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Runx1 is a key regulator of articular cartilage homeostasis by
orchestrating YAP, TGFβ, and Wnt signaling in articular
cartilage formation and osteoarthritis
Yan Zhang 1,2, Tao Zuo1,3, Abigail McVicar4, Hui-Lin Yang3, Yi-Ping Li1,4✉ and Wei Chen1,4✉

Runt-related transcription factor 1 (Runx1) plays a key role in cartilage formation, but its function in articular cartilage formation is
unclear. We generated non-inducible and inducible Runx1-deficient mice (Runx1f/fCol2α1-Cre and Runx1f/fCol2α1-CreER mice) and
found that chondrocyte-specific Runx1-deficient mice developed a spontaneous osteoarthritis (OA)-like phenotype and showed
exacerbated articular cartilage destruction under OA, characterized by articular cartilage degradation and cartilage ossification, with
decreased Col2α1 expression and increased Mmp13 and Adamts5 expression. RNA-sequencing analysis of hip articular cartilage
from the Runx1f/fCol2α1-Cre mice compared to that from wild-type mice and subsequent validation analyses demonstrated that
Runx1 is a central regulator in multiple signaling pathways, converging signals of the Hippo/Yap, TGFβ/Smad, and Wnt/β-catenin
pathways into a complex network to regulate the expression of downstream genes, thereby controlling a series of osteoarthritic
pathological processes. RNA-sequencing analysis of mutant knee joints showed that Runx1’s role in signaling pathways in articular
cartilage is different from that in whole knee joints, indicating that Runx1 regulation is tissue-specific. Histopathologic analysis
confirmed that Runx1 deficiency decreased the levels of YAP and p-Smad2/3 and increased the levels of active β-catenin.
Overexpression of Runx1 dramatically increased YAP expression in chondrocytes. Adeno-associated virus-mediated Runx1
overexpression in the knee joints of osteoarthritic mice showed the protective effect of Runx1 on articular cartilage damaged in OA.
Our results notably showed that Runx1 is a central regulator of articular cartilage homeostasis by orchestrating the YAP, TGFβ, and
Wnt signaling pathways in the formation of articular cartilage and OA, and targeting Runx1 and its downstream genes may facilitate
the design of novel therapeutic approaches for OA.
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INTRODUCTION
Osteoarthritis (OA) is the most common degenerative joint disease
and a major cause of pain and disability that often leads to severely
limited mobility and physical disabilities for people over the age of
55 years.1 OA is characterized by cartilage degradation, subchondral
bone thickening, osteophyte formation, and high expression of the
cartilage degradation enzymes MMPs and ADAMTSs.1–3 Current
treatments for OA are often palliative and in many cases require
joint replacements,2 which are costly, risky and functionally finite.
The root causes of articular cartilage degeneration in OA remain
unclear. Thus, a complete understanding of the pathological
mechanisms is critical to developing therapies for OA.
Runt-related transcription factor 1 (Runx1) is a key transcription

factor in the development of the hematopoietic system that also
regulates early chondrocyte formation during bone development
and fracture healing.3–7 Our previous studies revealed that Runx1
could regulate the BMP/TGFβ/Smad and Wnt/β-catenin signaling
pathways and orchestrate multiple signaling pathways in bone,
contributing to the earliest stages of skeletogenesis.8,9 Moreover, we

found that Runx1 attenuated chondrocyte to osteoblast lineage
commitment and inhibited bone formation by limiting both
chondrogenesis and osteogenesis.10 We revealed that Runx1
deficiency in chondrocytes resulted in downregulated chondro-
cyte hypertrophy gene expression, which delayed chondrocyte
differentiation.10 Based on previous findings, we suspected that
Runx1 may play a role in cartilage repair and OA. In addition, some
studies on Runx1 have focused on the early stage of cartilage
development and cartilage hypertrophy.10,11 A meta-analysis of a
genome-wide association study identified some loci related to
the shape of the hip and found that Runx1 is involved in hip OA
and fractures.12 However, the function and mechanisms under-
lying the role of Runx1 in OA and postnatal articular cartilage
regeneration remain unclear.
In this study, to explore the role of Runx1 in articular cartilage,

we generated chondrocyte-specific Runx1-deficient mice (Runx1f/
fCol2α1-Cre mice). We also used the inducible Cre-FloxP system to
mediate time-specific gene knockout to produce postnatal
Runx1f/fCol2α1-Cre ER mice. We found that chondrocyte-specific
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Runx1-deficient mice developed a spontaneous OA-like pheno-
type. We performed RNA-sequencing analysis to investigate the
mechanism underlying the role of Runx1 in OA and found that
Runx1 may orchestrate the YAP, TGFβ, and Wnt signaling
pathways and that Runx1 is also involved in multiple biological
processes (BP), including the inflammatory response, bone
regeneration, biomineral tissue development, collagen fibril
organization and tissue development. We further confirmed that
Runx1 could significantly promote YAP and p-Smad2/3 expression
in chondrocytes and cartilage, which may be the mechanism of
the significantly impaired articular cartilage regeneration and
repair leading to OA, and Runx1 could inhibit active β-catenin
expression by regulating YAP expression, thereby limiting the
formation of osteophytes. Furthermore, our study demonstrated
that adeno-associated virus (AAV)-mediated local Runx1 over-
expression protected against surgical OA in mice. These results
indicated that Runx1 could protect articular cartilage from OA and
could be a potential drug target in the treatment of OA.

RESULTS
Loss of Runx1 in chondrocytes exacerbated articular cartilage
damage after DMM surgery
To explore the role of Runx1 in articular cartilage, we generated
Runx1f/fCol2α1-Cre (F/F/Δ) mice by crossing Runx1f/f (F/F) mice with
Col2α1-Cre mice to specifically delete Runx1 expression in
chondrocytes. Western blot results showed successful Runx1
knockdown in articular cartilage of the Runx1f/fCol2α1-Cre mice, as
well as increased protein levels of the articular cartilage damage-
related genes Mmp13 and Col10α1 with a decrease in Sox9
expression in the Runx1-deficient mice (Fig. 1a). Moreover,
Safranin O (SO) staining showed that loss of Runx1 promoted
articular cartilage loss compared to that of the control mice in the
hip joints (Fig. 1b). The mutant mice had shorter hypertrophic
zones than the littermate controls, which resulted in malformed
growth plates in the long bones of the mutant mice. The intensity
of SO staining was directly proportional to the proteoglycan
content in normal cartilage, and as shown by histology, the
mutant mice showed a modest decrease in SO staining intensity,
indicating decreased proteoglycan content in the mutant mouse
cartilage (Fig. 1b). Moreover, IHC staining results confirmed Runx1
depletion in the cartilage of the Runx1f/fCol2α1-Cre (F/F/Δ) mice
(Fig. 1c). To examine the effect of Runx1 on OA progression, we
performed destabilization of the medial meniscus (DMM) surgery,
which can generate a well-established mouse model to mimic
human OA.13 The Runx1-deficient mice had a significant increase
in articular cartilage loss and thus OA severity (Fig. 1d, e). Our
results showed that Runx1 deficiency in chondrocytes also led to
an increase in the Osteoarthritis Research Society International
(OARSI) score compared to that of the sham controls (Fig. 1f). TRAP
staining was used to determine potential differences in osteoclasts
in the control and mutant mice under physiological and surgically
induced osteoarthritic conditions (Fig. S1D, E). Osteoclast numbers
were similar between the WT and mutant mice in the sham group,
but TRAP+ osteoclasts were increased twofold in the mutant mice
following DMM surgery (Fig. S1D, E). These data indicated that loss
of Runx1 in chondrocytes leads to cartilage damage under
physiological conditions and exacerbates articular cartilage
defects under osteoarthritic conditions, which suggests that
Runx1 may play crucial roles in osteoarthritic cartilage destruction.

Mice with postnatal Runx1 deletion exhibited a spontaneous OA-
like phenotype
To exclude the effect of Runx1 on cartilage development and to
further investigate the role of Runx1 in cartilage loss, we
generated Runx1f/fCol2α1-Cre ER mice by crossing Runx1f/f mice
with Col2α1-Cre ER mice and injected tamoxifen (TMX) to induce
postnatal Runx1 deletion in cartilage. First, we detected the

genotype of the Runx1f/fCol2α1-Cre ER mice before and after TMX
induction and found that the deletion band (298 bp) appeared
after induction with TMX (Fig. S1A). We found no significant
differences in body length between the 2-month-old vehicle
(control) and TMX-induced Runx1f/fCol2α1-Cre ER mice (Fig. S1B),
while examination of the femur and tibia lengths in the 8-month-
old WT, vehicle (control) and TMX-induced Runx1f/fCol2α1-Cre ER
mice similarly showed no significant difference in length
(Fig. S2). Furthermore, we examined Runx1 expression in the
Runx1f/fCol2α1-Cre ER mice by induction with vehicle and TMX and
confirmed that postnatal Runx1 was successfully knocked down in
articular cartilage by TMX injection (Fig. 2a, b). In addition,
histological bone phenotypes for the knee joint of 3-month-old
mice with spontaneous OA showed dysregulated joint space and
damaged joint morphology in the postnatal Runx1-deficient mice
by H&E and SO staining (Fig. 2c, d, g). Moreover, SO staining of the
4.5-month-old mice with TMX exhibited obvious articular cartilage
erosion and closed joint space (Fig. 2e, h). Furthermore, a narrow
joint space and osteophytes were found in the knee joint of the
TMX-treated mice by radioactive imaging (Fig. 2f). Our data
suggested that postnatal Runx1 deficiency in mouse cartilage
resulted in a spontaneous OA-like phenotype.

Postnatal Runx1 deficiency in articular cartilage decreased Col2α1
expression and increased the expression of cartilage degradation
markers
To further study the role of Runx1 in articular cartilage, we
detected cartilage destruction-related gene expression at the
protein level. We found that after TMX treatment, the
Runx1f/fCol2α1-Cre ER mice exhibited significant cartilage erosion
with a distinct decrease in Col2α1 expression and a remarkable
increase in Mmp13 expression in knee joint cartilage, which
reflected sclerosis of cartilage (Fig. 3a, b, d, e). In addition, the
cartilage degradation marker Adamts5 was significantly increased
in the postnatal Runx1-deficient mice (Fig. 3c, f). These results
indicated that the postnatal Runx1-deficient mice exhibited
articular cartilage destruction with decreased Col2α1 expression
and increased expression of cartilage degradation markers.

RNA-sequencing analysis showed that Runx1 protected against
cartilage loss in OA by regulating the TGFβ, Wnt and Hippo
signaling pathways
Runx1 is essential for the regulation of transcriptional activities.7 To
further probe the mechanism underlying the role of Runx1 in OA,
we performed RNA-sequencing analysis to explore the Runx1
downstream target genes and related signaling pathways. Differ-
entially expressed genes (DEGs) were found in hip cartilage from
the Runx1f/fCol2α1-Cre mice and in knee joint tissues of the Runx1f/
fCol2α1-Cre ER mice treated with TMX (Fig. 4a, Fig. S3A). Volcano
plot results showed that the expression of many genes (Fsd2, Ttn,
Tnni2, Cox8b, Cmya5, Myom1, and Smyd1) was significantly
decreased, Nyp, Hspa1b, Mst1r, Zfp429, Eps8l1, and Adgrg5 levels
were markedly increased in the Runx1 conditional knockout hip
cartilage (Fig. 4a), while volcano plot results also showed that the
expression of many genes (Ear1, Mcpt8, Nxpe2, Ear2, Rab44, Prg3,
Hist1h2ag, Mmp25, Retnlg, Atp1a3, Lcn2, Gm30948, Ache and
Nbeal2) was significantly decreased, and Prtg, Ptgs2, Al593442,
Pthlh and Tnfrsf11b levels were markedly increased in the knee
joints from the mice with postnatal Runx1 inducible deletion (Fig.
S3A). In the hip cartilage samples, we found 81.7% downregulated
genes and 18.3% upregulated genes among the significantly
changed genes (Fig. 4b), and in the knee joint samples, we found
68.8% downregulated genes and 31.2% upregulated genes among
the significantly changed genes (Fig. S3B). Evaluation of the
significant Gene Ontology (GO) BP showed an enhanced inflam-
matory response and decreased collagen fibril organization, bone
regeneration, wound healing, biomineral tissue development, and
tissue development (Fig. 4c, d).
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Furthermore, we examined the gene expression profiles
associated with the Hippo, TGFβ, and Wnt signaling pathways
(Fig. 4e–g). Our results showed that many genes were down-
regulated in the Runx1-deficient hip cartilage, such as Tgfβ2,
Tgfbr3, Egf and Foxp3 (Fig. 4e). Tgfβ3 and Egf affect the
osteochondrogenic potential of chondrocytes.14 TGF-β signal-
ing directly regulates the expression of Foxp3, which contains
enhancer elements that allow Smad3 to bind to DNA
sequences.15 Furthermore, our results showed that some genes
upregulated in the Runx1-deficient hip cartilage and knee joints
included the TGFβ signaling pathway repressor Smurf216 (Fig.
4e). In addition, we found that Acvrl1, Cdkn1b, Csk, Cxcl12, Myc,
Nfkβ and Tgfβ1 were downregulated in the Runx1-deficient
knee joints (Fig. 4e). These results suggested that loss of Runx1
could inhibit the expression of some genes in the TGFβ
signaling pathway. Moreover, genes associated with activation
of the Wnt signaling pathway, such as Wnt8a, Wnt10a, Wnt3,
and Axin2,17 were upregulated, and genes associated with
Hippo signaling were also upregulated, suggesting that these
crosslinked signals were also closely related to Runx1 (Fig. 4f, g).
Wnt3, Tcf7 and Axin2 were also increased in the Runx1-deficient
mice, indicating that loss of Runx1 could promote cartilage
ossification and osteophyte formation by activating the Wnt

pathway in bone formation (Fig. 4f). Lats2 is an essential
component of the Hippo pathway that phosphorylates and
inactivates YAP, which is a key link in the activation and
shutdown of the Hippo signaling pathway.18 Here, we found
that Lats2 expression was enhanced in the Runx1-deficient hip
cartilage and knee joints, which indicated that Runx1 deficiency
in cartilage affected Hippo signaling (Fig. 4g). Chondrocyte-
related genes were also downregulated in the hip cartilage of
the Runx1f/fCol2α1-Cre mice (Fig. S3C). Zhou et al. recently
reported a series of genes that interact with Runx1 in
chondrocytes.19 Examination of the expression profiles of these
genes showed altered expression between mutant and WT
samples, with differential expression patterns between hip
cartilage samples and knee joint samples (Fig. 4h). Runx1 was
recently reported to bind the promoters of Tapt1, Fgf20, and
Ric1 to upregulate their expression.19 Our RNA-seq results
demonstrated upregulated Tapt1 expression, downregulated
Fgf20 expression, and no significant difference in Ric1 expres-
sion in the Runx1-deficient hip cartilage compared to the
controls (Fig. 4h). Discrepant results between our study could
be due to different materials and methods of Runx1 deletion
between the two studies: our study uses in vivo cartilage
harvested from mice with chondrocyte-specific deletion of
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Runx1 using Col2α1-Cre, while the study by Zhou et al. utilized
si-Runx1 in isolated chondrocyte and culture samples to silence
Runx1. RNA-sequencing analysis using knee joints from the
Runx1f/f Col2α1-Cre ER mice and the wild-type control mice
demonstrated that Runx1’s role as a central regulator in the
Hippo/Yap, TGFβ/Smad, and Wnt/β-catenin signaling pathways
in articular cartilage differed in knee joint samples compared to
hip cartilage alone, indicating that Runx1 regulation is tissue-
specific. Collectively, our data are the first to demonstrate that
loss of Runx1 may control downstream gene expression by

orchestrating the TGFβ, Hippo, and Wnt signaling pathways,
thereby exacerbating a series of osteoarthritic pathological
processes, including cartilage damage and inflammation.

Loss of Runx1 in cartilage led to decreased YAP and p-Smad2/3
and increased active β-catenin
Signal integration could provide a better understanding of complex
disease processes, and parts of these Hippo/Yap, TGFβ/Smad2/3 and
Wnt/β-catenin pathways converge into a complex network that may
coregulate transcriptional activators.20–22 Furthermore, the expression
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of important signaling proteins in these pathways was detected in our
study. Here, we detected YAP expression in hip cartilage tissues of 2-
month-old Runx1f/fCol2α1-Cre ER mice. Western blot analysis showed
that YAP decreased in the TMX-treated mice (Fig. 5a). We also found
that postnatal Runx1 deficiency significantly decreased YAP protein
levels in articular cartilage of the 3-month-old male Runx1f/fCol2α1-Cre
ERmice by IF staining (Fig. 5b, c). Moreover, IF staining results showed
that Runx1 knockdown led to a decrease in p-Smad2/3 expression
and β-catenin activation in cartilage of the knee joint (Fig. 5d–g),

indicating that Runx1 may regulate the Hippo/Yap, Wnt/β-catenin
and TGFβ/Smad2/3 signaling pathways to regulate cartilage loss.
In addition, Runx1 interacts with YAP in various cells,23–25 but its

moderating effect in chondrocytes is unknown. To further validate
the regulation of YAP levels through Runx1, we performed
experiments in primary chondrocytes from the Runx1f/f (F/F) and
Runx1f/f Col2α1-Cre (F/F/Δ) mice. The results of Alcian blue staining
and western blotting showed that Runx1 deletion inhibited
chondrocyte matrix deposition with decreased YAP protein levels
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(Fig. 5h, i). The data indicated that Runx1 may be involved in
cartilage regeneration by regulating YAP levels.

Runx1 overexpression in chondrocytes promoted YAP protein
levels in vitro, and local Runx1 overexpression by AAV protected
against OA in an ACLT mouse model in vivo
To further explore the function and mechanism of Runx1
overexpression in cartilage, we used pMXs-Runx1 and AAV-
Runx1 vectors to enhance Runx1 expression in vitro and
in vivo. We observed GFP expression under a fluorescence
microscope, indicating that the transfection was successful
(Fig. 6a). Alcian blue staining showed that Runx1 overexpres-
sion significantly increased chondrocyte matrix deposition
(Fig. 6b). Furthermore, Western blot results confirmed that
Runx1 was successfully overexpressed by pMXs-Runx1 retro-
virus transfection in ATDC5 cells (Fig. 6c). Moreover, we found
that overexpression of Runx1 in ATDC5 cells by pMX-Runx1
retrovirus transfection significantly enhanced YAP protein
levels (Fig. 6c). These results indicated that Runx1 may be
essential for chondrocyte matrix deposition and cartilage
repair by regulating YAP expression.
To further evaluate the function of Runx1 overexpression in OA,

we performed ACLT surgery in 8-week-old WT mice administered
AAV-YFP as a control or AAV-Runx1 (Fig. 6d) by intra-articular
injection. The articular cartilage surface showed YFP expression,
indicating successful AAV infiltration (Fig. 6e). AAV-Runx1 induction
was further confirmed by anti-Runx1 immunohistochemistry staining
(Fig. S1C). The AAV-Runx1-treated mice were protected from ACLT-
induced OA damage compared with the controls (Fig. 6f–h).

Moreover, we further detected severe articular cartilage loss in the
AAV-YFP-treated osteoarthritic mouse knees with degraded articular
cartilage and osteophytes, while the AAV-Runx1 treatment group
displayed attenuated articular cartilage damage and recovered knee
joint space (Fig. 6f–h). These data suggested that local over-
expression of Runx1 could be an effective target for OA treatment.

DISCUSSION
In this study, we found that chondrocyte-specific Runx1-deficient
mice (Runx1f/fCol2α1-Cre and Runx1f/fCol2α1-Cre ER mice) devel-
oped a spontaneous OA-like phenotype characterized by articular
cartilage degradation, osteophyte formation and narrowed joint
space. Moreover, AAV-mediated local Runx1 overexpression
protected against surgical OA in mice that underwent ACLT. In
addition, our data notably indicated that Runx1 could attenuate
OA by regulating YAP protein levels and orchestrating multiple
signaling pathways, including the Wnt, Hippo, and TGFβ pathways
(Fig. 7). Therefore, targeting Runx1 could be an effective
therapeutic approach for OA treatment.
Runx1 is a pivotal transcription factor in regulating bone home-

ostasis and multiple physiological processes. Importantly, our
previous work demonstrated that Runx1 is essential for osteoblast
differentiation and cartilage development.8,10 Genome-wide associa-
tion studies using clinical samples have found that Runx1 is
associated with hip OA and bone fractures.12 Fumiko Yano et al.
used 2-month-old Runx1f/fCol2α1-Cre mice and found that Runx1
could enhance articular cartilage maintenance by increasing cartilage
matrix production and decreasing hypertrophic differentiation, but
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they did not find a significant difference in the 4-month-old Runx1f/f

and Runx1f/fCol2α1-Cre mice.11 However, their study also found that
Col2α1 expression and other chondrogenic markers were signifi-
cantly decreased in the 4-month-old Runx1f/f Col2α1-Cre mice, which
is also in line with our data from the 4.5-month-old Runx1f/fCol2α1-
Cre mice.11 We speculated that the effect of different mouse sources

on articular cartilage may have subtle differences over time, as others
have also confirmed that Runx1f/fCol2α1-Cre mice have an osteoar-
thritic phenotype,19 which we further demonstrated in our current
study. Current studies have focused on the role of Runx1 in the early
chondrogenic stage, yet the function of Runx1 in postnatal cartilage
tissue morphology and physiological changes needs to be further
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explored. Here, we confirmed that chondrocyte-specific Runx1
deficiency in mice resulted in articular cartilage degradation
under physiological conditions and exacerbated articular cartilage
destruction under osteoarthritic conditions in DMM and ACLT
models. Furthermore, to rule out the confounding effect of
Runx1’s role in cartilage development during embryonic devel-
opment, we employed inducible Runx1f/fCol2α1-Cre ER mice and
investigated the role of postnatal Runx1 in articular cartilage. Here,
mice with postnatal Runx1 deletion exhibited a spontaneous OA-
like phenotype with decreased Col2α1 expression and increased
Mmp13 and Adamts5 expression. In addition, Mmp13 and
Adamts5 play key roles in cartilage degradation during the
pathological process of OA.26 Recently, Zhou et al. showed that
these molecules protect against the pathological progression of
OA,19 which is consistent with our findings.
Since Runx1 is the scaffold for many signaling pathways, signal

integration can provide a better understanding of complex disease
processes, and parts of the Hippo/Yap, TGFβ/Smad and Wnt/
β-catenin signaling pathways converge into a complex network
that may coregulate transcriptional activators.9,22,27–29 It has been
reported that Runx1 has the potential to regulate TGFβ/BMP, Wnt
and ERK/MAPK in bone and other cell types.28,30–33 Through the use
of genome-wide RNA sequencing, we further explored the
mechanisms underlying Runx1’s role in the pathogenesis of OA,
which demonstrated that many genes associated with the TGFβ
signaling pathway, such as Tgfb2,34 Foxp3,35 and Egf, were
downregulated in Runx1-deficient hip cartilage, while TGFβ
signaling pathway repressors, such as Smurf2,16 were upregulated.
TGF-β signaling directly regulates the expression of Foxp3, which
contains enhancer elements that allow Smad3 to bind to DNA
sequences.15 Tgfβ3 and Egf also affect the osteochondrogenic
potential of chondrocytes.14 Notably, RNA-seq results also demon-
strated downregulated expression of Bmp7 in Runx1-deficient hip
cartilage. BMP7 is chondroprotective in OA,36–39 and only a narrow
range of bioactive TGFβ levels can precisely maintain articular
cartilage health.27 In addition, phosphorylation of Smad2/3 proteins
is a critical step in the TGFβ signaling pathway.29 We further
examined whether postnatal Runx1 deletion led to decreased p-
Smad2/3 expression in the cartilage of the knee joint, suggesting
that Runx1 may weaken OA by enhancing the TGFβ signaling
pathway. As shown by the RNA-seq data, Yap1, Smad2, Smad3, and
CTNNB1 expression was increased in the hip cartilage and knee
joint tissue of the Runx1f/f Col2α1-Cre ER mice. Since activation of
beta-catenin and phosphorylation of Smad2/3 is a post-translational
modification at the protein level, we were not able to detect active
beta-catenin and p-Smad2/3 directly through RNA-seq, which
explains why the protein level and mRNA level results can be
different. Moreover, Runx1 binds Cbfβ to coordinate BMP signaling
and Wnt/β-catenin signaling to promote bone formation and
inhibit adipogenesis to maintain bone development, but the
regulatory mechanism in OA is unclear.8,9 Here, the Wnt signaling
pathway was enhanced by Runx1 conditional knockout, as shown
by our RNA-seq analysis results showing that Wnt8a, Wnt10a, Wnt3,
and Ctnnb1 expression was increased in the Runx1-deficient hip
cartilage. Ctnnb1 encodes the β-catenin protein, and β-catenin is a
pivotal biomarker for detection of Wnt signaling pathway activa-
tion.40 In addition, Tcf7, Nkd1 and Axin2, as key components in Wnt
signaling, were increased in the Runx1-deficient mice. These results
indicated that loss of Runx1 could promote cartilage ossification
and osteophyte formation by activating the Wnt pathway in bone
formation. The Hippo signaling pathway plays an important role in
organ size regulation, cell proliferation-differentiation-senescence,
carcinogenesis, tissue regeneration, and stem cell function.41 Lats2
is an essential component of the Hippo pathway that phosphor-
ylates and inactivates YAP, which is a key link in the activation and
shutdown of the Hippo signaling pathway.18 Here, we found that
Lats2 mRNA expression was increased, and YAP protein expression
was decreased in the Runx1-deficient hip cartilage and knee joints.

The high expression of Lats2 promoted the phosphorylation of YAP,
thereby inhibiting the entry of YAP into the nucleus in Runx1-
deficient cartilage, which indicated that Runx1 deficiency in
cartilage affected Hippo signaling. Moreover, these results sug-
gested that the loss of Runx1 in cartilage may lead to an increase in
intracellular phosphorylated YAP and inhibit the dephosphorylation
of YAP into the nucleus. Furthermore, this process would intensify
the depolymerization of Axin, APC, GSK3 and the phosphorylated
β-catenin complex in the Wnt signaling pathway, thereby releasing
more β-catenin into the nucleus and promoting the expression of
target genes such as Adamts5, Mmp13 and Col10ɑ1, accelerating
cartilage degradation and leading to the occurrence of OA. Notably,
the Wnt/β-catenin signaling pathway could promote bone forma-
tion in bone metabolism, and the increase in activated β-catenin by
the loss of Runx1 in the nucleus may promote osteoblast-related
gene expression, also leading to cartilage ossification and
osteophyte formation in knee joints. This finding also implied that
the regulation of the Wnt/β-catenin pathway by Runx1 may be
different in bone formation and osteoarthritic cartilage defects;
thus, the mechanism may need to be further explored. In addition,
Runx1 deficiency may inhibit the entry of YAP and phosphorylated
Smad2/3 into the nucleus, and their interaction with Runx1 in the
nucleus will be further weakened, thereby inhibiting the expression
of target genes such as Col2ɑ1 and Sox9 and exacerbating the loss
of cartilage. Notably, our RNA-sequencing analysis of mutant knee
joints showed that Runx1’s role in signaling pathways in articular
cartilage is different from that in whole knee joints, indicating that
Runx1 regulation is tissue-specific. Collectively, our data first
indicated that Runx1 could orchestrate multiple signaling pathways
involved in various BP and signaling pathways critical to cartilage
regeneration and repair, including the TGFβ, Hippo, and Wnt
signaling pathways (Fig. 7).
Zhou et al. recently reported a series of genes that interact with

Runx1 in chondrocytes.19 Examination of the expression profiles of
these genes showed altered expression between mutant and
control samples, with differential expression patterns between hip
cartilage samples and knee joint samples. Runx1 was recently
reported to bind the promoters of Tapt1, Fgf20, and Ric1 to
upregulate their expression.19 Our RNA-seq results demonstrated
upregulated Tapt1 expression, downregulated Fgf20 expression,
and no significant difference in Ric1 expression in the Runx1-
deficient hip cartilage compared to the controls. Discrepant results
between our study could be due to different materials and
methods of Runx1 deletion between the two studies: our study
used in vivo cartilage harvested from mice with chondrocyte-
specific deletion of Runx1 using Col2α1-Cre, while the study by
Zhou et al. utilized si-Runx1 in chondrocyte isolation and culture
samples to silence Runx1. In addition, we found that the expression
changes of some genes were not completely consistent in the hip
cartilage of the Runx1f/f Col2α1-Cre mice and the knee joints of the
Runx1f/f Col2α1-Cre ER with TMX mice, and these specific
differences need to be further explored. Both studies by our
group and Zhou et al. revealed an important protective function of
Runx1 in osteoarthritic cartilage. Collectively, our data indicated
that loss of Runx1 may control downstream gene expression by
orchestrating the TGFβ, Hippo, and Wnt signaling pathways,
thereby exacerbating a series of osteoarthritic pathological
processes, including cartilage damage, cartilage ossification and
osteophyte formation and inflammation.
YAP is an important signaling molecule in the Hippo and other

signaling pathways that regulates cartilage maintenance and the
inflammatory response in OA.42 YAP activity is not necessary for
normal tissue growth and homeostasis, but it plays an important
role in tissue regeneration after tissue injury.43 It has been reported
that Runx1 interacts with YAP in a variety of developmental,
hematopoietic stem cell formation, tumorigenesis, and immu-
notherapeutic processes.23–25 YAP also plays an essential role in
regulating the Wnt/β-catenin canonical pathway and the
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noncanonical Wnt pathway44–46 implicated in OA.40,47 However, the
exact function and underlying mechanism of YAP in maintaining
cartilage and bone homeostasis is controversial,44 and further study
is needed to uncover its role in the pathogenesis of OA. Our study
showed that Runx1 could control YAP expression in chondrocytes
and cartilage in vitro and in vivo.
In addition, OA is a complex disease involving multiple tissues,

such as cartilage, bone, muscle, fat and fibroblasts.1 The
occurrence of OA is also accompanied by a continuous increase
in inflammation. Cartilage degrades under inflammation, and
subchondral bone gradually erodes cartilage tissue from below
through angiogenesis and diffusion of degrading enzymes such as
matrix metalloproteinase MMPs.26 OA can activate abnormal
signaling pathways, such as the NF-κB signaling pathway,
resulting in the expression of a large number of catabolic factors
and inflammatory mediators. Here, RNA-seq analysis showed that
Runx1 deficiency enhanced GO terms of Runx1f/fCol2α1-Cre mice,
such as positive regulation of the inflammatory response,
indicating that Runx1 may suppress the occurrence of inflamma-
tion and can be considered a notable target to relieve joint pain in
the pathological process of OA.
Our data also demonstrated that AAV-mediated local Runx1

overexpression protected against surgical OA in mice. Targeting
Runx1, a regulator of key signaling pathways involved in OA
pathogenesis, could facilitate the design of safer and novel
therapeutic approaches for OA. However, a limitation of our study
is the lack of in-depth mechanisms for Runx1 overexpression in OA.
We found that Runx1 overexpression promoted YAP expression
in vitro; however, the specific regulatory mechanism of Runx1
overexpression on YAP signaling was still unclear in our in vivo
studies. Whether the protective effect of Runx1 overexpression
against articular cartilage damage in OA occurs through YAP
signaling warrants further investigation in future studies. Our study
notably revealed that Runx1 is a key transcription factor in articular
cartilage homeostasis and promotes articular cartilage regeneration
and repair in OA by orchestrating YAP, TGFβ, and Wnt signaling.
Taken together, this work provides important insights into the role
of Runx1 in OA and the mechanisms underlying how Runx1
maintains articular cartilage homeostasis. The insights obtained
from this study may benefit the development of novel therapeutic
approaches for OA.

MATERIALS AND METHODS
Generation of chondrocyte-specific Runx1-deficient mice
The Runx1f/f mouse line was purchased from The Jackson
Laboratory. The Col2ɑ1-Cre ER mouse line was kindly provided
by Professor Di Chen.48 The Col2ɑ1-Cre mouse line was generously
provided by Professor Rosa Serra (University of Alabama at
Birmingham, UAB). Runx1f/f mice were crossed with Col2ɑ1-Cre or
Col2ɑ1-Cre ER mice to obtain Runx1f/f Col2ɑ1-Cre or Runx1f/f

Col2ɑ1-Cre ER mice, respectively. Induction of Runx1 deletion was
achieved by intraperitoneal (I.P.) injection of TMX or corn oil as a
vehicle control as described.49 Briefly, TMX (T5648, Sigma) was
dissolved in corn oil (C8267, Sigma) at a concentration of
10mg·mL−1 and vortexed until clear. The solution was aliquoted
and stored at 4 °C in the dark. Before use, the TMX solution was
warmed to room temperature. Three-week-old Runx1f/f Col2ɑ1-Cre
ER mice received either TMX or vehicle by I.P. injection
continuously for 5 days. The genotypes of the mice were
determined by PCR, and the primer sequences were as previously
described.8–10 All mice were maintained under a 12 h light–dark
cycle with ad libitum access to regular food and water at the UAB
Animal Facility. Both male and female mice of each strain were
randomly divided into groups of five animals each. The
investigators were not blinded during allocation, animal handling,
or endpoint measurements. The study was approved by the UAB
Institutional Animal Care and Use Committee, complied with the

National Institutes of Health (NIH) guidelines, and followed all
ARRIVE recommendations (Animal Studies: Reporting of In Vivo
Experiments) guidelines.

OA mouse model and AAV-Runx1 treatment
The OA surgical model of DMM was established in Runx1f/f and
Runx1f/f Col2α1-Cremice. We also used the anterior cruciate ligament
transection (ACLT) model to explore the therapeutic effect of Runx1
overexpression on OA. The Osteoarthritis Research Society Interna-
tional score (OARSI) was used to assess cartilage degeneration as
previously described.50 The workflow of ACLT surgical OA and
subsequent AAV-Runx1/AAV-YFP treatment is shown in Fig. 6d.
ACLT-treated mice were locally injected with 10 μL of AAV-YFP or
AAV-Runx1 (titer > 1010 per mL) three times on Day 7, Day 14, and
Day 21 in the knee joint cavity and euthanized 70 days after surgery
to obtain ACLT knee joint samples.

Histology and tissue preparation
Histology and tissue preparation were performed as described
previously.10 Briefly, mice were euthanized, skinned and fixed in 4%
paraformaldehyde overnight. The samples were then dehydrated in
ethanol solution and decalcified in 10% EDTA for 2–4 weeks. For
paraffin sections, samples were dehydrated in ethanol, cleared in
xylene, embedded in paraffin, sectioned with a 5 μm Leica
microtome and mounted on Superfrost Plus slides (Fisher). For
frozen sections, decalcified samples were infiltrated with 30%
sucrose, embedded in OCT, and sectioned at 8 μm by a freezing
microtome. H&E (HE) staining and safranin O (SO) staining were
performed as described previously.10 We used a commercial kit
(Sigma-Aldrich, 387A-1KT) to perform tartrate-resistant acid phos-
phatase (TRAP) staining according to the manufacturer’s instructions.

Radiography
Radioactive images were captured by the Faxitron Model MX-20 at
26 kV by the UAB Small Animal Bone Phenotyping Core associated
with the Center for Metabolic Bone Disease.

Immunohistochemistry and immunofluorescence analysis
Immunohistochemistry (IHC) and immunofluorescence (IF) were
performed as previously described.10 The following primary
antibodies were used: rabbit anti-Runx1 (Abcam, ab23980), mouse
anti-Col2α1 (Santa Cruz, sc-52658), rabbit anti-MMP13 (Abcam,
ab39012), rabbit anti-ADAMTS5 (Santa Cruz, sc-83186), rabbit anti-
Yap (Cell Signaling Technology, 14074 S), p-Smad2/3 (Cell Signal-
ing Technology, 8828 S), and mouse anti-active-β-catenin (Milli-
pore, 05–665). The secondary antibodies were goat anti-rabbit
IgG-FITC, goat anti-rabbit IgG-TRITC, goat anti-mouse IgG-FITC and
goat anti-mouse IgG-TRITC from Santa Cruz. Images were taken by
a Leica DMLB microscope and a Leica D3000 fluorescence
microscope. ImageJ software was used to perform counts for
the quantification of IHC or IF staining.

RNA sample preparation and RNA-seq
RNA sequencing and analysis were performed as previously
described.9 In brief, total mRNA was isolated using TRIzol reagent
(Invitrogen Corp., Carlsbad, CA) from mouse knee joint tissue or hip
cartilage following the manufacturer’s protocol and was submitted
to Admera Health (South Plainsfield, NJ), who assessed sample
quality with the Agilent Bioanalyzer and prepared the library
using the NEBnext Ultra RNA - Poly-A kit. Libraries were analyzed
using Illumina next-generation sequencing, and relative quantifi-
cation was provided by Admera Health. Read counts were
subjected to paired differential expression analysis using the R
package DESeq2.51

Western blot
Proteins were loaded on SDS‒PAGE gels and then electrotrans-
ferred to nitrocellulose membranes. We used the following
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primary antibodies: rabbit anti-Runx1 (Abcam, ab23980), rabbit
anti-MMP13 (Abcam, ab39012), mouse anti-Sox9 (Santa Cruz, sc-
166505), rabbit anti-Col10ɑ1 (Thermo Fisher, PA5-115039), rabbit
anti-Yap (Cell Signaling Technology, 14074 S), and mouse anti-
β-Tubulin (Santa Cruz, sc-166729). The secondary antibodies were
goat anti-rabbit IgG-HRP (sc-2004) and rabbit anti-mouse IgG-HRP
(sc-358917) from Santa Cruz.

Primary chondrocyte culture and ATDC5 cell transfection
We isolated and cultured primary chondrocytes from neonatal
Runx1f/f and Runx1f/f Col2ɑ1-Cre mice as described.52 We used
pMXs-GFP and pMXs-3xFlag-Runx1 retroviral vectors to package
and collect retroviruses, which infected ATDC5 cells to enhance
the expression of Runx1. Furthermore, primary mouse chondro-
cytes and the ATDC5 cell line were induced for 14 days, and Alcian
blue staining was carried out to detect chondrocyte matrix
deposition as previously described.10

Statistical analysis
The number of animals used in this study was determined in
accordance with our previous studies.8–10 Experimental data are
reported as average ± SD of at least triplicate independent samples.
Data were analyzed with a two-tailed unpaired t-test. P values < 0.05
were considered significant. *P < 0.05, **P < 0.01, ***P < 0.001.
Figures are representative of the results.

Study approval
The study was approved by The UAB Animal Care and Use
Committee and conformed to NIH guidelines.
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