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Biomechanics and mechanobiology of the bone matrix
Chunyang Ma1, Tianming Du2, Xufeng Niu1,3✉ and Yubo Fan 1,4✉

The bone matrix plays an indispensable role in the human body, and its unique biomechanical and mechanobiological properties
have received much attention. The bone matrix has unique mechanical anisotropy and exhibits both strong toughness and high
strength. These mechanical properties are closely associated with human life activities and correspond to the function of bone in
the human body. None of the mechanical properties exhibited by the bone matrix is independent of its composition and structure.
Studies on the biomechanics of the bone matrix can provide a reference for the preparation of more applicable bone substitute
implants, bone biomimetic materials and scaffolds for bone tissue repair in humans, as well as for biomimetic applications in other
fields. In providing mechanical support to the human body, bone is constantly exposed to mechanical stimuli. Through the study of
the mechanobiology of the bone matrix, the response mechanism of the bone matrix to its surrounding mechanical environment
can be elucidated and used for the health maintenance of bone tissue and defect regeneration. This paper summarizes the
biomechanical properties of the bone matrix and their biological significance, discusses the compositional and structural basis by
which the bone matrix is capable of exhibiting these mechanical properties, and studies the effects of mechanical stimuli, especially
fluid shear stress, on the components of the bone matrix, cells and their interactions. The problems that occur with regard to the
biomechanics and mechanobiology of the bone matrix and the corresponding challenges that may need to be faced in the future
are also described.

Bone Research           (2022) 10:59 ; https://doi.org/10.1038/s41413-022-00223-y

INTRODUCTION
Bone is an important organ that provides mechanical support for
the human body, and the bone matrix is an important component
of bone1–3. For a long time, the bone matrix has attracted extensive
attention because of its superior role in the human body and unique
mechanical properties4–7. As a natural biomaterial, the bone matrix
has superior mechanical properties compared with synthetic
materials. Studies on the biomechanical properties and biological
significance of the bone matrix, as well as the composition and
structure of the bone matrix, will shed light on bone substitute
implants, biomimetic bone materials, scaffolds for human bone
tissue repair, and biomimetic applications in other fields8–10.
Moreover, the bone matrix can be affected by many factors in its
surrounding environment, especially mechanical stimulation, during
both growth and health maintenance11–13. Through the study of the
mechanobiology of the bone matrix, the response mechanism of
the bone matrix to its surrounding mechanical environment can be
elucidated and used to promote the health maintenance of bone
tissue and defect repair.
It is difficult for synthetic materials to achieve both strength and

toughness; that is, those with high strength usually show poor
toughness, and those with strong toughness usually show low
strength4,14. The bone matrix is mainly composed of hydroxyapa-
tite (HA) and collagen (Col). HA accounts for ~40%–45% of the
volume of the bone matrix, and Col accounts for ~55%–60%14.
Among them, HA has high strength, and Col fibers have strong

toughness14. As a natural biomaterial, the bone matrix achieves
both strength and toughness because of its complex multilevel
structure from the nano- to macroscale4. This complex multiscale
structure and the biomechanical properties of the bone matrix
provide a model for the synthesis of new composite biomaterials.
Therefore, to study the biomechanics of the bone matrix while
focusing on its excellent biomechanical properties, attention
should be given to the biological significance of these mechanical
properties, as well as the composition and structure of the bone
matrix. Mastering each mechanical property of the bone matrix
and its biological significance is a prerequisite for preparing more
suitable bone substitute implants and scaffolds for human bone
tissue engineering. Understanding the influences of the composi-
tion and structure of the bone matrix on its mechanical properties
can provide a reference for the preparation of bionic materials and
bone bionics in other fields.
The growth, repair, and health maintenance of human bones

are affected by many factors in the surrounding environment.
Mechanical stimulation is one of the most important environ-
mental factors11,13,15. Human life activities, such as running,
jumping, swimming, and bungee jumping, will lead to drastic
changes in the mechanical environment around the bone matrix.
Mechanical stimuli will have significant impacts on the compo-
nents of bone matrix, Col and HA, as well as the cells living in the
bone matrix, and then affect the interactions between them11,13,15.
Common mechanical stimuli mainly include compressive stress,
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tensile stress and fluid shear stress (FSS)15. Among them, FSS has
significant effects on the components of the bone matrix and
cells11,13,16. In vivo, fluid shear stress mainly acts on the surfaces of
the lacunar-canalicular walls and cell membranes, as well as the
endosteal surface. In addition, the Col in newly formed osteoid
and that lining the bone surface could also be exposed to fluid
flow. According to the research of Weinbaum and Cowin et al., the
space between the canalicular wall and the osteocyte process can
lead to shear stresses of 0.5–3.0 Pa for mechanical loads in the
physiological range17. In in vitro systems of nonbone tissue, FSS is
able to promote the directional alignment of Col fibrils and
directional growth of HA on the surface of Col fibrils. Cells growing
on directionally aligned Col fibrils will grow directionally and
secrete oriented extracellular matrix16. Studying the effects of
mechanical stimuli, especially FSS, on Col, HA, cells, and the
interactions among them may shed light on the defect repair and
health maintenance of bone tissue.
This paper summarizes the biomechanical properties of

the bone matrix and their biological significance, discusses
these mechanical properties from both compositional and
structural aspects, and studies the effects of mechanical
stimulation, especially FSS, on bone matrix components, cells
and their interactions (Fig. 1). The problems that occur with
regard to the biomechanics and mechanobiology of the bone
matrix and the challenges that may need to be faced in the
future are described.

BIOMECHANICS OF THE BONE MATRIX
Bone is an indispensable load-bearing tissue for the human
body, and the bone matrix is a major component of bone. Over
the years, bone matrix has gained much attention because of its
excellent mechanical characteristics and complex multistage

structure. This section summarizes the biomechanical properties
of the bone matrix and their biological significance and explores
how the composition and structure affect the mechanical
properties of the bone matrix.

Biomechanical properties of the bone matrix and their biological
significance
Obvious mechanical anisotropy and high strength and strong
toughness are two mechanical properties of the bone matrix,
which have attracted extensive attention4,6,14. These character-
istics are the result of a long period of natural evolution and play
crucial roles in current human life activities. Elucidating the
biomechanical properties of the bone matrix will help to deepen
the understanding of the human bone matrix and provide a
reference for the design of bone substitute implants and
scaffolds for bone tissue engineering. The Young’s modulus in
the longitudinal direction of cortical bone is ~15–25 GPa, which is
significantly higher than its transverse Young’s modulus18. This
mechanical property of the bone matrix has attracted wide
attention and has been applied in the design of scaffolds for
bone tissue engineering. For example, Wang19 impregnated
sodium alginate hydrogel into delignified wood and then
immersed it in 300 mmol·L−1 K2HPO4 solution, 500 mmol·L−1

CaCl2 solution, NH3·H2O solution with a pH value of 11 and
phosphate-buffered saline sequentially to sequentially mineralize
HAP in situ to prepare mineralized wood hydrogel composites
with obvious mechanical anisotropy (Fig. 2). It is difficult for
synthetic materials to attain both strength and toughness4,14.
However, as a common natural biomaterial, the bone matrix is
capable of high strength (10–20 GPa) and strong toughness
(2–7 kJ·m−2) simultaneously14. This mechanical characteristic of
the bone matrix provides a perfect reference for the develop-
ment of artificial materials.
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Fig. 1 Schematic representation of the biomechanical properties of the bone matrix and the effects of mechanical stimuli on the bone matrix
components, Col and HA, and bone-related cells, such as mesenchymal stem cells, osteocytes, osteoblasts, osteoclasts
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At the macrostructural level, bones in different parts of the
human body, different positions of the same bone and different
directions at the same position show different mechanical
properties. Rho et al.20 and Marle et al.21 used ultrasonic
technology to study the elastic modulus, shear modulus, Poisson’s
ratio and density of some human bones (including femur, tibia,
humerus, mandible, lumbar spine, and patella). The experimental
results showed that there was no difference in the mechanical
properties of the humerus, proximal tibia and lumbar spine. The
stiffness and strength of cancellous bone among these types of
bones were lower than those of the patella, distal femur and
proximal femur (the cancellous bone of the patella has the highest
value in general). Bonfield and Grynpas22 measured the Young’s
modulus of bovine femur in different directions under dry and wet
conditions. Turner CH23 used acoustic microscopy and nanoin-
dentation to measure and compare the Young’s moduli of
trabecular and cortical bone tissues from a common human
donor. The experimental results showed that the Young’s modulus
of cortical bone in the longitudinal direction was ~40% greater
than the Young’s modulus in the transverse direction. The Young’s
modulus of trabecular bone tissue was slightly higher than the
transverse Young’s modulus of cortical bone but substantially
lower than the longitudinal Young’s modulus of cortical bone.
These findings were consistent for both measurement methods
and suggest that the elasticity of trabecular tissue is within the
range of that of cortical bone tissue. Rho et al.20 used ultrasonic
technology and a microtensile test to determine the Young’s
modulus of a single trabecular bone, and microsamples of cortical
bone were cut into similar sizes to those of a single trabecular
bone. The experimental results showed that the average
trabecular Young’s modulus measured ultrasonically and mechani-
cally was 14.8 GPa and 10.4 GPa, and the average Young’s
modulus of the cortical bone microspecimens measured ultra-
sonically and mechanically was 20.7 GPa and 18.6 GPa. With either
testing technique, the mean trabecular Young’s modulus was
found to be significantly less than that of cortical bone. Barak
et al.24 examined the question of whether the stiffness (Young’s
modulus) of secondary osteonal cortical bone is different under

compression and tension. The test results showed that the tensile
Young’s modulus was slightly but significantly greater than the
compressive Young’s modulus. Spatz et al.25 measured the
Young’s modulus and shear modulus of cortical bone from
mammalian, avian, and staghorn bone using three-point bending.
The experimental results showed that the main determinant for
the mechanical properties was the mineral content. For mamma-
lian bone, the frequency of Haversian systems correlates
negatively with stiffness and resistance to shear.
It has been shown that the mechanical properties of bone vary

at different structural levels. Rho et al.26 described this in detail.
For example, Reilly et al.27 measured and compared the elastic
moduli of human bone and bovine bone specimens by
compression and tensile tests. The experimental results showed
that there was no significant difference between the moduli
determined under the two loading modes. The Young’s modulus
of large tensile cortical specimens has been shown to be in the
14–20 GPa range. Choi et al.28 measured the elastic moduli of the
subchondral, trabecular and cortical bone tissue of human
proximal tibia by a three-point bending test at the microstruc-
tural level. Eight cortical samples of different sizes (h= 100–
1 000 μm) were used to examine the size dependence of the
modulus. The experimental results showed that the average
modulus of subchondral bone specimens was 1.15 GPa, and
those of the trabecular and cortical specimens were 4.59 GPa and
5.44 GPa, respectively. There are significant differences between
the modulus values of bone tissues, which may be mainly due to
the different microstructures of each bone tissue rather than the
different mineral densities. In addition, there is a significant
correlation between modulus and sample size. Although the
modulus value of relatively large samples remains quite constant
(~15 GPa), the modulus value decreases as the sample size
decreases. Rho et al.29 used the nanoindentation method to
study the inherent elastic properties of several microstructural
components of human vertebral trabecular bone and tibial
cortical bone. The experimental results showed that the
measurements of the vertebral trabeculae were made in the
transverse direction, and the average Young’s modulus was
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found to be 13.5 ± 2.0 GPa. The tibial specimens were tested in
the longitudinal direction, yielding moduli of 22.5 ± 1.3 GPa for
the osteons and 25.8 ± 0.7 GPa for the interstitial lamellae. In
addition, Ji and Gao’s experimental results showed that the
elastic properties of bone can be highly anisotropic at the
nanoscale30. The basic building blocks (HA crystals and Col fibrils)
are extremely small, making mechanical testing nearly impos-
sible. Therefore, according to the different levels or structures of
bone materials, it can be supposed that the decomposition of
bone mechanical tests deserves attention.
Organisms in nature have all evolved through a long period of

natural evolution, and under the law of “survival of the fittest”, the
various organs of organisms evolved in a way that allowed
adaptation to their living environments. Bone is an important
organ that provides mechanical support for the human body. In the
process of human evolution, bone has also undergone significant
changes. At present, the mechanical properties of human bone are
closely related to the modes of human activities31. The Young’s
modulus of cortical bone is significantly higher than that of
cancellous bone and has obvious mechanical anisotropy6,20,21. The
main reason for this is that the main roles of cortical bone and
cancellous bone in the human body are different. Cortical bone is
mainly involved in providing mechanical support. The Young’s
modulus of cortical bone in the longitudinal direction is
significantly higher than that in the transverse direction, which
indicates that this bone resists more forces in the longitudinal
direction during human activities. The bone matrix has both high
strength and strong toughness, indicating that bone requires both
high strength to deal with the impact of stress and strong
toughness to resist the fracture and damage caused by deforma-
tion, which corresponds to the role of bone in the human body.
Proteins account for ~50% of the volume of animal endoskeletons
but only 5% of that of nacre, and the Young’s modulus of bone
(10–20 GPa) is significantly less than that of shell (50 GPa)14. Ji and
Gao14 pointed out that this difference might be because bone
experiences more dynamic loads, such as compressive stress, and
larger deformation during the lifetime of animals. Moreover, the
shear modulus of cortical bone is only 5% of the Young’s modulus,
and Spatz et al.25 argued that a lower shear modulus was not only a
prerequisite for the control of crack propagation but also allowed
hollow bones to react smoothly to local impacts, which otherwise
may lead to failure.
The bone matrix has the mechanical properties described

above, which results in high requirements for artificial bone
substitute implants and scaffolds for bone tissue engineering. For
example, implants with low Young’s moduli cannot provide
sufficient mechanical support, but if their Young’s moduli are too
high, the bone near the implant will be resorbed, so the
mechanical properties of the implant should be as close as
possible to those of the human bone matrix32. In addition to
having mechanical properties similar to that of the bone matrix,
the implant should also have a certain mechanical anisotropy.
Wang et al.18 pointed out that the structure and properties related
to anisotropy also played important roles in damage tolerance,
cell guidance and differentiation, and the transmission of
biological factors and nutrients. However, whether bone tissue
engineering scaffolds with similar mechanical properties to those
of the human bone matrix are the best choice for promoting bone
regeneration is still uncertain. In addition, bone tissue engineering
scaffolds must often have pores of different sizes to provide
access and attachment surfaces for cells. How to simultaneously
endow scaffolds with a certain number of pores and suitable
mechanical properties remains to be solved.

Influences of composition and structure on the biomechanics of
the bone matrix
The excellent biomechanical properties of the bone matrix are
determined by its composition and structure. Col has strong

toughness and low strength, while HA has high strength and poor
toughness. The complex multilevel structure of the bone matrix
combines these two components to yield biomechanical char-
acteristics of both toughness and strength. This section will
analyze the biomechanical properties of the bone matrix from two
aspects: composition and structure.

Effect of composition. HA and Col are the main components of
the bone matrix. Without these two components, the bone matrix
would not have such excellent mechanical properties. The
mechanical properties of the bone matrix and its main compo-
nents are shown in Table 1. The biomechanical properties of the
bone matrix change with the diameter distribution, crosslinking
degree, orientation, denaturation degree of Col fibers, as well as
changes in other properties caused by aging. The mechanical
strength of bone can be changed by controlling the crystal size,
microstructure and calcium–phosphorus ratio of HA, while the
mineralization degree of mineralized Col and the mineralization
position of HA can also affect the biomechanical properties of the
bone matrix. This section will analyze the effects of these
components on the biomechanics of the bone matrix from 3
aspects: Col, HA and mineralized Col (Fig. 3).
Collagenous proteins are a major constituent of all extracellular

matrices33. The Col family has at least 28 members, and Ricard-
Blum described it in detail34. The type of Col in the bone matrix is
type I, accounting for ~55%–60% by volume and existing in the
form of fibers. Type I Col has a special triple helix structure, which
consists of two α1 chains and one α2 chain. Col fibers have the
mechanical characteristics of strong toughness and low strength.
The triple helix structure is the key to the strong toughness of
Col35. The special triple helix structure and amino acid sequence of
type I Col are shown in Fig. 4a.
The diameter distribution, cross-linking degree, orientation,

denaturation degree of Col fibers and other changes that occur
with aging have significant impacts on the biomechanical
properties of the bone matrix36,37. The diameters of Col fibers or
fibrils are different in different tissues and organs of the human
body. For example, the diameter of Col fibers in normal tendon
tissue is ~120 nm38, which is twice the diameter of Col fibers in
many other tissues39. The diameter of Col fibers in the extracellular
matrix is ~20 to hundreds of nanometers, and the diameter of
fiber bundles can reach hundreds of micrometers40. The tensile
strength of tissue containing type I Col is related to the diameters
of the fibers and fibrils41,42. Christiansen DL’s experiment showed
that when the strain of Col fiber was less than 20%, the diameter
of Col fiber was positively correlated with its elastic modulus.
When the strain of Col fiber was greater than 20%, there was no
correlation between its diameter and elastic modulus. These
results showed that the transverse aggregation of Col fibrils affects
the mechanical properties of Col fibers when the strain of Col fiber
was less than 20%43. In addition, local tissue lesions, such as
canceration, will significantly change the diameter and cross-
sectional shape of Col fibers, resulting in changes in the
mechanical properties and other physical and chemical properties
of diseased tissues. Therefore, Col abnormalities may be used to
predict the emergence of diseases. At present, some relevant
reports have been published39,44. However, to predict disease

Table 1. Mechanical properties of bone and its main structural
components: Col fiber and calcium phosphate

Stiffness/GPa Toughness (kJ·m−2)

Col fiber 0.1–1 >10

Calcium phosphate 100 <0.1

Bone 10–20 2–7
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emergence through the observation of Col morphology, more in-
depth and detailed research is needed. The crosslinking of Col also
has a certain impact on the mechanical properties of Col and
tissues with Col as the main component45. Thompson and
Czernuszka46 compared the effects of two crosslinking methods
on the mechanical properties of Col: (a) glutaraldehyde and (b) a
combination of dehydrothermal treatment and cyanamide. The
experimental results showed that crosslinking can increase the
elastic modulus of wet Col from ~25–30 MPa to 55-60 MPa but has
little effect on its fracture stress, and the strain to failure is
reduced. Crosslinking reduced the work of fracture of Col.
Crosslinking had the same effect on the elastic modulus, fracture
stress, and strain to failure of dry Col but had no effect on the
work of fracture. Paschalis EP’s experimental results also proved
that Col crosslinks play a pivotal role in the determination of bone
quality and mechanical integrity47. Martin and Ishida48 deter-
mined the effects of Col fiber orientation, porosity, dry/wet density
and mineralization on the tensile strength of bovine cortical bone.
The results showed that the orientation of Col fibers had a
significant effect on the tensile strength of bovine cortical bone
and can be used as a reliable index for predicting the tensile
strength of the bone matrix. The density of the bone matrix,
porosity and mineralization cannot be used to predict the tensile
strength of the bone matrix. Wang et al.49 used a heating model to
study the effect of Col denaturation on the biomechanical
properties of human cadaveric bone. Bone specimens were
heat-treated at different temperatures (37–200 °C) to induce
different degrees of Col degeneration. The degree of Col
degeneration and the mechanical properties of bone were
measured by the selective digestion technique and three-point
bending tests. The results showed that with increasing Col

denaturation, the toughness and strength of bone decreased
significantly, while the elastic modulus of bone was almost
constant, which was unrelated to Col denaturation. These results
showed that the Col network plays an important role in the
toughness of bone but has little effect on the stiffness of bone.
With the aging of the human body, the mechanical properties of
the bone matrix deteriorate. Zioupos et al.50 studied the
mechanical properties (stiffness, strength, and toughness) of
human femoral bone and the changes in the Col properties
(the concentration of stable mature crosslinks, the shrinkage
temperature, and the rate of contraction during isometric heating)
of the bone matrix at different ages (35–92 years old). The results
showed that there was no significant correlation between the
changes in Col in terms of the concentration of mature
(pyridinium and deoxypyridinium) crosslinks and the changes in
age and the mechanical properties of the bone matrix. The
shrinkage temperature decreased with age and was related to the
toughness of the bone matrix. The maximum rate of contraction
was strongly correlated with the three different measures of tissue
toughness but much less correlated with stiffness and strength.
The results reinforced speculation regarding the toughening role
of Col in bone mechanics and suggested that the fragility of aging
bone may be related to Col changes. Banse X’s experimental
results also proved that the properties of the organic matrix in
adult vertebral cancellous bone can be changed, and these
changes affect the mechanical properties of the bone matrix51.
HA accounts for 40%–45% of the volume of the bone matrix

and is a key component for enhancing the mechanical properties
of the bone matrix. The crystal structure of HA can indicate
trabecular bone quality by the identification of crystallite size,
microhardness, microstrain, and ratio of calcium and phosphorus
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in three types of bone: normal, osteopenic, or osteoporotic52.
Through the exploration of the bone microstructure and HA
crystal structure, Rollo et al.52 found that bone density and
mechanical strength can be reflected by the size, microstrain and
calcium–phosphorus ratio of HA crystals. The results showed that
the crystallite size, hardness, calcium–phosphorus ratio, trabecular
number and bone mineral density decreased, and the microstrain
value increased, indicating that the crystal structure of HA in
osteoporotic and osteoporotic bone was more fragile and
damaged52. Moreover, the HA coating also affects the change
and distribution of implant-bone interface stress. Jiang et al.53

studied the effect of HA coating on the stress distribution at the
implant-bone interface and found that the stress distribution near
the interface decreased with increasing HA coating thickness, and
the biomechanical properties of bone improved. However, when
the HA coating thickness was 60–120 μm, the difference in stress
reduction was no longer obvious. The shear strength between the
bone and plasma-sprayed HA coating is affected by the plasma
spray thickness. Yang and Yang54 sprayed Ti6Al4V columns with
HA coatings (HACs) with thicknesses of 50 μm and 200 µm and
implanted them into canine femurs. The push-out testing of the
implant bone interfaces proved that when the HAC thickness was
50 μm, the shear strength was higher. The plasma-sprayed HACs
exhibited compressive residual stresses, and the thicker HACs
exhibited higher residual stresses than the thinner HACs. Based on
these results, some studies have been conducted to try to study
the effects of the size and structure of a single HA crystal on the
resulting mechanical properties. Libonati et al.55 studied the effect
of geometric confinement on the fracture mechanism of the HA
crystals that form the mineralized phase in bone. The experi-
mental results showed that when the height of the bone-
mineralized HA crystals was less than 4.15 nm, the stress

concentration at the tip of the crack disappeared, showing a
strong toughness and large stress-carrying capacity. In addition,
HA nanoparticles can improve the crystallinity, shear resistance
and thermodynamic properties of a polypropylene lactone/
chitosan mixture56. Therefore, the crystal structure and mechanical
properties of HA will be popular research topics in the future.
In the process of mineralization, calcium and phosphorus ions

accumulate in Col fibers, convert into HA, and finally form
mineralized Col fibers57. The mineralization degree of Col fiber has
an important impact on the mechanical properties of Col fiber
(Table 2)58,59. The stress transfer, longitudinal elastic modulus,
transverse elastic modulus, and shear elastic modulus change with
the mineralization degree of Col (as shown in Fig. 4b, c).
Mineralized Col fibril can be represented by a representative
volume element (RVE) composed of n subunits, as shown in Fig.
4d. The elastic modulus of mineralized Col fibers decreases with
an increasing number of the subunits of fiber RVEs. However,
when the mineral volume fraction is low, RVEs with more subunits
can obtain higher elastic moduli by adjusting the distribution of
the Col matrix60. The proline-related Raman band showed an
obvious stress response of the mineralized Col, which was
consistent with the progressive linkage of the Col triple helix
and HA nanocrystal mineralization61. The concentration of calcium
and the phosphorylation degree of Col also affect the mineraliza-
tion of Col and then affect the mechanical properties of the bone
matrix. Niu et al.’s study showed that a low concentration of
calcium was beneficial to Col assembly but inhibited mineral
crystallization, and a high concentration of calcium hindered Col
self-assembly, whereas it benefited mineral crystallization62. Du
et al.’s study showed that the chelating amount of calcium was
improved linearly with an increasing phosphorylation degree of
Col fibrils, which demonstrated that the introduced phosphate
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groups served as new nucleation sites and participated in the
formation of apatite minerals inside the Col fibrils63. In addition,
Dinesh R. Katti and Kalpana S. Katti used molecular dynamics (MD),
steered MD and steered MD simulations to study the load-carrying
behavior of Col in the proximity of HA64,65 and the directional
dependence of the deformation response of Col with respect to
the HA surface66. These research results showed that the interface
between HA and Col affected the overall load–deformation
response of Col; water significantly influenced the load-
deformation response of Col due to Col-water HA interactions;
the mineral influenced interactions between solvated tropocolla-
gen in a HA-tropocollagen system; and the mechanics of Col
pulled in different directions with respect to HA were significantly
different. The mechanical properties of Col fibers with different
mineralization positions, such as Col mineralized outside the fiber
and Col mineralized inside the fiber, also need to be further
studied in in vitro biomineralization.

Effect of structure. The superiority of natural composites to
synthetic engineered materials lies in the fact that their overall
mechanical properties are invariably far better than those of
their individual constituents4,6. In this respect, the key feature of
natural composites is their hierarchical structure consisting of
distinct structural features from the nano- to macrolevel6.
Synthetic materials often have difficulty achieving both strength
and toughness4,14. The reason why cortical bone can maintain its
strength and toughness is dependent upon its unique multilevel
structure4. Bone matrix has a multilevel structure from the
nano- to macrolevel, which can be divided into 7 levels, 9 levels,
and 12 levels according to different classification stan-
dards7,67–69. The 9-level structure of bone proposed by Reznikov
N is shown in Fig. 5a.
Type I Col has a special triple helix structure, which consists of

two α1 chains and one α2 chain. Col molecules are ~1.5 nm in
diameter and 300 nm in length. The electrostatic attraction of the
polar and apolar regions of adjacent Col molecules leads to their
polymerization with each other, followed by head-to-tail apposi-
tion, parallel alignment, and self-assembly to form the supramo-
lecular structures that constitute the Col fibrils. The parallel Col
molecules in a Col fibril are staggered longitudinally by 1/4 of the
molecular length (~67 nm). HA crystals (~50 nm × 50 nm × 2 nm)
are deposited in these gaps70,71 and on the surfaces of Col
fibrils72 to form mineralized Col fibrils. Several mineralized Col
fibrils are combined into bundles by proteoglycans, glycoproteins
and other substances and finally polymerized to form mineralized
Col fibers. The bone lamellae are composed of mineralized Col
fibers and HA. The thicknesses of different types of bone lamellae
are different (3–7 μm), and the Col fiber bundles in a single bone
lamella have a certain arrangement direction. Cortical bone is
mainly composed of osteon and interstitial bone. The osteon is
composed of 4–20 layers of annular bone lamellae around the
Haversian canal. As the basic structural unit, the bone lamellae
are arranged in layers, and the fibers in adjacent bone lamellae
are arranged at a certain angle (such as 30°) or are perpendicular
to each other. The diameters of the Haverard canal and osteon
are ~90 μm and 200 μm, respectively. The Haversian canal is at an

angle of 11°–17° with respect to the long axis of the bone.
Adjacent Haversian canals are connected by the nearly transverse
Volkmann canal. The Harvard canal is also known as the central
canal, in which blood vessels are distributed and connected with
the blood vessels in the Volkmann canal. The blood vessels in
each Haversian canal are connected with each other to form a
network. The interstitial bone lamellae are located between the
osteon and are composed of several layers of bone lamellae
arranged in parallel. They are irregular in shape and have no
Haversian tube or blood vessels. They are the residual of the
previous osteon. The structure between the osteon and interstitial
bone lamella is called the cement line, with a thickness of ~5 μm.
Cement lines are not traversed by Col fibers and represent the
weakest material in bone, which explains the observation that
microcracks tend to follow cement lines rather than crossing over
osteons or interstitial lamellae73. Cortical bone is distributed on
the surface of the respective bone and in the diaphyseal locations
of long bones, where it is thicker at the diaphysis, playing a
protective and supportive role in the human body.
The special multistage structure of the bone matrix gives it a

unique toughening mechanism (as shown in Fig. 5b). Maximilien
EL69 noted that the integrity of the cortical bone structure arose
through a combination of intrinsic toughening mechanisms that
acted on the crack tip and extrinsic toughening mechanisms that
acted on the crack tail. Internal toughening mechanisms operated
at the hierarchical micro- or nanolevels and included the inelastic
deformation of the Col mineralized complex, slipping between
Col fibrils, sacrificial bonds, etc. Extrinsic toughening mechanisms
operated at the micro- and sublevels and mainly included
restrictive microcracks, Col fibril bridging, tether bridging and
crack deflection/torsion. Intrinsic toughness refers to a material’s
inherent ability to resist elastic and plastic deformation, the
material basis of which is the structural features of the material’s
nanoscale hierarchy, and intrinsic toughness acts to mitigate
damage by producing plastic deformation at the crack tip. The
extrinsic toughening mechanism mainly occurred at the crack tail,
which shielded the driving force of crack propagation and
prevented crack propagation. The extrinsic toughening mechan-
ism did not alter the inherent internal toughening properties of
the material; it was exerted through the characteristic structure of
some hierarchical microlevels on the crack path.
In addition, other peculiar structures present in the bone matrix

that play important roles in the maintenance of bone health also
deserve attention, such as in the strain-amplification hypothesis
proposed by Cowin SC74. Tissue-level strains induced by exercise
tend not to exceed 0.2%, while in vitro studies demonstrate that
tissue-level strains of 0.2% are unable to initiate intracellular
signaling, strains capable of inducing intracellular signaling
should be >0.5%, and strains >0.5% may cause damage to bone
tissue75–77. Cowin SC74 considered that whole tissue strains
needed to be substantially amplified to elicit a cellular
biochemical response. Osteocyte processes were tethered to
their canalicular walls by transverse elements that spanned the
pericellular space. Fluid flow through the lacunar-canalicular
porosity created a tension on the tethering elements that
amplified whole-tissue strains by a factor of 10–100 depending
on the loading frequency, producing strains large enough to elicit
biochemical responses in vitro17,77,78. The strain-amplification
model is shown in Fig. 6.

MECHANOBIOLOGY OF THE BONE MATRIX
In providing the necessary mechanical support for the human
body, the bone matrix will also be affected by many factors in its
surrounding environment owing to body movement and other
reasons79–82. Mechanical stimulation is one of the most
important environmental factors. Shuai et al.15 summarized the
induction mechanisms of osteogenesis by physical stimuli,

Table 2. Effects of mineralization degree on the mechanical
properties of Col

Col type Degree of
mineralization

Young’s
modulus/MPa

Maximum
elastic
strain/%

Maximum
elastic
stress/MPa

Pure Col 0 50 35 20

Tendon Col 0.15 400–700 6–8 30–40

Bone Col 0.40–0.45 10 000–20 000 0.5–1.0 100

Biomechanics and mechanobiology of the bone matrix
C Ma et al.

7

Bone Research           (2022) 10:59 



including electrical, magnetic, and mechanical stimuli. Among
them, mechanical stimulation mainly included compressive
stress, tensile stress, and FSS. Shuai et al.15 explained the bone
formation-induced mechanism of mechanical stimulation as
follows: (1) When stimulating bone cells, mechanical stimulation
can activate various signaling pathways and convert extracellular
mechanical signals into corresponding biochemical signals, such
as Wnt receptors, integrins, insulin-like growth factor, G proteins
and calcium ion channels77, thus inducing a series of gene
expressions and promoting osteoblast proliferation, differentia-
tion and apoptosis83,84. (2) Mechanical stimulation can activate
calcium ion channels in the cell membrane, induce the influx of
extracellular calcium ions into the cell and increase the
intracellular calcium ion concentration, thus promoting bone
healing85,86. (3) The pressure wave generated by ultrasound can
enhance the fluid flow in fracture areas and increase the supply
of nutrients and the removal of metabolites, thus promoting the
proliferation and differentiation of osteoblasts and fibroblasts87.
(4) Bone tissue has an abundance of interconnected micro-
channels, and mechanical stress may generate a strain gradient
and cause ion current flow along these microchannels88. The
strain-generated potentials have been measured in bone
samples ex vivo, but their in vivo effects remain to be confirmed
by further research.
In the ordered structure of bone, there is a special porous

network structure formed by the lacuna in the cancellous bone
marrow cavity, bone tube, and bone trabeculae. The porous
network structure of bone is filled with tissue fluid, and a

mechanical load applied to bone will cause a volume change in
these voids and then form hydraulic pressure to promote fluid
flow. The fluid flow generates FSS, and the value of FSS in the
space between the canalicular wall and the osteocyte process is
~0.5–3.0 Pa. In addition, the Col and HA in newly formed osteoid
and those lining the bone surface can also be exposed to fluid
flow. Therefore, studying the effects of FSS on Col, HA, and bone-
related cells, as well as the interactions between them, can be
beneficial for the defect repair and health maintenance of bone
tissue25,30,89. In this section, the effect of FSS on the bone matrix
will be analyzed from four aspects: the mechanobiology of Col,
mechanobiology of HA, mechanobiology of mineralization-related
cells and the relationships between them (Fig. 7).

Mechanobiology of Col
Obviously, in in vitro systems, FSS can influence Col fibril
orientation (Fig. 8a) and self-assembly (Fig. 8d). The influences of
FSS on the arrangement of Col fibrils showed that the orientation
degree of Col fibrils increased with increasing shear rate, and the
Col fibril density increased with an increasing concentration of Col
solution (Fig. 8a)90. Moreover, a 10min action time of FSS was
better for the alignment of Col fibers (Fig. 8c)90. Certainly, the
effect of FSS on Col self-assembly does not follow a trend of the
larger the better. The study of the self-assembly of type I tendon
Col under FSS showed that the axial growth rate of Col fibers was
the highest at the lowest shear rate. In contrast, the greater the
shear rate is, the slower the fibril growth, and the arrangement of
Col fibrils is optimal at a shear rate of 20–80 S−1 (Fig. 8b)91.
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According to the effects of FSS on Col fibril orientation, a three-
dimensional arrangement of Col fibers could be prepared by
microfluidic techniques92. In one such study, five three-layer
models were used to induce different orientation levels of Col
fibrils. The orientation of Col fibrils was shown to increase in
response to shear stress, and the mechanical properties of Col
were also different according to its different orientation degrees58.
By further studying the effects of shear stress on the micro-
structure of Col fibers, it was found that the Col bearing capacity
was dependent upon the conversion of the shear stress between
fibrils or other-oriented tissues93. However, it is not clear whether
shear forces were converted into other forms of force or
attenuated by changing the structure. The direction of Col fibrils
arranged by FSS in vitro is not stable and cannot achieve a highly
ordered arrangement, which is consistent with natural Col fibrils.

Therefore, it is necessary to study the structure of Col after FSS
loading and combine the shear stress with the surface energy
distribution of Col fibrils to study mineralized Col, the structure of
which is close to a naturally highly ordered arrangement.
Osteoblasts are able to secrete Col during the remodeling of

bone, and this process can be regulated by FSS. That is, in addition
to Col fiber arrangement, FSS can also induce Col fibril expression
(Fig. 8e)94,95. In one such study utilizing FSS that occurred for 0.5,
1.0, 2.0, or 4.0 h, shear stresses of 1.2 Pa were used, and the
transcription and secretion of type I Col and the activity of alkaline
phosphatase were shown to increase in response to shear stress.
Under larger stresses, the diameter of Col fibrils is more balanced,
and the density of fibrils is lower. At lower stresses, the size
distribution of Col fibrils is wider96. Overall, Col fibrils have good
mechanobiology, which, along with its specific orientation and
mechanical properties, can be obtained by controlling the size,
direction and loading mode of FSS.

Mechanobiology of HA
Similarly, HA is an important inorganic matrix in bone and is
associated with the formation and growth of crystals during the
biomineralization process of bone. As a typical form of stress in
bone, FSS can affect the entire crystallization process of HA.
A biomineralization study found that in the formation process

of HA crystals, the first step was the formation of amorphous
calcium phosphate (ACP) precursors, and then the ACP precursor
transformed into HA crystals accompanied by sustained calcium
and orthophosphate ion release97–99. Therefore, the effects of FSS
on the formation and growth process of ACP and HA are of great
significance for biomineralization. Lee et al.100 and Park et al.101

showed that shear stress can induce the crystallization of
amorphous materials, improve crystallinity, and improve the
mechanical properties of nanocrystalline materials. Furthermore,
different sizes and load times of shear stress application are critical
factors for crystallization102. The influence of shear stress on
crystallization is also studied by means of molecular dynamics
simulations and subsequent cluster analyses. Ling et al. showed
that the high-molecular-weight components in the blends
could act as a template for crystallization under shear stress, and
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FSS could induce low-molecular-weight polyethylenes to form
different crystal precursor structures103.
In the ACP crystallization process, the effects of shear stress on

the conversion of ACP into HA crystals and the structure of HA
crystals were further investigated. Since the expansion of the
crystal region requires the consumption of peripheral calcium ions
and orthophosphate ions and releases hydrated protons, the
mechanical strength of the inner region is decreased. Under
the action of FSS, the initial particle digestion is accelerated, and
the microcrystals produced by the crystallization at multiple sites
cause the calcium phosphate to precipitate quickly104. Recently,
our group found that low shear stresses (≤1.0 Pa) favored the
transformation of ACP crystals and accelerated the formation of
ordered calcium-deficient HA structures. The resulting crystal
structure was longer and straight and had an orientation trend.
However, high shear stresses (>1.0 Pa) were ineffective, and the
resulting calcium-deficient HA structure was impaired (Fig. 9a–c).
Moreover, bioactivity evaluation showed that the longer, straight

and aligned crystals had better cell compatibility and positive
effects on the mechanical properties and biological properties12.
In addition, FSS can inhibit the emergence of large clusters and
promote the intrafiber mineralization of HA (Fig. 9d, e)13. In
summary, the results revealed two effects of shear stress on the
crystallization process. On the one hand, shear stress could
promote the formation of separated crystallites and suppress the
appearance of large clusters. On the other hand, shear stress could
induce microcrystalline growth and orientation along a certain
direction105. However, HA crystals are mainly presented in the
form of lamellar structures in native bone. Under the action of FSS,
how to obtain lamellar HA crystals deserves in-depth studies.

Mechanobiology of mineralization-related cells
Bone tissue comprises several cell types, including precursor cells,
osteoclasts, osteoblasts, osteocytes and bone-lining cells. In
addition, the modeling and remodeling processes of bone are
also accompanied by angiogenesis and neurogenesis106. All the
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mineralization-related cells involved in the modeling and remo-
deling of bone are able to significantly respond to FSS107,108. The
effects of FSS on mineralization-related cells are mainly reflected
in cell proliferation, differentiation, signal expression and signaling
pathways109,110. Due to the variety of cell secretions and the
complexity of signal pathways, many studies have proved the
complex mechanobiology of mineralization-related cells under
FSS111–114. Correspondingly, different sizes, times and loading
methods of FSS will have different effects on cell behavior115–117.
Because of the substantial role of FSS, numerous studies have

focused on the influences of FSS on increasing the proliferation
and differentiation of mineralization-related cells111. FSS pro-
moted the differentiation of human mesenchymal stem cells into
osteoblasts112–115. Li et al.116 and Sikavitsas et al.118 cultured
osteoblasts using a three-dimensional perfusion bioreactor and
found that the mineralized matrix deposition of bone marrow
stromal osteoblasts increased with increasing FSS. Further studies
have shown that FSS can coincrease the differentiation of
osteoblasts with the extracellular matrix119, rearrange the orienta-
tion of osteoblasts and promote the expression of growth factors
as well as ultimately enhance the differentiation ability of bone120.
Furthermore, the effects of shear loading methods on the
proliferation of cells were investigated. Multidirectional FSS could
inhibit osteoclast activity, maintain osteoblast function and
increase osteoblast alkaline phosphatase activity121. Periodic FSS
is more effective in promoting osteoblast proliferation and the
phosphorylation of extracellular signal-regulated kinase-5 (ERK5)
in cells than continuous FSS122.
Because the process of Col mineralization is regulated by many

growth factors, significant changes in signal expression and
signaling pathways have also been observed after exposure to
shear stress123–126. In previous studies, when FSS was applied to
osteoblasts, it induced higher signal expressions of prostaglandin
E2, transforming growth factor-β, inositol trisphosphate, cyclic
adenosine monophosphate (cAMP), nitric oxide (NO) and so on
within a certain range112,127–129. A study utilized a flow that
occurred for 5, 30, or 120min every other day for 20 days, shear
stresses of 0.16 Pa were used, and osteopontin and bone
sialoprotein expression were shown to increase in response to
shear stress113. The cyclooxygenase-2 (COX-2) mRNA expression
levels were shown to improve when osteoblastic differentiation

was observed at a higher and longer action time of FSS; in
contrast, the receptor activator of nuclear factor kappa B ligand
(RANKL)/osteoprotegerin (OPG) mRNA expression levels were
shown to decrease114. One of these studies also showed that
the effects of cyclic FSS on OPG and RANKL protein expression in
osteoblasts were better than those of continuous FSS130. Signaling
pathways and signaling molecules are closely related to miner-
alization131. In addition, FSS can also be involved in the inhibition
of the tumor necrosis factor-α-induced apoptosis of cells through
the regulation of the ERK5-AKT-forkhead Box O 3a (FoxO3a)-Bim/
Fas ligand signaling pathway (Fig. 10a)132. With the thorough
study of signaling pathways, scientists have studied the effects of
different loading methods on cell differentiation, proliferation,
metabolism signal transduction and signaling expression. Cyclic
strain could enhance the matrix mineralization of adult human
mesenchymal stem cells via the extracellular signal-regulated
kinase signaling pathway and upregulate bone morphogenetic
protein-2 expression through mitogen-activated protein (MAP)
kinase and COX-2/PGE2 signaling pathways in human periodontal
ligament cells133,134. Specifically, some researchers found that fluid
shear-induced intracellular calcium transients played an important
role in the mechanical transmission of osteoblasts. First, FSS
induced the depolarization of the membrane and then transiently
increased intracellular calcium ([Ca2+]i) in osteoblasts by activating
tension-sensitive ion channels and voltage-sensitive Ca2+ chan-
nels, ultimately promoting cell calcification135. In addition to the
expression of signaling molecules and signaling pathways, FSS can
also promote the uptake of polystyrene nanoparticles into cells,
and the uptake amount reached a maximum when the shear
stress was 0.05 Pa and then decreased with increasing shear
stress136,137. Similarly, mesenchymal stem cells were able to
infiltrate into an electrospun poly(lactic-co-glycolic acid) scaffold
better under FSS138.
In addition, cell junctions also play important roles in cell

communication, which can be affected by FSS. Gap junctions are
found in all kinds of bone-related cells, especially in osteoblasts
and osteoclasts139. Osteoblasts and osteoclasts express a variety of
connexins, including Cx40, Cx43, Cx45, Cx46, and Cx37139. Cx43 is
a highly expressed gap junction protein in bone. The expression of
Cx43 protein in MLO-Y4 cells is regulated by fluid stress
stimulus140–142. Alford AI’s study showed that the phosphoserine
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content of Cx43 in MLO-Y4 cells exposed to oscillating flow for 1 h
increased approximately twice as much as that in MLO-Y4 cells
without flow treatment142. Primary cilia have been demonstrated
to participate in osteocyte mechanotransduction both in vitro and
in vivo143. The research of Malone AMD et al. showed that primary
cilia influenced osteocyte cellular responses to external shear
stress by regulating the intracellular cAMP levels and extracellular
calcium entry independent of intracellular calcium signals144,145.
In summary, FSS can directly or indirectly affect the expression,

function and distribution of connexins on cell surfaces and also
affect the synthesis, metabolism and release changes of growth
factors, thus affecting the biological behavior of effector cells.
Mineralization-related cell behavior influenced by an FSS environ-
ment is shown in Fig. 10b. However, how chemical signals affect
mechanical sensitivity is unclear, and the mechanism by which
high levels of FSS inhibit cells has not yet been resolved.

Effects of mechanical stimulation on the interactions between the
bone matrix and cells
Bone, as a compound formed by the ordered arrangement of Col
and HA, in addition to the effects of FSS on Col and HA,
respectively, is also affected by the interactions between cells, Col
fibrils and HA crystals146,147. Many researchers have suggested
that cells are the driving force behind matrix anisotropy and can
modulate the synthesis and degradation of Col fibers under
mechanical stress148–150. Furthermore, there is another mechan-
ism, that of the orientation of Col fibrils, which can be regulated by
mechanical stress and subsequently induce the orientation,
proliferation and signal transmission of cells151. The oriented
mineralized Col fibrils also play an important role in tissue
mineralization. Our previous study demonstrated that mechanical
strain combined with an HA/Col composite could obviously

induce the differentiation of mesenchymal stem cells into
osteoblasts, which had a better effect than mechanical strain or
HA/Col composite treatment alone152,153. Researchers used the
simple technique of spin coating to produce highly aligned arrays
of Col fibers, and then by a simple modification method produced
orthogonal Col lamellae, which are very common in loaded-
bearing tissues. The results of cultured corneal fibroblasts with
regard to these aligned Col fibers showed that cells grew along
the orientation of Col fibrils (Fig. 11a–l)154. Similarly, the neatly
arranged Col matrix contributed to the differentiation of both
mesenchymal stem cells and precursor cells in multiple directions
and then guided the process of matrix mineralization and the
morphogenesis of anisotropic tissues92. Furthermore, Kemeny
et al. showed that when culturing cells on aligned Col fibers, a
variety of cell behaviors were carried out along the orientated Col
fibrils, such as the migration, growth and differentiation of cells as
well as the expression of signal molecules155.
Moreover, the nucleation and growth of HA crystals preferen-

tially oriented parallel to the orientation direction of the oriented
Col (Fig. 11m, n)156,157. Owing to the calcium-phosphorus along
the charged side of Col fibril chains that nucleated, crystallized
and orientated, the oriented Col fibrils could help the HA obtain a
highly oriented and homogeneous crystal structure158,159. The HA
crystal c-axis aligned with the long axis of the Col fibrils, which is
the same as the Col fibril and HA crystal arrangement in native-like
bone160. The mineralization of HA on amphiphilic polypeptide
self-assembled nanofibers also induced crystal growth along
the long axis of the fibrils63. The self-assembly of Col fibrils
arranged in a more ordered manner could change calcium
phosphate mineralization, nucleation and growth, which is a
major step for in vitro biomimetic preparation64. Furthermore, in
the orientation of Col fibrils in different directions, the interaction
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between Col and HA was significantly different for the orientation
dependence of Col mechanics65. The conversion of ACP, the
secretion of Col fibrils and their orientation are better in an FSS
environment. Correspondingly, regarding how HA affects the
structure and properties of Col, some studies have shown that HA
can improve the mineralized Col complex toughness and
influence the deformation behavior of Col by affecting the
connection between Col molecules and water57,58,161,162. In
addition, some studies found that a nanointerface arrangement
could enhance the mechanical strength of Col/HA mineralized
materials163. By stretching Col in the vicinity of different crystal
surfaces of HA, the orientation dependence of Col was different164.

SUMMARY AND OUTLOOK
This paper summarized the biomechanical properties of the bone
matrix, discussed the biological significance of the mechanical
properties of the bone matrix, analyzed the components and
structural basis of the bone matrix with regard to these
mechanical properties, and studied the effects of mechanical
stimulation, especially FSS, on the components of the bone
matrix, cells and their interactions. The bone matrix exhibits both
high strength and strong toughness. There are obvious mechan-
ical differences between cortical bone and cancellous bone, but
the mechanical differences between cortical bone or cancellous
bone in various parts of the human body are not obvious. Cortical
bone has obvious mechanical anisotropy, while cancellous bone
does not. The mechanical properties of the bone matrix are
related to its function in the human body. For example, the
mechanical properties of cortical bone, which undertakes the
main mechanical support function, are significantly stronger than
those of cancellous bone. The biomechanical properties of the
bone matrix change with the diameter distribution, crosslinking
degree, orientation, denaturation and aging degree of Col fibers.
The crystal size, microstrain and calcium–phosphorus ratio of HA

have obvious effects on the density and mechanical strength of
bone. The mineralization degree of Col and the mineralization
position of HA can also affect the biomechanical properties of the
bone matrix. The effect of FSS on Col is mainly manifested in the
directional arrangement and self-assembly of Col fibers. The effect
of FSS on HA is mainly manifested in promoting the formation of
separated crystallites, suppressing the appearance of large
clusters as well as inducing microcrystalline growth and orienta-
tion in a certain direction. The effects of FSS on bone-related cells
are mainly characterized by cell proliferation, differentiation,
signaling pathways and signal expression. The effect of FSS on the
interactions between these components is mainly reflected in the
fact that while FSS promotes the directional arrangement of Col
fibers, it leads to the directional crystal growth of HA along the
same direction of Col fiber orientation. Moreover, a series of cell
growth behaviors on directional mineralized Col fibers also
proceed along the direction of Col fiber orientation, such as cell
migration, growth and differentiation and the expression of
signaling molecules.
Therefore, the following points deserve attention in future

research:

1. Most of the traditional methods for testing the mechanical
properties of the bone matrix are destructive, which will
cause damage to human bones and are not suitable for
clinical use. It is necessary to improve the accuracy of the
existing nondestructive testing methods and develop new
nondestructive bone testing methods.

2. The effects of the micro-/nanostructure of HA on the
mechanical properties of the bone matrix need to be further
studied, such as the ratio of HA to Col, the crystallization
position of HA on Col fibers (in or out of fibers), and the
crystallization degree and crystal structure of apatite.

3. Diseases often cause a series of changes in the composition
and structure of the bone matrix, which in turn lead to
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changes in the mechanical properties of the bone matrix.
How to detect, diagnose and treat bone tissue diseases by
observing the changes in the composition and structure of
the bone matrix and the overall mechanical properties of
the bone matrix needs to be further studied.

4. Previous studies have given more attention to the effects
of the mechanical environment on bone-related cells. The
mechanisms of the effects of the mechanical environment
on the bone matrix have not received due attention,
and equal attention should be given to the regulation of
the bone matrix by the mechanical environment in future
studies.

5. More attention should be given to the dynamic regulation
of the mechanical environment on bone-related cells and
bone matrix; that is, mechanical stimulation can regulate
not only the secretion of the extracellular matrix by
affecting the function of bone-related cells but also the
biological functions of cells by directly changing the
microstructure and performance of the bone matrix.

6. When investigating the mechanobiological response of
the bone matrix, consideration should be given to how to
construct bioactive bone repair materials using bioreac-
tors in vitro in the fields of bone tissue engineering and
regenerative medicine.
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