-TIGHT interactions with
Tregs (Fig. 7a). In addition, we found that CAFs and SPP1+ TAMs

interacted with endothelial cells through the ACKR3-CXCL12 and
CCL2/CXCL1-ACKR1 axes (Fig. 7b). Our analyses suggested a role
for the ACKR family in angiogenesis in OS. Other ligand‒receptor
pairs involved interactions between cancer cells and SPP1+ TAMs
through PGRMC2-CCL4L2 and interactions between CAFs and
TAMs through CXCL12-CXCR4. Of note, the OS samples were
composed of osteoblastic osteosarcoma and chondroblastic
osteosarcoma from primary, recurrent, and metastatic lesions. In
these cases, cells cannot communicate with each other, as they do
not reside in the same TME. Thus, we separately predicted cell‒cell
interactions in different lesions. These results revealed distinct
cell‒cell interaction modes in various OS types, which may require
precise personalized treatments. Overall, our analysis of scRNA-seq
data suggests a role of myeloid cells in the TME through
interacting with immune and stromal cells in OS (Fig. S8).

DISCUSSION
Currently, the treatment of advanced OS is still very challenging. In
the present study, we leveraged the advantages of scRNA-seq
technology and bulk RNA-seq to explore the immune hetero-
geneity of cancer cells as well as the atlas of myeloid cells within
OS patients. An immunoregulatory subset of DCs was identified in
OS tissue. The classification of the malignant cells into CNV high or
low groups revealed diverse immunogenicity in OS. In addition,
CD24 was characterized as a novel “don’t eat me” signal that
mediated the immune escape of OS cells.
Dendritic cells, the most efficient professional antigen presenta-

tion cells (APCs), are critical in T-cell priming, activation, and
differentiation. Based on their cell surface markers, human
dendritic cells can be classified into conventional class 1 DCs
(cDC1s), conventional class 2 DCs (cDC2s), and plasmacytoid DCs.
Recently, the existence of a new type of dendritic cell (cDC3) in
mice and humans has been proven by single-cell sequencing.32

cDC1 is essential for CD8 T-cell priming and activation, which is
important for antitumor and antiviral immunity, while cDC2 is
involved in CD4 T-cell responses.33,34 Moreover, recent studies
found that cDC1s were not only essential for priming CD8 T cells
but were also required for the licensing of CD4 T cells in tumors.35

In the current study, CXCL10-CXCR3 was enriched between cDC1
and multiple T cells (Fig. 7a), indicating the role of cDC1 in the
recruitment or activation of T cells. In addition, cDC1s were the
only tumor-infiltrating immune cells that were associated with
better prognosis in the current study (Fig. S3b). These results
suggest the core role of cDC1s in immune priming as well as the
necessity to develop cDC1 recruitment strategies.36

Although mature immunoregulatory DCs have been identified in
various cancers, the presence of this subgroup in osteosarcoma has
not yet been confirmed.16,19 The mregDCs (CCR7+LAMP3+CD83+) in
the current study can be referred to as CCR7+ DCs that were found
by Zhou et al.11 As they mainly focused on the heterogeneity of
cancer cells and T cells, the role and function of this DC subset were
not fully annotated. In this study, the interaction between mregDCs
and Tregs was identified through CD274-PDCD1 and PVR-TIGIT
signaling, as well as their physical juxtaposition. Given that mregDCs
were enriched in OS but were absent in PBMCs, we speculate that
mregDCs are tumor-associated DCs that negate antitumor immunity
in OS.19,37 Further studies are still needed to better understand the
regulation and differentiation of mregDCs. The marker genes of the
DC populations identified in this study can also be used to
characterize this DC subset for further studies.
Many cancers evade immune surveillance by suppressing the

expression of major histocompatibility class I (MHC-I).38 Loss of
MHC-I expression enables tumor cells to escape killing by
cytotoxic T lymphocytes.39 Moreover, transcriptional repression
of MHC I has been reported to be associated with resistance to
cancer immunotherapy.40 In our study, the transcription of MHC I
and the interferon-gamma response were repressed in high CNV
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cancer cells (Fig. 2b). The results suggested that downregulating
MHC-I on tumor cells may be a driving mechanism of immune
evasion in OS. Moreover, emerging evidence suggests a role for
antiphagocytic signals in immune evasion. Through the expres-
sion of “don’t eat me” signals, tumors are capable of escaping
macrophage-mediated phagocytosis. CD47 is a classical “don’t eat
me” signal that binds to its receptor SIPRα on macrophages to
protect cells from phagocytosis.41 Mohanty et al. reported an
additive therapeutic effect of CD47 mAb in animal models of
OS.42,43 However, CD47 is also expressed in normal immune cells
and erythrocytes. As a result, anemia and neutrophil count
decreases were frequently observed in patients who underwent
CD47 blockade therapy.44 To address this issue, we tried to
explore novel macrophage-targeted immune therapies. CD24 is a
cancer stem cell marker that is critical for the maintenance, self-
renewal, and differentiation of OS.45–47 Recently, CD24 was
identified as a novel “don’t eat me” signal through the CD24-
Siglec10 interaction in cancers.48 However, scant attention has
been given to the role of CD24 in innate immune evasion in OS.
Our results showed that CD24 was a tumor-specific “don’t eat me”
signal in OS. We also found that high-grade OS cells exhibited
robust expression of CD24. More importantly, interference with
the expression of CD24 potentiated phagocytosis and activation
of macrophages in OS. These results could serve as evidence in
support of the therapeutic potential of CD24 blockade in OS
immunotherapy.
In summary, we constructed a single-cell atlas of osteosarcoma

cells and myeloid cells across scRNA-seq data and bulk RNA-seq data,
with the aim of verifying the role of mregDCs in OS. Our study also
revealed CD24 as a novel “don’t eat me” signal in OS, suggesting new
avenues for potential therapeutic treatments of OS.

MATERIALS AND METHODS
Data acquisition
The scRNA-seq of OS has been described by Zhou et al. and Liu
et al.11,49 The processed count matrix was directly obtained from
GSE152048 and GSE162454, and the clinical data of these patients
were obtained from their supplementary data. The clinical sample
bulk RNA-seq data were acquired from Therapeutically Applicable
Research to Generate Effective Treatments (TARGET, https://
ocg.cancer.gov/programs/target). The reference scRNA-seq data
of the DC population were obtained from GSE94820.

Analysis of scRNA-seq data
Data processing of scRNA-seq data was mainly performed by Seurat
(version 3.0.1).50 Briefly, low-quality single cells were eliminated
through a set threshold with the number of UMIs, features and
mitochondrion-derived genes. The intergradation of data from the
patients was performed by the IntegrateData function in Seurat to
remove the batch effects among patients, and the top 3 000 variable
genes were used to calculate intergradation anchors in this process.
Subsequently, the NormalizeData function in Seurat was used to
normalize the data matrix. The unsupervised clustering of the main
cell subtypes was performed by the FindClusters function in Seurat
and visualized with 2D UMAP or t-distributed stochastic neighbor
embedding (tSNE). Then, the markers of each cell cluster were
identified by the FindAllMarkers function in Seurat for annotation.
Monocle2 was used to decipher the transcriptional trajectories of
macrophages.

Patients and tumor samples
All clinical samples were obtained from the Department of
Orthopedics, Union Hospital of Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, China. The murine
osteosarcoma K7M2 cell line was purchased from Zhongqiaox-
inzhou Biotechnology Co., Ltd. (Shanghai, China). A tumor-bearing
mouse model was established by inoculating 2 × 106 K7M2 cells

with Matrigel matrix (Sigma-Aldrich E1270) into the right flank of
6-week-old female Balb/c mice. Then, these subcutaneous tumors
were cut into 1 × 1 × 1 mm3 lumps and transplanted onto the
periosteum of the distal femur in 6-week-old female Balb/c mice.
All experimental processes were approved by the Institutional
Review Board of Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology and Ethics
Committee of Hebei Ex & In Vivo Animal Center.

Cell culturing and in vitro phagocytosis assay
The GFP-K7M2 cell line was obtained from Qijing Biological
Technology Co., Ltd. (Wuhan, China). Bone marrow-derived
macrophages (BMDMs) were obtained by culturing bone marrow
from 6-week-old Balb/c mice with DMEM containing 10% FBS and
20 ng·mL−1 m-CSF (R&D, 416-M-050). On Day 5 of culture, the
medium was refreshed again, and 20 ng·mL−1 IL-4 was added for
4 days to induce M2-like BMDMs. BMDMs were cocultured with
GFP-K7M2 cells in phagocytosis assay wells to observe the
phagocytosis rate. All phagocytosis assay wells were stained with
anti–mouse F4/80–Super Bright 645 (eBioscience, 64-4801-82;
1:200) for 30 min prior to flow cytometry analysis.

siRNA transfection and in vivo treatment
siRNA transfection was performed using an RNATransMate kit
(Sangon Biotech, E607402) at 20 nmol·L−1 for 12 h. The knockdown
efficiency was validated with qRT‒PCR. For in vivo RNA interference,
cholesterol-modified Cd24a siRNA or scramble siRNA were designed
and synthesized by Sangon Biotech Co., Ltd., (Shanghai, China) and
were intratumorally injected at a dose of 1 OD every second day. The
sequence of siRNA we used can be found in Table S1.

Fluorescence in situ hybridization imaging
For fluorescence in situ hybridization (FISH), the bone marrow was
centrifuged before fixation, while tissues were fixed directly in 4%
PFA/PBS overnight. These tissues were dehydrated before embed-
ding. For all FISH imaging, sections were washed with proteinase K
(Servicebio, G1205) before preliminary hybridization. Then, we
removed the prehybridization solution, added probe hybridization
solution at a concentration of 500 nmol·L−1, and hybridized
overnight at 42 °C. Finally, the sections were incubated with DAPI
for 8min in the dark. The imaging was collected by Pannoramic MIDI
II-3Dhistech and analyzed by CaseViewer Software (version 2.4). The
sequence of the probe we used can be found in Table S1.

CNV inference of cancer cells
The InferCNV package (version 1.2.2; https://github.com/
broadinstitute/inferCNV/wiki) in R was applied to infer the CNVs
in OS cells. We identified and annotated endothelial cells and
fibroblast cells based on the expression of known marker genes
and then introduced them as a reference for CNV estimation.

Pathway analysis
DEGs between clusters were identified by the FindMarkers
function of Seurat with the cut off threshold at adj. P val <0.01
and fold change (FC) > 1.3. The DEGs were subsequently used for
GO enrichment analysis as well as KEGG analysis with clusterPro-
filer. The GSVA package in R was applied for GSVA.

Gene regulatory network analysis
SCENIC is an algorithm to identify transcription factors and cell
states through the analysis of gene regulatory networks from
scRNA-seq data. The pySCENIC refactored and reimplemented this
algorithm in Python. The area under the curve (AUC) of each
regulon of cells was calculated by pySCENIC. The difference in
AUCs among cell clusters was identified through the Limma
package, and the regulons with an adjusted p value (adj. p val) less
than 0.05 were used for further analysis.51 The AUCell package in R
was applied to embed the AUC score into UMAP.
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Immunofluorescence
Whole tumors were fixed in 4% PFA/PBS overnight and
dehydrated before embedding. For all morphologic examinations,
4 μm-thick sections were prepared for H&E and IHC staining. H&E
and IHC staining were performed according to the manufacturer’s
protocols (Solarbio, G1120). For multi-immunofluorescence ima-
ging of tumor tissues, sections were first stained with primary
antibodies in PBS. After staining with horseradish peroxidase-
conjugated secondary antibodies, the sections were incubated
with fluorescent tyramide signal amplification (TSA) reagent. Then,
the antigen-antibody complexes on sections were eluted.
Subsequent immunofluorescence staining was performed. Multi-
spectral images were collected by Pannoramic MIDI II-3Dhistech
and analyzed by CaseViewer Software (version 2.4).
The following reagents were used in IHC staining: anti-MHC-I

(rabbit, 1:100, HuaAn, ET1702-47), anti-B2M (rabbit, 1:100, ABclonal,
A12404), anti-MHC-II (rabbit, 1:200, Invitrogen, PA5-116876), anti-CD4
(rat, 1:50, BD Pharmingen, 550278), anti-CD24 (rabbit, 1:100, ABclonal,
A2207), anti-FOXP3 (rabbit, 1:1 000, Servicebio, GB112323), anti-CD63
(mouse, 1:100, Arigo, ARG41312), anti-CCR7 (rabbit, 1:100, HUABIO,
ET1602-22), anti-CD83 (rabbit, 1:1 000, ABclonal, A2040), HRP
conjugated Goat Anti-Rabbit IgG (1:500, Servicebio, GB23303), CY3-
Tyramide (1:2 000, Servicebio, G1223), FITC-Tyramide (1:1 000,
Servicebio, G1222), CY3-Tyramide (1:2 000, Servicebio, G1223), and
Cy5 conjugated Goat Anti-Mouse IgG (1:400, Servicebio, GB27301).

Flow cytometry assay
The tumors were minced and digested with digestion cocktail
(collagenase 1.5mg·mL−1, hyaluronidase 1.5mg·mL−1, DNase
20 μg·mL−1) at 37 °C for 30min. Then, the suspension was transferred
onto a 70-μm cell strainer to remove undigested tissue. ACK lysis

buffer was used to exclude red blood cells. After CD16/32 blocking
(BD Biosciences, 553141, 1:100) for 30min, the suspensions were
incubated with antibodies for 30min at 4 °C. The antibodies used in
the experiments were as follows: Fixable Viability Stain 510 (BD
Biosciences, 564406, 1:1 000), anti–mouse CD45–APC–Cy7 (BD
Biosciences, 557659; 1:100), anti-mouse CD11b–BB700 (BD Bios-
ciences, 746004; 1:100), anti–mouse F4/80–Super Bright 645
(eBioscience, 64-4801-82; 1:200), and anti–mouse MHC-II–APC (BD
Biosciences, 562823; 1:100). Cells were resuspended in staining buffer
before flow cytometry and were analyzed on a BD FACSCelesta™ flow
cytometer. Data were analyzed using FlowJo version 10.0 (Treestar).

Micro-CT scanning (μCT) analyses
The tumor-bearing leg was harvested, and the normal soft tissue
around the femur was removed. After that, μCT analyses were
performed with a SkyScan 1174 μCT scanner. The scanning
procedure was performed at 63 kV with a 153-μA current and a
resolution of 9 μm/pixel. CTAn (version 1.9, SkyScan) was used for
quantitative analysis as well as 3D reconstruction. CTVol (version
2.0, SkyScan) was used for the visualization of 3D models.

Cell–cell interaction analysis
CellPhoneDB is a Python-based algorithm for cell–cell commu-
nication through the known ligand‒receptor database. Interaction
pairs whose ligands/receptors belong to the CD, VEGF, TNF, TGF,
FGF, CCL, or CXCL families and have P values < 0.05 were used to
evaluate the interactions between the cell populations.

Correlation to bulk-RNA seq from clinical cohort
CibersortX and the average expression of signature genes were
used to decipher the infiltration score of each cell subtype in the
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clinical cohort from TARGET. Then, the patients were divided into
a high infiltration group and a low infiltration group for each cell
cluster. The prognostic value of these clusters was assessed by Cox
regression analysis. Spearman correlation analysis was performed
to decipher the correlation between cell clusters (P values < 0.05
were considered meaningful correlations).
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