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Computer vision-aided bioprinting for bone research
Changxi Liu1, Liqiang Wang1✉, Weijie Lu1, Jia Liu2, Chengliang Yang2, Chunhai Fan3, Qian Li3 and Yujin Tang2✉

Bioprinting is an emerging additive manufacturing technology that has enormous potential in bone implantation and repair. The
insufficient accuracy of the shape of bioprinted parts is a primary clinical barrier that prevents widespread utilization of bioprinting,
especially for bone design with high-resolution requirements. During the last five years, the use of computer vision for process
control has been widely practiced in the manufacturing field. Computer vision can improve the performance of bioprinting for
bone research with respect to various aspects, including accuracy, resolution, and cell survival rate. Hence, computer vision plays a
substantial role in addressing the current defect problem in bioprinting for bone research. In this review, recent advances in the
application of computer vision in bioprinting for bone research are summarized and categorized into three groups based on
different defect types: bone scaffold process control, deep learning, and cell viability models. The collection of printing parameters,
data processing, and feedback of bioprinting information, which ultimately improves printing capabilities, are further discussed. We
envision that computer vision may offer opportunities to accelerate bioprinting development and provide a new perception for
bone research.
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INTRODUCTION
Bone tissue engineering is an advanced science that aims to
accelerate medical transformation and shorten the distance
between scientific research and clinical practice.1,2 A critical
challenge for bone tissue engineering is to produce three-
dimensional (3D) vascularized cellular constructs precisely and
repeatedly, with clinically relevant properties such as size, shape
and structural integrity.3 To address this challenge, bioprinting has
provided new perspectives and has shown great promise.
Bioprinting originates from a synthetic human bladder scaffold

with patient cells fabricated by Anthony Atala’s team, but this
explanation of the onset of bioprinting is controversial since the
employed method utilizes a traditional mold manufacturing
process.4 Bioprinting has been developing rapidly with contributions
from Tom Boland,5 Garbor Forgacs,6 and Douglas Chisey’s team in
2003.7 Later, Brian Derby, Doug Chrisey, and Vladimir Mironov
defined bioprinting as the utilization of material transfer processes
to pattern and assemble biologically relevant materials (such as
molecules, cells, tissues, and biodegradable biomaterials) with a
prescribed organization to accomplish one or more biological
functions.8 The prime purpose of bioprinting is to achieve organ
transplantation and organ regeneration,9 and this purpose has
expanded to the exploration of highly biomimetic and reliable
in vitro models in high-throughput experiments.10 To date,
researchers have successfully achieved bioprinting of a human
heart.11 However, more investigations are required for bioprinting
bone scaffolds and cartilage,12,13 and the repair of complex organs
needs further experimentation.14

Bone is among the most commonly transplanted solid tissues,15

and thus significant efforts have focused on bone tissue
biofabrication. As a powerful biofabrication tool, bioprinting has

shown clinical potential in the bone research field, with
advantages including high specificity, high precision, and low
cost, which are consistent with the characteristics of additive
manufacturing (AM).16,17 Aided by computer vision, this method
can produce bioprinted scaffolds or bioengineered grafts with
multiple types of cells and biomaterials, with precise control over
shape, size and spatial placement, which would greatly contribute
to bone implantation. Computer vision is a simulation of biological
vision, and its main task is to identify objects and determine the
suitable orientation to achieve rapid positioning, object size
measurements, defect detection, and object sorting.18

The objective of this review is to discuss recent computer
vision-aided bioprinting for bone research. The second chapter
mainly introduces the development of bioprinting and computer
vision. The third, fourth and fifth chapters mainly present bone
scaffold trajectory correction, bone defect detection, and cell
viability models in bioprinting during the last five years.

BIOPRINTING AND COMPUTER VISION
Bioprinting with acellular and cell-laden bioinks can be categor-
ized into two groups: acellular bioprinting and cell-laden
bioprinting. For acellular bioprinting, the mechanical properties
of materials, such as high toughness and low sliding friction, are
required immediately. Xu et al.19 summarized recent high-strength
and elastic bioinks with various elaborate structures (double-
network and single network) and nanocomposite bioinks that
have excellent mechanical properties and stability. In addition, a
biocompatibility test is required due to cell reinjection and cell
culture for acellular bioprinting. In cell-laden bioprinting, approxi-
mately (5–40) × 106 cells per mL cells are typically added to the
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bioink. Bioink provides an environment for cell survival and
growth in printing, and it also supplies strong enough mechanical
support for the overall structure.20 For cell-laden bioprinting, the
final cell viability is as important as the mechanical properties in
acellular bioprinting.
Regarding the printing method, bioprinting can be generally

divided into four types, i.e., inkjet-based printing, laser-based
bioprinting, extrusion-based bioprinting, and stereolithography-
based bioprinting.21 A summary of these bioprinting methods and
their related pros and cons are presented in Table 1. Extrusion-
based bioprinting is currently the most widely used method in the
bone research field. In this method, a mechanical force is
generated by the rotation of a screw or an air pump connected
to an extrusion cylinder. Through this mechanical force, the bioink
is smoothly extruded from the extrusion cylinder. In the bone
printing field, extrusion-based bioprinting has many advantages
over other bioprinting methods and is currently considered the
most suitable method for printing human cartilage and bone
scaffolds due to its high-throughput performance and large
volume. In addition, extrusion-based bioprinting can produce
high-viscosity bioinks (~600 kPa·s), with cell densities reaching
those found in natural tissue.21

Currently, extrusion-based bioprinting has been one of the most
widely used bioprinting methods in the bone scaffold printing
field; however, its low printing resolution (~100 μm)22 remains one
limitation. Resolution is a significant parameter that influences the
final printing performance of bone scaffolds. For instance, an
investigation of the effect of 3D bioprinting on the differentiation
and mineral precipitation of bone cells compared to the film area
indicated improved results under 3D conditions.23 This suggests
that bone structure needs higher requirements for lattice structure
accuracy and printing process resolution since different morphol-
ogies affect osteoblast precursor cell differentiation and mineral
precipitation. To improve the bone structure accuracy and
increase the resolution, reducing the size of the nozzle diameter
was proposed, but this led to increased shear stress values in the
nozzle head, which may damage cells.24 Therefore, depending on
the choice of the nozzle diameter, the final cell viability will vary
from 45% to 95%.25

Computer vision provides new insights to address the problems
of low accuracy and low resolution in extrusion-based bioprinting
for bone research. During the past ten years, computer vision has
developed from simple binary image processing to large-volume
data and high-resolution image processing thanks to the
development of artificial intelligence, microelectronics, big data,
and deep learning.26 In addition to image processing, computer
vision also includes the collection and processing of other
information during the manufacturing process. Figure 1A illus-
trates the computer vision process, which uses sensors (such as
high-speed cameras, thermocouples, pressure sensors and micro-
phones) to collect the information of the entire printing process
(such as pictures, temperature, pressure, and sound), which can be

stored in a computer. Consequently, the computer is used to
calculate and analyze the defects created during the printing
process, and then this information can be fed back to the
bioprinting algorithm to realize process control. Figure 1B shows
how computer vision adds control to different parts of the
bioprinting process to achieve trajectory correction, width
detection, deep learning, and cell viability detection.
Since most AM techniques have printing defects, including

extrusion-based bioprinting, it is necessary to use computer vision
and process control to repair defects and correct errors, including
biomedical areas,27,28 aerospace,29 tooling,30 and metals.31 For
instance, it has been observed that bone scaffold failure is often
accompanied by local stress concentrations during porous
scaffold printing. The utilization of computer vision to collect
stress data following the optimization and improvement of the
stress concentration state can lead to enhanced scaffold quality.32

A nondestructive evaluation by computer vision can be accom-
plished by collecting a large number of pictures of defects during
the printing process.33

Furthermore, deep learning has been demonstrated to be a
useful method for a wide range of computer vision image tasks.
In particular, convolutional neural networks (CNNs) can
segment a bone image region of interest. For instance, input
radiographs can be standardized and preprocessed, and bone
age assessments can be performed.34 Since CNNs can auto-
matically recognize the hierarchy of discriminative features by
training a set of labeled bone images, this technique can also
identify various defects and porosities in the interlayer
boundaries during printing,35 which play a vital role in bone
printing performance analysis.

BONE PRINTING PROCESS CONTROL
Extrusion-based bioprinting faces the limitation of low printing
resolution. The importance of bioprinting resolution has been well
explained by Lee et al.,11 who also described how to precisely
control the accuracy of bioprinting and improve the resolution.
These authors suggested that high-resolution guarantees success-
ful bioprinting of heart tissue. McBeth et al.23 studied the three-
dimensional structure of the differentiation and precipitation of
osteoblast precursor cells and observed better differentiation of
cells and a larger number of mineral deposits in the lattice
structure area than in the film structure area (Fig. 2a–c). Lee and
McBeth’s research studies11,23 both show that the accuracy and
resolution of bioprinting have a substantial impact on the
feasibility and quality of printing components, which also play a
significant role in bone cell growth, bone cell division, and bone
cell differentiation. Resolution is also a very important perfor-
mance parameter in organ-on-a-chip platforms; this new technol-
ogy can provide high-throughput screening of candidate drugs
against toxicity, with a particular emphasis on bone marrow-on-a-
chip.36 The specific content of organ-on-a-chip platforms will be

Table 1. Bioprinting technologies and their pros and cons according to ASTM standard F2792107

Manufacture Process Technology Benefits Limitations Refs

Inkjet-based printing Materials
jetting

Inject printing High 2D resolution Lacks the Z direction 108–114

Binder jetting Powder bed and inkjet head
printing (3D powder)

High 2D resolution Low cell compatible 115–121

Laser-based
bioprinting

Powder
bed fusion

Selective laser sintering Mechanical strength Faster and higher
resolution than other powder methods

Low cell compatible 122–128

Extrusion-based
bioprinting

Material
extrusion

Fused deposition
modeling (FDM)

Ultrahigh throughput Thermoplastic materials only
and low resolution

129–133

direct write Variety of materials Low resolution and accuracy 134–140

Stereolithography-
based bioprinting

VAT
polymerization

Stereo lithography (SLA) 3D resolution high accuracy Cell photo-induced damage 141–147
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discussed later. Miri et al. 37 suggested that the success criterion
for fabricating organ-on-a-chip platforms is the structural fidelity
of the bioprinted microtissues, partly determined by the minimum
feature size known as the bioprinting resolution. For these
reasons, solving the low-resolution problem is an urgent issue in
bone bioprinting.38,39

A major limitation of extrusion-based bioprinting is the lack of
sensing and direct process control that has resulted in lower
resolution than bioprinting under ideal conditions. Two different
frames are required when considering motion control for bioprint-
ing, i.e., the machine and extruder axis frame and the material
deposition frame. There is a reference trajectory for the joint space
frame in bioprinting, which is defined as a set of points for the axes
to follow to trace the as-designed shape.40 To transform bone

bioprinting into a clinical transplantation application platform, an
improvement of the printing resolution is necessary, which requires
utilization of computer vision to measure and correct errors during
the bone bioprinting process.

Measurement and correction trajectory of a bone scaffold
Generally, trajectory errors can affect the resolution of bone scaffold
bioprinting. More trajectory errors lead to lower accuracy and
resolution in bioprinting. Therefore, reducing trajectory errors is the
primary task to improve the resolution of bone scaffold bioprinting.
To improve accuracy and resolution, researchers have developed

multiple algorithms to track and correct scaffold trajectories. The
use of a parametric interpolation technique to optimize the
machining process, which is a traditional and effective method,
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was first mentioned in the Computerized Numerical Control
Machine machining field.41 On the basis of the parametric
interpolation technique, the correction method adopts the
chord-tracking algorithm (CTA) and predictor-corrector interpolator
(PCI) algorithms. First, data acquisition is performed by laser sensor
scanning to obtain the 3D point cloud data of the material
structure. Next, the 3D point cloud data are analyzed by CTA and
PCI on the actual trajectory and reference trajectory to obtain a
modified trajectory, and then the test is executed according to the
modified trajectory. However, early investigations only identified
and analyzed the errors without correcting them, which means
that the remaining errors are still present in the entire bone
scaffold. For instance, Duan et al.22 discovered and evaluated the
errors in the printed rectilinear lattice structure and for the first
time measured the difference in printing accuracy between the
channel dimensions of the material part and the reference part,
which used the percentage of the overlap of two parts to indicate
the error size. Later, Hockaday’s team42 calculated the three-
dimensional errors between the geometry of valve conduits and

the original stereolithography (STL) model to assess the external
geometric fidelity.
Armstrong et al.40 measured the two-dimensional trajectory of

the repeated bending of bone scaffolds with different degrees
and performed multiple corrections during the bioprinting
process. The whole trajectory measurement and correction
method is illustrated in Fig. 1a. First, the bone scaffold followed
the reference trajectory without correction. Then, the bone
scaffold shape of the component was scanned to obtain 3D point
cloud data using a laser sensor.43 Next, the bone scaffold
trajectory errors were calculated to obtain a new modified
reference trajectory. Finally, the material was printed according
to the new modified reference trajectory, and the bone scaffold
trajectory errors were measured again.44

Bone scaffold trajectory correction can be accomplished with the
assistance of MATLAB45,46 or Python47,48 software. In this regard, the
actual bone scaffold trajectory and the reference trajectory
coordinates should be put into the same coordinate system. Then,
actual bone scaffold trajectory interpolation processing should be
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performed so that the actual bone scaffold trajectory will have the
same vector size as the reference trajectory. Next, a recognized
error correction method, introduced by Bandy et al.,44 is utilized and
the error vector between the actual bone scaffold trajectory and the
reference trajectory is identified. Then, the mirroring method is
used to modify the reference trajectory so that the modified
reference trajectory of the bone scaffold will have the error vector
correction, as shown in Fig. 2d.
This series of experiments has led to several conclusions:

1. The error of the bone scaffold trajectory whose shape is
close to a straight line is negligible, less than 0.05 mm, but
the error at each bend is significant, greater than 0.45 mm
(Fig. 2e).

2. The error range depends on the bone scaffold structure size.
A smaller print component leads to a higher error range, and
a larger print size corresponds to a smaller error range.

3. The effect of the error correction function is different when
using two norm and infinity-norm minimization to measure
the actual bone scaffold trajectory and reference trajectory;
the norm scheme is a mathematical concept used to describe
length. The specific results are shown in Table 2.

4. The error decreases as the number of iterations increases, and
the error drops to an acceptable range after the third
generation (Fig. 2f).

In another study, trajectory measurements and corrections were
performed along with simultaneous adjustment and correction of
the bone scaffold width via a method similar to that mentioned
above.49 The final bone scaffold trajectory error and bone scaffold
width error were reduced to an acceptable range (except for the
end part). Additionally, the bone scaffold width control problem
affects the bioprinting resolution. In the next sections, the bone
scaffold width will be further analyzed.
In general, there are some trajectory offset problems in the

bioprinting process of bone scaffolds, and these trajectory offset
errors will reduce the resolution of bone scaffolds without correction.
To improve the accuracy of bone scaffold bioprinting, it is necessary
to introduce computer vision to assist in the collection of the errors
between the bone scaffold trajectory and reference trajectory; this
can be accomplished by using a laser sensor and an algorithm to
acquire a new trajectory to eliminate the errors.

Measurement and correction of the bone scaffold width
For bone implantation, bioink can be directly extruded from the
extrusion nozzle during extrusion-based bioprinting due to the
force applied by the external air pump or the mechanical force by
screw rotation. The extrusion process affects the shape, accuracy,
and resolution of the bone scaffold. The pressure of the extrusion
nozzle head is a vital bioprinting parameter for bone implantation,
and the printed spatial resolution of the bone scaffold changes
with fluctuations in the extrusion nozzle head pressure. Most
importantly, if the extrusion nozzle head pressure changes too
severely and exceeds the tolerance range of bioink, then the bone
scaffold will crash during the bioprinting process.20 Bellhouse50

suggested that the whole geometry of the aortic valve is the key
factor to ensure blood flow in tissue engineering. Additionally,
Modenesi et al.51 found that coronary flow was affected by the
geometry of the aortic valve in bioprinting. A previous study on
bone replacement implant manufacture by selective laser melting

(SLM) was carried out by Egan et al.,52 who explored the effect of
various energy inputs (33%, 66%, 100%) during the printing
process on the resultant mechanical properties. Furthermore, Egan
et al.53 set three test bone implantation types, namely, (1) control
samples, (2) an unintentionally defective sample, and (3)
intentionally defective samples, to identify defective layers within
the L-PBF process. These investigations provided a new vision for
the in situ detection of the printing process.
The restricted application of bioprinting for bone implantation

is related to its low resolution in the spatial material structure.
An accurate scaffold width is momentous for in vivo investiga-
tions, such as in enzymatically cross-linkable materials,54 neuron
regeneration and connection,55 and cell delivery.56 This example
suggests why precise control of the bone scaffold width plays a
vital role in macroscopic organ function as well as in microscopic
cell differentiation and growth.
Bone scaffold width is a main factor that affects the

resolution of bioprinting; however, to date, measurement and
correction studies of bone scaffold widths have been lacking in
bioprinting research. The main reason for low resolution is
related to the absence of width control of the bone scaffold,
which can lead to the overlap of two direction lines, undesirable
coverage of designed pores, and overlap of corners. Computer
vision not only solves the process control problem for extrusion
nozzles but also corrects errors and predicts possible defects.
Computer vision shows great promise in the collection of input
information, and the establishment of the mapping relationship
between input information and output components in both
welding and AM seems to be a promising scheme to be
followed in bioprinting.
The bone scaffold width is affected by machine parameters

and material design. Usually, some specific polymers are
designed in the bioink to ensure the structural strength and
the cross-linking between the polymers and polymer functional
groups; unfortunately, this will affect the bone scaffold width. In
particular, some specially designed bone scaffolds have shape
memory features that change their appearance under the
stimulation of different external environments; this process is
called 4D printing.57 The bone scaffold ingredient is constant
during 4D printing; hence, the bone scaffold width can be
altered just by changing the print parameters (Fig. 3a–c). Some
scholars use the bioink flow model to predict the bone scaffold
linewidth under different nozzle moving speed conditions.58

However, this flow model can only predict the overall bone
scaffold line width. As a consequence, the performance of the
flow model is unacceptable during actual bioprinting, for
instance, in the case of bone scaffold linewidth fluctuations
caused by the printing pattern.
To mitigate the limitations of the flow model, the correction

process can be divided into a measurement part and a
correction part, which compensates for the defects of the flow
model. Even under the same machine parameters and material
parameter conditions, the different pattern shapes can affect
the bone scaffold line width. Hence, the measurement part is
required to collect the bioink line width by using a camera or
laser sensor of different pattern shapes during the printing
process. The correction part modifies the bone scaffold line
width by altering the mechanical parameters. Additionally,
the printing axis moving speed and the nozzle head pressure

Table 2. The results of the two norm schemes to correct the bone scaffold path40

Reference Two norm Infinity-norm

Origin print Corrected print Percent reduction Origin print Corrected print Percent reduction

Scaffold 35.5 24.2 32% 0.9 0.5 49%
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are two main factors affecting bone scaffold width, as shown in
Fig. 3d. Experimental results have shown that very fast
movement of the extrusion nozzle in the bioprinting process
can lead to instability. For this reason, a preferred approach is to
adjust the nozzle pressure changes to control the bone scaffold
width. The correction part adjusts the nozzle pressure to
achieve the measurement and correction of the bone scaffold
width based on the error information collected from the
measurement part,59 as illustrated in Fig. 3e, f.
Width control of bone scaffolds is also an important way to

improve the resolution of bone bioprinting, which is similar to
the bone scaffold trajectory correction. Figure 3G summarizes
the monitoring research approach for width control. In bone
scaffold bioprinting processes, a major challenge is to achieve
in situ measurement and correction simultaneously. Currently,
both measurement and correction processes are being devel-
oped, but simultaneous measurement and correction needs
more effort.

DEEP LEARNING FOR BONE RESEARCH
During the last five years, with the rapid development of
artificial intelligence, deep learning has been widely employed
to achieve clustering analysis of images, as illustrated in Fig. 4a.
Deep learning is a constantly iterative and abstract process that
constructs many hidden machine learning models and training
models to obtain more useful features and improve the accuracy
of classification and prediction. Based on powerful feature
extraction capabilities, machine learning has been widely used
in the bone research field to segment and enhance bone images
for medical diagnosis and to implement visual identification.60

In addition to visual identification and image enhancement,
analyzing bioprinting defects of bone implantation detection is
a promising direction scheme for deep learning.61

Convolutional neural network for bone research
A CNN is a common machine learning model that includes weight
sharing and local perception technology with two characteris-
tics.62–64 Weight sharing: Each neuron parameter is set to be the
same, which means that each neuron uses the same convolution
kernel to convolute the image. Local perception: Each neuron
needs to perceive the local area rather than perceive the global
image. These neurons that perceive different parts are combined
to obtain global information at a high level. Owing to these two
characteristics, CNNs have the following advantages in the bone
research field: (1) These networks avoid explicit feature extraction
but implicitly learn from the training data. (2) The weights of
neurons on the same feature mapping surface are identical, and
each network can learn in parallel and reduce the complexity of
the network. (3) These networks have a unique advantage in
image processing because the input information is well matched
with the network topology. Figure 4B shows the process of CNN
algorithm training to process images.
The applications of CNNs in the bone research field include

bone age assessment, precise calcinosis cutis quantification, and
periodontal bone loss classification. Bone age assessment is
usually used to assess the difference between the chronological
age and biological age of the bones of children, which assists in
the diagnosis of child growth,65 endocrinology problems and
genetic disorders.66 Bone age artificial assessment is usually used
to observe the morphology of the hand bones, and the method
of judging ages through features matches the characteristics of
the CNN. Research studies have collected a total of 8 325
radiographs with age labels diagnosed by skeletal doctors,
including 4 278 radiographs for females and 4 047 radiographs
for males. Using 70% of the total radiographs as the training set
to train the CNN model, the remaining 15% of the total
radiographs are used as the validation set to adjust the

subsequent CNN model parameters, and the final 15% of the
total radiographs are used as the test set to verify the accuracy of
the CNN model for bone age assessment. The final bone age
assessment results of the CNN model reached 57.32% for females
and 61.40% for males.67 On this basis, the CNN model can be
further optimized. For instance, using five convolutional layers
can reduce the training set of bone age assessment to 1 400
radiographs, and the accuracy barely fluctuates.68 Using all hand
radiographs as the training set, compared to carpal bones or
metacarpal and proximal phalange radiographs, the age assess-
ment error will be reduced by 10%–15%.69

Although research on the treatment of calcinosis cutis has made
great progress, there is still a lack of standardized and validated
methods to quantify calcinosis cutis. The subtraction of normal
phalanges from segmented bone images is the core step of CNN
to quantify residual calcinosis cutis lesions, which uses the mean-
shift segmentation algorithm.70 The calcinosis cutis quantification
of the CNN and expert radiologist measurements are highly
consistent (in Fig. 4c).71

Statistics of periodic bone loss are an important part of the
evaluation and treatment of periodontal diseases. Previously,
statistics of periodic bone loss were often provided by clinical
evaluations, which were limited by the probing force, angulation,
placement, and tip diameter.72–74 To date, CNN has been used to
identify periodontal diseases by training labeled radiographic
tooth images, and the test result quality is similar to that of
experienced dentists detecting periodic bone loss.75 In addition,
the digital results of CNN tests can be displayed in radiographic
images, which contain radiographic bone loss information, which
is helpful for dentists to diagnose periodontal diseases.76

Deep learning for organ-on-a-chip platforms
Thus far, organ-on-a-chip platforms have made new progress in
bone research, including bone regeneration, bone vasculature and
innervation, and cancer metastasis to bone. Bioprinting potentially
offers tremendous throughput and addresses reproducibility
issues faced by traditional organ-on-a-chip systems. In addition,
bioprinting embedded into the organ-on-a-chip system allows
fabrication of complex in vitro models for mechanistic, simulation,
and pharmacological modulation. Deep learning is capable of
analyzing a large amount of information obtained by organ-on-a-
chip platforms in bone research.
Bone regeneration is a branch of regenerative medicine

strategies that consists of bone induction and conduction and
involves a number of cell types and intracellular and extracellular
molecular signaling pathways.77,78 To explore the influence of
antibiotics on bone regeneration, inkjet-bioprinting of antibiotic
and calcium-eluting micropatterns are used to test high-
throughput research and show the advantages of antibiotics
with regard to bacterial killing without damaging osteogenic
tissue development.79

Bone is also a highly vascularized tissue with 10%–15% of the
total cardiac circulatory output.80 Focusing on bones as a
component of the circulatory system, blood vessels in bone are
responsible for exchanging oxygen, nutrients, and waste and for
providing the hormones, growth factors, and neurotransmitters
necessary for the survival of bone cells. Organ-on-a-chip systems
can reconstruct the research platform of 3D microvascular
networks.81–84 In the past, the final quality assessment of drug-
aided vascularization was performed by manually analyzing each
image before and after drug application. This kind of quality
assessment was based on the doctor’s experience by judging
whether the generated blood vessel was mature, which relied on
human subjective judgment. In addition, there is a low throughput
of quality evaluations due to the insufficient number of manual
judgments.85 After training a large number of vascularized images,
the CNN classifies a large number of vascular networks into no-hit,
soft-hit, and hard-hit networks. It is the first step in achieving

Computer vision-aided bioprinting for bone research
C Liu et al.

6

Bone Research           (2022) 10:21 



Applications of 4D printing in bone tissue engineering
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automated drug screening, which is more accurate than manual
classification.86

Compared with other bone-on-chip studies, bone cancer
metastasis is a relatively new research direction, which is a
complex multistage process. Some research stimulated MLO-Y4
osteocytes with 1 Pa and 1 Hz fluid for 2 h to investigate the
effects of mechanically stimulated osteocytes on breast cancer
extravasation.87,88 For the discovery of hidden information with
regard to in vitro cancer drug treatments, deep learning provides
new perspectives based on its big data processing capabilities. For
instance, focusing on 3D biomimetic gels of immune cells
cocultured with breast cancer cells in organ-on-chip devices,
upon treatment with an immunotherapy drug, deep learning
classifies cell trajectories very accurately according to the presence
or absence of drugs, which proves the existence of cell movement
characteristics.89

In general, deep learning in computer vision, especially CNN,
has been playing an increasingly important role in image
processing for bone research and deep information mining.
This technology not only helps doctors diagnose specific
bone disease pictures through feature extraction of the area of
the diseased bone but also includes mining the high-throughput

data provided by bioprinting to obtain more deep bone
research data.

BONE CELL VIABILITY
Biomaterials, cells, and blood supply channels are the three prime
challenges in clinical application and regenerative medicine,
including the bone bioprinting field. Well-known cellular chal-
lenges include cell growth, cell viability and differentiation.
Therefore, the final cell viability situation is one of the significant
indicators for evaluating cell printing performance. Cell viability is
considered a crucial factor during the bone tissue printing process.
The main factors affecting cell viability and differentiation can be

mainly divided into three groups, i.e., cell variety, printing environ-
ment,90,91 and external parameters,92–94 as shown in Fig. 5a. First, the
survival rate in vitro is different for various cells according to their
characteristics and limitations. For example, the survival rates of bone
marrow cells, osteoblasts, and chondrocytes in vitro culture are
different. Next, the bioink is designed with suitable viscosity and
nutrition for cell survival, which provides the required energy for cell
growth. Current research is dedicated to establishing a decellularized
extracellular matrix (dECM) to improve the survival rate of cells.95,96
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Fig. 4 Deep learning for bone research. a Overview of the machine learning process. b The process of CNN algorithm training to process
images and extract features. c Optimization of the CNN algorithm for forefinger bone segmentation for calcinosis cutis quantification.71

(Figures adapted with permission from Chandrasekaran et al.71)
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Finally, unlike other regenerative medicine-based methods, pressure
control occurs at the nozzle head, which is a unique part of
bioprinting. For instance, there are two different cell viabilities in the
two pressure methods, as shown in Fig. 5b, c. The influence of process
parameters and bioink properties on cell viability is shown in Fig. 5d.
In the bone research field, compared with osteoblast culturing

in bioink without a printing process, the extrusion process during
bioprinting may cause osteoblast damage. Most importantly, once
the nozzle head pressure exceeds the acceptable range, the final
osteoblast viability is decreased. Additionally, the shear force
generated in a deposition can cause osteoblast damage during
bioprinting. Therefore, selecting appropriate bioprinting para-
meters is a vital part of the printing process to improve osteoblast
viability without replacing the cell variety and modifying the
bioink microstructure. However, there is a lack of research reports
on pressure detection and control in recent bioprinting studies,
and thus, it is urgent to establish the mapping relationship
between printing parameters and cell viability.

Printing parameters and cell viability
Owing to the multifunctionality and wide applications, computer
vision can be used to establish the mapping relationship between
printing parameters and osteoblast viability. First, an adjustment
of the printer nozzle pressure is required, which is influenced by
the nozzle diameter and output pressure. Additionally, with a
reduction in nozzle diameter, the pressure increases. The output
pressure value is calculated by substituting the input voltage value
into the established voltage-pressure model. For signal denoising
processing and background removal during model building,
investigations of Armstrong’s team38 can be referenced. Next,
the cell survival rate should be counted, which usually uses the
TUNEL (TdT-mediated dUTP nick-end labeling) model for cell
viability detection. For instance, Fig. 6a, b shows the cell viability
under different pressure conditions.
Recently, Ouyang97 found that different printing parameters

should be used for bioprinting of different cell types to ensure
that the printing environment is satisfactory for cell survival,
even in the same alginate-gelatin hydrogel bioink. In addition,
Pössl et al.98 provided a new research vision regarding the shape
of the extrusion nozzle, proving that different nozzle shapes can
lead to various shear forces. For example, compared with the
cylinder shape in Fig. 6c, in which the diameter is constant, the
diameter of the conical shape linearly decreases with length,
which changes the shear force at different positions and leads to
altered cell viability.
Interestingly, it is observed that there is a range of cell

survival rates that increases with increasing shear force, rather
than linear monotonic changes that decrease with increasing
shear force. One explanation is that the intracellular calcium
concentration increases under the action of moderate shear
stress, which leads to cell proliferation.93 For this reason,
establishing an acceptable model that also considers the two
different impacts of shear force on cell viability is the current
challenge of bioprinting.
At present, nozzle pressure control still has many challenges in

the extrusion-based bioprinting field. Specifically, when the only
aim is to improve bone cell viability, more methods can be used
during printing, such as reducing the material strength and output
pressure and increasing the nozzle size. However, these methods
may lead to a significant decrease in the printability of bioprinting,
i.e., insufficient strength, unstable shape, low resolution, and easy
collapse. For this reason, the current solution is to utilize the shear
force as the threshold for a cell survival rate of 90% to
subsequently improve the printability.

Bioink and cell viability
There is a contradiction between bioink strength and osteoblast
viability in bioprinting. High-strength bioink may decrease the

cell survival rate, leading to reduced cell viability. Additionally,
the insufficient bioink strength for increasing the cell survival
rate may cause the collapse of the printing structure. A high flow
rate and high viscosity of bioink during bioprinting will generate
high shear stresses, which will influence osteoblast viability,
proliferation rate, and phenotype.93–99 Bioink materials with very
high viscosity may reduce the diffusion of nutrition in embedded
cells, which is another reason for the contradiction between the
viscosity of bioink materials and cell viability.100

In a study using a polycaprolactone-polyethylene glycol-
polycaprolactone (PCL-PEG-PCL) triblock polymer to enhance
the strength, the copolymer showed non-Newtonian properties.
This means that the final cell viability performs well due to the
reduction in viscosity with increasing shear rate101 (in Fig. 6d).
Similar results were reported in a study of a dECM bioink in
which the cell survival rate was also maintained above 90% by
increasing the shear rate and reducing the bioink viscosity.96 This
research was focused on how to design high-strength bioink,
and the measurement of viscosity stays at the data collection
level, without an establishment of the mapping relationship
between printing parameters and cell survival rates. Further-
more, in the construction of osteochondral tissue in a PCL
environment, the survival rates of osteoblasts and chondrocytes
under different temperatures and pressure conditions during
printing were high. Under conditions of 80 °C and a pneumatic
pressure of 400 kPa, osteoblasts and chondrocytes have the
highest survival rate.102 Koch103 studied alginate-gelatin hydro-
gel bioink, which is a common bioink material in bioprinting.
These researchers improved the cell survival rate, without
modifying the ingredients of the bioink materials, by adjusting
the nozzle diameter and changing the nozzle shape and flow
rate to control the pressure, as shown in Fig. 6e. This is consistent
with the abovementioned width control results. Furthermore, the
cell survival rate decreases to 60% when the stress value is
between 5 595 and 10 000 Pa, which is a 30% drop compared
with the 90% cell survival rate at 4 078 Pa.

SUMMARY AND FUTURE PERSPECTIVES
The goal of bioprinting is not only to establish tissue models for
drug screening and disease modeling in vitro104 but also to
provide specific functional tissue repair and remanufacturing for
in vivo implantation.21,105,106 However, bioprinting research is
currently at the initial stage, and numerous problems need to be
solved with the guidance of multiple and different schemes. To
date, in the bone bioprinting research area, many studies have
been conducted to improve the structural strength of bone
scaffolds by developing and modifying bioinks. However, a
systematic accurate collection of information and process control
during the printing process is still needed. With the development
of computer science, the use of computer vision to achieve
process control has attracted much attention in the manufactur-
ing field. With the assistance of computer vision in printing
parameter optimization and printing process control, the final
structural and biological performance of bioprinted bone scaffolds
can be significantly improved.
This review summarizes the recent utilization of the computer

vision process in bone research to achieve bioprinting process
control, segmentation and enhancement of bone images, and cell
viability improvement for bone tissue construction. First, compu-
ter vision realizes bone bioprinting process control, mainly
including bone scaffold trajectory measurement and correction
and bone scaffold width control; this process reduces these kinds
of errors in bone fabrication to improve bioprinting resolution.
Second, deep learning, especially CNN, has proven to be a
powerful method for a wide range of computer vision image tasks.
We summarized the utilization of CNN for segmentation and
enhancement of the images of bones and bone tissues in medical
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diagnosis, as well as big data mining and processing of organ-on-
a-chip systems. Finally, considering that cell viability is a unique
aspect of bioprinting compared with other AM methods, it is
necessary to use computer vision to collect the shear force values
at the nozzle head, establish the mapping relationship between
the shear force and the final osteoblast survival rate, and then
locate the printing parameters according to the highest osteoblast
survival rate as the threshold.
The ultimate goal of bone bioprinting is that cells can be directly

printed and then replaced with diseased bone tissue in the patient
body. There is still a long way to go between the current
applications and the goal. To achieve this goal, the high accuracy
of bioprinting and great cell viability after bioprinting are the main
challenges. The following research challenges are put forward to
make bioprinting more prosperous for bone research. Many of the
studies on current trajectory error evaluation are divided into two
steps: detection and correction. Studies of in situ evaluation are
lacking at present and are an evolvable area to focus on in the

future. Next, to ensure the high accuracy of image recognition for
bone diseases, advanced image algorithms proposed in the
computer science field might be invested in the application of
bone disease diagnosis. Additionally, although the relationship
between cell viability and bioprinting parameters has been studied
recently,91,92 databases between the cell viability of different bioinks
and different printing parameters are still lacking at present and
should be established as soon as possible to determine the optimal
bioprinting parameters. In the future, by further exploring computer
vision-aided data collection and printing process control, printing
performance and bioprintability will be significantly improved both
in vitro and in vivo, which will contribute to the development of
bone tissue engineering and translational medicine.

ACKNOWLEDGEMENTS
The authors thankfully acknowledge the financial support listed below: National
Natural Science Foundation of China under (Grant Nos. 52011530181 and 51831011),

Cell viability improvement by process control

a

b

c

LD
 D

ay
 0

LD
 D

ay
 7

d e

V
is

co
si

ty
/(

P
a·

s)

Shear rate/(rad·s-1) Maximum shear stress in Pa

0 5 000 10 000 15 000 20 000

A
ve

ra
ge

 c
el

l v
ia

bi
lit

y/
%

101

100 10110-110-2

102

102

103

104

105

PC3

PCA3

Constant
diameter
 

Various
diameter
 

Control(0 kPa) <5 kPa 5-10 kPa >10 kPa

100

80

60

40

20

0

100

80

60

V
ia

bi
lit

y 
/ %

40

20

0

5

2.4 x
2.8 x

2.8 x
1.9 x

4

3
1 

00
0 

R
F

U
s

2

1

0
Day 0 Day 7

Control

***
***

***
***

*** ***
*** ***

*

* *
***

*

*** * *

***

***
***

*** ****
* *

< 5 kPa
5-10 kPa
> 10 kPa

Control < 5 kPa 5-10 kPa > 10 kPa

Day 1 Day 4 Day 7

Fig. 6 Cell viability in different fabrication environments. a, b Short-term and long-term impact of different bioprinting-induced shear stress
levels on human mesenchymal stem cell (MSC) viability and proliferation.93 c Cylinder-shaped nozzle head (left) and conical-shaped nozzle
head (right). d Shear-thinning tests of PCL-PEG-PCL (blue, square) and PCLA-PEG-PCLA (red, circle).101 e Viability of immortalized mesenchymal
stem cells after extrusion-based bioprinting at a concentration of 0.5×106 cells per mL in an alginate-gelatin hydrogel. Maximum shear stress
values between 1 747 Pa and 21 000 Pa were generated during printing.103 (Figures adapted with permission from Blaeser et al.,93 Cui et al.,101

and Koch et al.103)

Computer vision-aided bioprinting for bone research
C Liu et al.

11

Bone Research           (2022) 10:21 



Shanghai Science and Technology Commission under Grant No. 20S31900100,
Guangxi Science and Technology Program: The central government guides the local
science and technology development science and technology innovation base
project (Guike Jizi[2020]No. 198): Basic Research and Transformation Technology
Innovation Base of Bone and Joint Degenerative Diseases.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

REFERENCES
1. Stevens, M. M. Biomaterials for bone materials that enhance bone regeneration

have a wealth of potential. Bone 11, 18–25 (2008).
2. Amini, A. R., Laurencin, C. T. & Nukavarapu, S. P. Bone tissue engineering: recent

advances and challenges. Crit. Rev. Biomed. Eng. 40, 363–408 (2012).
3. Bose, S., Vahabzadeh, S. & Bandyopadhyay, A. Bone tissue engineering using 3D

printing. Mater. Today 16, 496–504 (2013).
4. Oberpenning, F., Meng, J., Yoo, J. J. & Atala, A. De novo reconstitution of a

functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol.
17, 149–155 (1999).

5. Wilson, W. C. & Boland, T. Cell and organ printing 1: protein and cell printers.
Anat. Rec. Discov. Mol. Cell. Evol. Biol. 272, 491–496 (2003).

6. Jakab, K., Neagu, A., Mironov, V., Markwald, R. R. & Forgacs, G. Engineering
biological structures of prescribed shaped using self-assembling multicellular
systems. Proc. Natl. Acad. Sci. USA 101, 2864–2869 (2004).

7. Barron, J. A., Ringeisen, B. R., Kim, H., Spargo, B. J. & Chrisey, D. B. Application
of laser printing to mammalian cells. Thin Solid Films 453–454, 383–387
(2004).

8. Mironov, V. et al. Bioprinting: a beginning. Tissue Eng. 12, 631–634 (2006).
9. Daly, A. C., Prendergast, M. E., Hughes, A. J. & Burdick, J. A. Bioprinting for the

biologist. Cell 184, 18–32 (2021).
10. Lawlor, K. T. et al. Cellular extrusion bioprinting improves kidney organoid

reproducibility and conformation. Nat. Mater. 20, 260–271 (2021).
11. Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human

heart. Science 365, 482–487 (2019).
12. Yanez, M. et al. In vivo assessment of printed microvasculature in a bilayer skin

graft to treat full-thickness wounds. Tissue Eng. A 21, 224–233 (2015).
13. Cui, X., Breitenkamp, K., Finn, M. G., Lotz, M. & D’Lima, D. D. Direct human

cartilage repair using three-dimensional bioprinting technology. Tissue Eng. A
18, 1304–1312 (2012).

14. Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol.
32, 773–785 (2014).

15. Shegarfi, H. & Reikeras, O. Review article: bone transplantation and immune
response. J. Orthop. Surg. 17, 206–211 (2009).

16. Attarilar, S. et al. 3D printing technologies in metallic implants: a thematic
review on the techniques and procedures. Int. J. Bioprint. 7, 21–46 (2021).

17. Zheng, C. et al. 3D-printed HA15-loaded β-tricalcium phosphate/poly (Lactic-co-
glycolic acid) bone tissue scaffold promotes bone regeneration in rabbit radial
defects. Int. J. Bioprint. 7, 100–111 (2021).

18. Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A. & Jain, R. Content-based
image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell.
22, 1349–1380 (2000).

19. Xu, C., Dai, G. & Hong, Y. Recent advances in high-strength and elastic
hydrogels for 3D printing in biomedical applications. Acta Biomater. 95, 50–59
(2019).

20. Gillispie, G. J. et al. The influence of printing parameters and cell density on
bioink printing outcomes. Tissue Eng. A 26, 1349–1358 (2020).

21. Vijayavenkataraman, S., Yan, W. C., Lu, W. F., Wang, C. H. & Fuh, J. Y. H. 3D
bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev.
132, 296–332 (2018).

22. Duan, Hockaday, LauraA., Kang, KevinH. & B, J. T. 3D bioprinting of hetero-
geneous aortic valve conduits with alginate/gelatin hydrogels. Bone 23, 1–7
(2008).

23. McBeth, C. et al. 3D bioprinting of GelMA scaffolds triggers mineral deposition
by primary human osteoblasts. Biofabrication 9, 015009 (2017).

24. Chang, R., Nam, J. & Sun, W. Effects of dispensing pressure and nozzle diameter
on cell survival from solid freeform fabrication-based direct cell writing. Tissue
Eng. A 14, 41–48 (2008).

25. Pedde, R. D. et al. Emerging biofabrication strategies for engineering complex
tissue constructs. Adv. Mater. 29, 1–27 (2017).

26. Fu, G., Corradi, P., Menciassi, A. & Dario, P. An integrated triangulation laser
scanner for obstacle detection of miniature mobile robots in indoor environ-
ment. IEEE/ASME Trans. Mechatron. 16, 778–783 (2011).

27. Giannatsis, J. & Dedoussis, V. Additive fabrication technologies applied to
medicine and health care: a review. Int. J. Adv. Manuf. Technol. 40, 116–127
(2009).

28. Ciurana, J. Designing, prototyping and manufacturing medical devices: an
overview. Int. J. Comput. Integr. Manuf. 27, 901–918 (2014).

29. Uriondo, A., Esperon-Miguez, M. & Perinpanayagam, S. The present and future of
additive manufacturing in the aerospace sector: a review of important aspects.
Proc. Inst. Mech. Eng. J. Aerosp. Eng. 229, 2132–2147 (2015).

30. Levy, G. N., Schindel, R. & Kruth, J. P. Rapid manufacturing and rapid tooling with
layer manufacturing (LM) technologies, state of the art and future perspectives.
CIRP Ann. Manuf. Technol. 52, 589–609 (2003).

31. Frazier, W. E. Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23,
1917–1928 (2014).

32. Sercombe, T. B. et al. Failure modes in high strength and stiffness to weight
scaffolds produced by Selective Laser Melting. Mater. Des. 67, 501–508
(2015).

33. Cooper, D. et al. Design and manufacture of high performance hollow engine
valves by Additive Layer Manufacturing. Mater. Des. 69, 44–55 (2015).

34. Wibisono, A. & Mursanto, P. Multi Region-Based Feature Connected Layer (RB-
FCL) of deep learning models for bone age assessment. J. Big Data 7, 1–17
(2020).

35. Qiu, C., Ravi, G. A. & Attallah, M. M. Microstructural control during direct laser
deposition of a β-titanium alloy. Mater. Des. 81, 21–30 (2015).

36. Lee, J. M., Ng, W. L. & Yeong, W. Y. Resolution and shape in bioprinting: stra-
tegizing towards complex tissue and organ printing. Appl. Phys. Rev. 6, 011307
(2019).

37. Miri, A. K. et al. Effective bioprinting resolution in tissue model fabrication. Lab
Chip 19, 2019–2037 (2019).

38. Sun, W. et al. The bioprinting roadmap. Biofabrication 12, 022002 (2020).
39. Amler, A. K. et al. 3D bioprinting of tissue-specific osteoblasts and endothelial

cells to model the human jawbone. Sci. Rep. 11, 1–13 (2021).
40. Armstrong, A. A., Norato, J., Alleyne, A. G. & Wagoner Johnson, A. J. Direct

process feedback in extrusion-based 3D bioprinting. Biofabrication 12, 015017
(2019).

41. Koren, Y., Lo, C. C. & Shpitalni, M. CNC interpolators: algorithms and analysis. Am.
Soc. Mech. Eng. Prod. Eng. Div. (Publ.) PED 64, 83–92 (1993).

42. Hockaday, L. A. et al. Rapid 3D printing of anatomically accurate and
mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4
(2012).

43. BI, C., FANG, J., LI, K. & GUO, Z. Extrinsic calibration of a laser displacement
sensor in a non-contact coordinate measuring machine. Chin. J. Aeronautics 30,
1528–1537 (2017).

44. Bandy, H. T. et al. A Methodology for Compensating Errors Detected by Process-
intermittent Inspection (National Institute of Standards and Technology, 2001).

45. Caliari, M., de Marchi, S., Sommariva, A. & Vianello, M. Padua2DM: fast inter-
polation and cubature at the Padua points in Matlab/Octave. Numer. Algorithms
56, 45–60 (2011).

46. Johanyák, Z. C., Tikk, D., Kovács, S. & Wong, K. W. Fuzzy rule interpolation matlab
toolbox - FRI toolbox. IEEE Int. Conf. Fuzzy Syst. 6150, 351–357 (2006).

47. De Marchi, S., Marchetti, F., Perracchione, E. & Poggiali, D. Polynomial inter-
polation via mapped bases without resampling. J. Comput. Appl. Math. 364,
112347 (2020).

48. Rahim, R., Nurarif, S., Ramadhan, M., Aisyah, S. & Purba, W. Comparison searching
process of linear, binary and interpolation algorithm. J. Phys. Confer. Ser. 930,
012007 (2017).

49. Armstrong, A. A., Alleyne, A. G. & Wagoner Johnson, A. J. 1D and 2D error
assessment and correction for extrusion-based bioprinting using process sen-
sing and control strategies. Biofabrication 12, 045023 (2020).

50. Bellhouse, B. J., Bellhouse, F. H. & Reid, K. G. Fluid mechanics of the aortic root
with application to coronary flow. Nature 219, 1059–1061 (1968).

51. Modenesi, P. J., Apolinário, E. R. & Pereira, I. M. TIG welding with single-
component fluxes. J. Mater. Process. Technol. 99, 260–265 (2000).

52. Egan, D. S. & Dowling, D. P. Correlating in-situ process monitoring data with the
reduction in load bearing capacity of selective laser melted Ti–6Al–4V porous
biomaterials. J. Mech. Behav. Biomed. Mater. 106, 103723 (2020).

53. Egan, D. S., Ryan, C. M., Parnell, A. C. & Dowling, D. P. Using in-situ process
monitoring data to identify defective layers in Ti-6Al-4V additively manu-
factured porous biomaterials. J. Manuf. Process. 64, 1248–1254 (2021).

54. Fisch, P., Broguiere, N., Finkielsztein, S., Linder, T. & Zenobi-Wong, M. Bioprinting
of cartilaginous auricular constructs utilizing an enzymatically crosslinkable
bioink. Adv. Funct. Mater. 31, 1–15 (2021).

55. Liu, X. et al. 3D bioprinted neural tissue constructs for spinal cord injury repair.
Biomaterials 272, 120771 (2021).

56. Nulty, J. et al. 3D bioprinting of prevascularised implants for the repair of
critically-sized bone defects. Acta Biomater. 126, 154–169 (2021).

Computer vision-aided bioprinting for bone research
C Liu et al.

12

Bone Research           (2022) 10:21 



57. Wan, Z., Zhang, P., Liu, Y., Lv, L. & Zhou, Y. Four-dimensional bioprinting: current
developments and applications in bone tissue engineering. Acta Biomater. 101,
26–42 (2020).

58. Lee, J. M. & Yeong, W. Y. A preliminary model of time-pressure dispensing
system for bioprinting based on printing and material parameters: this paper
reports a method to predict and control the width of hydrogel filament for
bioprinting applications. Virtual Phys. Prototyp. 10, 3–8 (2015).

59. Armstrong, A. A., Pfeil, A., Alleyne, A. G. & Wagoner Johnson, A. J. Process
monitoring and control strategies in extrusion-based bioprinting to fabricate
spatially graded structures. Bioprinting 21, e00126 (2021).

60. Greenspan, H., Van Ginneken, B. & Summers, R. M. Guest editorial deep learning
in medical imaging: overview and future promise of an exciting new technique.
IEEE Trans. Med. Imaging 35, 1153–1159 (2016).

61. Khalid, H. et al. A comparative systematic literature review on knee bone reports
from mri, x-rays and ct scans using deep learning and machine learning
methodologies. Diagnostics 10, 1–43 (2020).

62. Sultana, F., Sufian, A. & Dutta, P. Evolution of image segmentation using deep
convolutional neural network: a survey. Knowl. Based Syst. 201–202, 1–38
(2020).

63. Bullock, J., Cuesta-Lazaro, C. & Quera-Bofarull, A. XNet: a convolutional neural
network (CNN) implementation for medical x-ray image segmentation suitable
for small datasets. Proceedings Volume 10953, Medical Imaging 2019: Biome-
dical Applications in Molecular, Structural, and Functional Imaging; 109531Z
(2019). https://doi.org/10.1117/12.2512451.

64. Kayalibay, B., Jensen, G. & van der Smagt, P. CNN-based segmentation of
medical imaging data. arXiv preprint arXiv:1701.03056 (2017).

65. Zhang, A., Sayre, J. W., Vachon, L., Liu, B. J. & Huang, H. K. Racial differences in
growth patterns of children assessed on the basis of bone age. Radiology 250,
228–235 (2009).

66. Satoh, M. Bone age: assessment methods and clinical applications. Clin. Pediatr.
Endocrinol. 24, 143–152 (2015).

67. Lee, H. et al. Fully automated deep learning system for bone age assessment. J.
Digital Imaging 30, 427–441 (2017).

68. Spampinato, C., Palazzo, S., Giordano, D., Aldinucci, M. & Leonardi, R. Deep
learning for automated skeletal bone age assessment in X-ray images. Med.
Image Anal. 36, 41–51 (2017).

69. Iglovikov, V. I., Rakhlin, A., Kalinin, A. A. & Shvets, A. A. Paediatric bone age
assessment using deep convolutional neurIal networks. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). springer nature. 11045 LNCS, 300–308
(2018).

70. Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image seg-
mentation by integrating color-edge extraction and seeded region growing.
IEEE Trans. Image Process. 10, 1454–1466 (2001).

71. Chandrasekaran, A. C. et al. Computer vision applied to dual-energy computed
tomography images for precise calcinosis cutis quantification in patients with
systemic sclerosis. Arthritis Res. Ther. 23, 1–9 (2021).

72. Garnick, J. J. & Silverstein, L. Periodontal probing: probe tip diameter. J. Peri-
odontol. 71, 96–103 (2000).

73. Trombelli, L., Farina, R., Silva, C. O. & Tatakis, D. N. Plaque-induced gingivitis: case
definition and diagnostic considerations. J. Clin. Periodontol. 45, S44–S67 (2018).

74. Graves, D. T., Li, J. & Cochran, D. L. Critical review in oral biology & medicine:
inflammation and uncoupling as mechanisms of periodontal bone loss. J. Dent.
Res. 90, 143–153 (2011).

75. Krois, J. et al. Deep learning for the radiographic detection of periodontal bone
loss. Sci. Rep. 9, 1–6 (2019).

76. Chang, H. J. et al. Deep learning hybrid method to automatically diagnose
periodontal bone loss and stage periodontitis. Sci. Rep. 10, 1–8 (2020).

77. Cho, T. J., Gerstenfeld, L. C. & Einhorn, T. A. Differential temporal expression of
members of the transforming growth factor β superfamily during murine frac-
ture healing. J. Bone Miner. Res. 17, 513–520 (2002).

78. Sieiński, W. Endometrial stromal neoplasms of the uterus. A clinicopathologic
study. Patol. Pol. 43, 30–34 (1992).

79. Low, L. A. & Giulianotti, M. A. Tissue chips in space: modeling human diseases in
microgravity. Pharm. Res. 37, 1–6 (2020).

80. Tomlinson, R. E. & Silva, M. J. Skeletal blood flow in bone repair and main-
tenance. Bone Res. 1, 311–322 (2013).

81. Brandi, M. L. & Collin-Osdoby, P. Vascular biology and the skeleton. J. Bone
Miner. Res. 21, 183–192 (2006).

82. Kuzmic, N., Moore, T., Devadas, D. & Young, E. W. K. Modelling of endothelial cell
migration and angiogenesis in microfluidic cell culture systems. Biomech. Model.
Mechanobiol. 18, 717–731 (2019).

83. Takehara, H., Sakaguchi, K., Sekine, H., Okano, T. & Shimizu, T. Microfluidic
vascular-bed devices for vascularized 3D tissue engineering: tissue engineering
on a chip. Biomed. Microdevices 22, 1–7 (2020).

84. Fleischer, S., Tavakol, D. N. & Vunjak-Novakovic, G. From arteries to capillaries:
approaches to engineering human vasculature. Adv. Funct. Mater. 30, 1–23
(2020).

85. Zudaire, E., Gambardella, L., Kurcz, C. & Vermeren, S. A computational tool for
quantitative analysis of vascular networks. PLoS One 6, 1–12 (2011).

86. Urban, G. et al. Deep learning for drug discovery and cancer research: auto-
mated analysis of vascularization images. IEEE/ACM Trans. Comput. Biol. Bioin-
form. 16, 1029–1035 (2019).

87. Cheung, W. Y., Simmons, C. A. & You, L. Osteocyte apoptosis regulates osteoclast
precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1
expression. Bone 50, 104–110 (2012).

88. Ibrahim, S. A. et al. Hormonal-receptor positive breast cancer: IL-6 augments
invasion and lymph node metastasis via stimulating cathepsin B expression. J.
Adv. Res. 7, 661–670 (2016).

89. Mencattini, A. et al. Discovering the hidden messages within cell trajectories
using a deep learning approach for in vitro evaluation of cancer drug treat-
ments. Sci. Rep. 10, 1–11 (2020).

90. Chimene, D. et al. Nanoengineered osteoinductive bioink for 3D bioprinting
bone tissue. ACS Appl. Mater. Interfaces 12, 15976–15988 (2020).

91. Zhou, X. et al. 3D bioprinting a cell-laden bone matrix for breast cancer
metastasis study. ACS Appl. Mater. Interfaces 8, 30017–30026 (2016).

92. Ning, L. et al. Process-induced cell damage: pneumatic versus screw-driven
bioprinting. Biofabrication 12, 025011 (2020).

93. Blaeser, A. et al. Controlling shear stress in 3D bioprinting is a key factor to
balance printing resolution and stem cell integrity. Adv. Healthc. Mater. 5,
326–333 (2016).

94. Ning, L. et al. Biomechanical factors in three-dimensional tissue bioprinting.
Appl. Phys. Rev. 7, 041319 (2020).

95. Tsui, J. H. et al. Tunable electroconductive decellularized extracellular matrix
hydrogels for engineering human cardiac microphysiological systems. Bioma-
terials 272, 120764 (2021).

96. Pati, F. et al. Printing three-dimensional tissue analogues with decellularized
extracellular matrix bioink. Nat. Commun. 5, 1–11 (2014).

97. Ouyang, L., Yao, R., Zhao, Y. & Sun, W. Effect of bioink properties on printability
and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8,
1–12 (2016).

98. Pössl, A., Hartzke, D., Schmidts, T. M., Runkel, F. E. & Schlupp, P. A targeted
rheological bioink development guideline and its systematic correlation with
printing behavior. Biofabrication 13, 035021 (2021).

99. Paxton, N. et al. Proposal to assess printability of bioinks for extrusion-based
bioprinting and evaluation of rheological properties governing bioprintability.
Biofabrication 9, 044107 (2017).

100. Panwar, A. & Tan, L. P. Current status of bioinks for micro-extrusion-based 3D
bioprinting. Molecules 21, 685 (2016).

101. Cui, Y. et al. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-
PCL triblock copolymer for 3D printing. Biomed. Mater. 16, 035006 (2021).

102. Shim, J. H., Lee, J. S., Kim, J. Y. & Cho, D. W. Bioprinting of a mechanically
enhanced three-dimensional dual cell-laden construct for osteochondral tissue
engineering using a multi-head tissue/organ building system. J. Micromech.
Microeng. 22, 085014 (2012).

103. Koch, F. et al. Generic method of printing window adjustment for extrusion-
based 3D-bioprinting to maintain high viability of mesenchymal stem cells in an
alginate-gelatin hydrogel. Bioprinting 20, e00094 (2020).

104. Ma, X. et al. 3D bioprinting of functional tissue models for personalized drug
screening and in vitro disease modeling. Adv. Drug Deliv. Rev. 132, 235–251
(2018).

105. Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in
extrusion-based bioprinting. Biomaterials 76, 321–343 (2016).

106. Hinton, T. J., Lee, A. & Feinberg, A. W. 3D bioprinting from the micrometer to
millimeter length scales: Size does matter. Curr. Opin. Biomed. Eng. 1, 31–37
(2017).

107. Standard Terminology for Additive Manufacturing Technologies. ASTM F2792-
12a. (ASTM, West Conshohocken, PA, 2013).

108. Cui, X., Dean, D., Ruggeri, Z. M. & Boland, T. Cell damage evaluation of thermal
inkjet printed chinese hamster ovary cells. Biotechnol. Bioeng. 106, 963–969
(2010).

109. Xu, T. et al. Complex heterogeneous tissue constructs containing multiple cell
types prepared by inkjet printing technology. Biomaterials 34, 130–139
(2013).

110. Xu, T., Jin, J., Gregory, C., Hickman, J. J. & Boland, T. Inkjet printing of viable
mammalian cells. Biomaterials 26, 93–99 (2005).

111. Roberts, K. et al. Implementation and challenges of direct acoustic dosing into
cell-based assays. J. Lab. Autom. 21, 76–89 (2016).

112. Li, Z. et al. Single-cell lipidomics with high structural specificity by mass spec-
trometry. Nat. Commun. 12, 1–10 (2021).

Computer vision-aided bioprinting for bone research
C Liu et al.

13

Bone Research           (2022) 10:21 

https://doi.org/10.1117/12.2512451


113. Clark, E. A. et al. 3D printing of tablets using inkjet with UV photoinitiation. Int. J.
Pharm. 529, 523–530 (2017).

114. Alalwan, A. A., Yogesh, A., Nripendra, D. & D.Williams, M. Article information: to
cite this document: about Emerald. J. Enterp. Inf. Manag. 29, 118–139 (2016).

115. Inzana, J. A. et al. 3D printing of composite calcium phosphate and collagen
scaffolds for bone regeneration. Biomaterials 35, 4026–4034 (2014).

116. Xu, T. et al. Hybrid printing of mechanically and biologically improved constructs
for cartilage tissue engineering applications. Biofabrication 5, 015001 (2013).

117. Khalyfa, A. et al. Development of a new calcium phosphate powder-binder
system for the 3D printing of patient specific implants. J. Mater. Sci. Mater. Med.
18, 909–916 (2007).

118. Seitz, H., Rieder, W., Irsen, S., Leukers, B. & Tille, C. Three-dimensional printing of
porous ceramic scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B
Appl. Biomater. 74, 782–788 (2005).

119. Ziaee, M. & Crane, N. B. Binder jetting: a review of process, materials, and
methods. Addit. Manuf. 28, 781–801 (2019).

120. Gokuldoss, P. K., Kolla, S. & Eckert, J. Additive manufacturing processes: Selective
laser melting, electron beam melting and binder jetting-selection guidelines.
Materials 10, 672 (2017).

121. Shrestha, S. & Manogharan, G. Optimization of binder jetting using taguchi
method. JOM 69, 491–497 (2017).

122. Hafeez, N. et al. Mechanical behavior and phase transformation of β-type Ti-
35Nb-2Ta-3Zr alloy fabricated by 3D-printing. J. Alloy. Compd. 790, 117–126
(2019).

123. Liu, S. et al. Strengthening mechanism and micropillar analysis of high-strength
NiTi–Nb eutectic-type alloy prepared by laser powder bed fusion. Compos. B
Eng. 200, 108358 (2020).

124. Hafeez, N. et al. Superelastic response of low-modulus porous beta-type Ti-
35Nb-2Ta-3Zr alloy fabricated by laser powder bed fusion. Addit. Manuf. 34,
101264 (2020).

125. Zhang, Y. et al. A review on design and mechanical properties of additively
manufactured NiTi implants for orthopedic applications. Int. J. Bioprint. 7, 15–42
(2021).

126. Sorkio, A. et al. Human stem cell based corneal tissue mimicking structures
using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171,
57–71 (2018).

127. Kingsley, D. M. et al. Laser-based 3D bioprinting for spatial and size control of
tumor spheroids and embryoid bodies. Acta Biomaterialia 95, 357–370 (2019).

128. Kačarević, Ž. P. et al. An introduction to 3D bioprinting: possibilities, challenges
and future aspects. Materials 11, 2199 (2018).

129. Hutmacher, D. W. et al. Mechanical properties and cell cultural response of
polycaprolactone scaffolds designed and fabricated via fused deposition
modeling. J. Biomed. Mater. Res. 55, 203–216 (2001).

130. Zein, I., Hutmacher, D. W., Tan, K. C. & Teoh, S. H. Fused deposition modeling of
novel scaffold architectures for tissue engineering applications. Biomaterials 23,
1169–1185 (2002).

131. Darwish, L. R., El-Wakad, M. T. & Farag, M. Towards an ultra-affordable three-
dimensional bioprinter: a heated inductive-enabled syringe pump extrusion
multifunction module for open-source fused deposition modeling three-
dimensional printers. J. Manuf. Sci. Eng. 143, 125001 (2021).

132. Calcagnile, P., Cacciatore, G., Demitri, C., Montagna, F. & Corcione, C. E. A feasibility
study of processing polydimethylsiloxane-sodium carboxymethylcellulose compo-
sites by a low-cost fused deposition modeling 3D printer.Materials 11, 1–14 (2018).

133. Haryńska, A., Gubanska, I., Kucinska-Lipka, J. & Janik, H. Fabrication and char-
acterization of flexible medical-grade TPU filament for Fused Deposition Mod-
eling 3DP technology. Polymers 10, 1304 (2018).

134. Farahani, R. D., Chizari, K. & Therriault, D. Three-dimensional printing of freeform
helical microstructures: a review. Nanoscale 6, 10470–10485 (2014).

135. Hinton, T. J. et al. Three-dimensional printing of complex biological structures by
freeform reversible embedding of suspended hydrogels. Sci. Adv. 1 (2015).

136. Landers, R., Hübner, U., Schmelzeisen, R. & Mülhaupt, R. Rapid prototyping of
scaffolds derived from thermoreversible hydrogels and tailored for applications
in tissue engineering. Biomaterials 23, 4437–4447 (2002).

137. Qiao, H. & Tang, T. Engineering 3D approaches to model the dynamic micro-
environments of cancer bone metastasis. Bone Res. 6, 1–12 (2018).

138. Xu, H. H. K. et al. Calcium phosphate cements for bone engineering and their
biological properties. Bone Res. 5, 1–19 (2017).

139. Montoya, C. et al. On the road to smart biomaterials for bone research: defi-
nitions, concepts, advances, and outlook. Bone Res. 9, 1–16 (2021).

140. Williams, A. H. et al. Printable homocomposite hydrogels with synergistically
reinforced molecular-colloidal networks. Nat. Commun. 12, 1–9 (2021).

141. Zorlutuna, P., Jeong, J. H., Kong, H. & Bashir, R. Stereolithography-based
hydrogel microenvironments to examine cellular interactions. Adv. Funct. Mater.
21, 3642–3651 (2011).

142. Käpylä, E. et al. Direct laser writing of synthetic poly(amino acid) hydrogels and
poly(ethylene glycol) diacrylates by two-photon polymerization. Mater. Sci. Eng.
C. 43, 280–289 (2014).

143. Arcaute, K., Mann, B. K. & Wicker, R. B. Stereolithography of three-dimensional
bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann. Biomed.
Eng. 34, 1429–1441 (2006).

144. Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Biol.
Eng. 9, 1–14 (2015).

145. Miri, A. K. et al. Microfluidics-enabled multimaterial maskless stereolithographic
bioprinting. Adv. Mater. 30, 1–9 (2018).

146. Wang, Z. et al. Visible light-based stereolithography bioprinting of cell-adhesive
gelatin hydrogels. In Proc. of the Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBS 1599–1602. (2017).

147. Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bio-
printing system using visible light crosslinkable bioinks. Biofabrication 7, 45009
(2015).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

Computer vision-aided bioprinting for bone research
C Liu et al.

14

Bone Research           (2022) 10:21 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Computer vision-aided bioprinting for bone research
	Introduction
	Bioprinting and computer vision
	Bone printing process control
	Measurement and correction trajectory of a bone scaffold
	Measurement and correction of the bone scaffold width

	Deep learning for bone research
	Convolutional neural network for bone research
	Deep learning for organ-on-a-chip platforms

	Bone cell viability
	Printing parameters and cell viability
	Bioink and cell viability

	Summary and future perspectives
	Acknowledgements
	ADDITIONAL INFORMATION
	References




