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Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus
pulposus to maintain homeostasis of the intervertebral disc
Sheng Chen 1,2, Xiaohao Wu2, Yumei Lai3, Di Chen4, Xiaochun Bai 5, Sheng Liu1, Yongchao Wu1, Mingjue Chen2, Yuxiao Lai6,
Huiling Cao2✉, Zengwu Shao1✉ and Guozhi Xiao 2✉

Intervertebral disc (IVD) degeneration (IVDD) is the main cause of low back pain with major social and economic burdens;
however, its underlying molecular mechanisms remain poorly defined. Here we show that the focal adhesion protein Kindlin-
2 is highly expressed in the nucleus pulposus (NP), but not in the anulus fibrosus and the cartilaginous endplates, in the IVD
tissues. Expression of Kindlin-2 is drastically decreased in NP cells in aged mice and severe IVDD patients. Inducible deletion
of Kindlin-2 in NP cells in adult mice causes spontaneous and striking IVDD-like phenotypes in lumbar IVDs and largely
accelerates progression of coccygeal IVDD in the presence of abnormal mechanical stress. Kindlin-2 loss activates Nlrp3
inflammasome and stimulates expression of IL-1β in NP cells, which in turn downregulates Kindlin-2. This vicious cycle
promotes extracellular matrix (ECM) catabolism and NP cell apoptosis. Furthermore, abnormal mechanical stress reduces
expression of Kindlin-2, which exacerbates Nlrp3 inflammasome activation, cell apoptosis, and ECM catabolism in NP cells
caused by Kindlin-2 deficiency. In vivo blocking Nlrp3 inflammasome activation prevents IVDD progression induced by
Kindlin-2 loss and abnormal mechanical stress. Of translational significance, adeno-associated virus-mediated overexpression
of Kindlin-2 inhibits ECM catabolism and cell apoptosis in primary human NP cells in vitro and alleviates coccygeal IVDD
progression caused by mechanical stress in rat. Collectively, we establish critical roles of Kindlin-2 in inhibiting Nlrp3
inflammasome activation and maintaining integrity of the IVD homeostasis and define a novel target for the prevention and
treatment of IVDD.
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INTRODUCTION
Intervertebral disc (IVD) degeneration (IVDD) is one of the main
causes of low back pain, which has been estimated as the top
reason for years lived with disability globally.1 Current manage-
ment strategies and treatments for IVDD are mainly focused on
pain relief and cannot achieve fundamental and long-lasting
therapeutic results.2 This is in part due to limited understanding of
the pathogenesis of IVDD. Better understanding of the underlying
pathological mechanisms of IVDD initiation, development and
progression will help develop novel strategies for the prevention
and treatments for this painful disease.
The IVD is a fibrocartilaginous structure that is located between

the upper and lower vertebral bodies of the spine.3 IVD is made up
of three distinct parts: the central nucleus pulposus (NP), the
peripheral annulus fibrosus (AF) and the cartilaginous endplates
(CEP) that separate the IVD from the vertebrae. Each part of IVD
has distinct cell types, including the NP cells, AF cells, and
chondrocytes. These cells synthesize and secret extracellular
matrix (ECM) components and play an essential role in maintain-
ing the homeostasis of IVD.4 Cumulative evidence suggests that

enhanced ECM catabolism and cell apoptosis in NP induced by
adverse IVD microenvironments (e.g., abnormal mechanical stress
and proinflammatory cytokines) play a vital role in the pathogen-
esis of IVDD.5–7 However, the underlying molecular mechanisms
remain poorly understood.
The focal adhesion (FA) protein Kindlin-2, along with other FA

proteins such as Talin, Vinculin, activates integrin and regulates
several fundamental cellular processes, such as migration and
cell-ECM adhesion .8,9 Interestingly, recent studies uncover
important roles of Kindlin-2 and related proteins, such as
Pinch1/2, in control of organogenesis and homeostasis in
skeleton10–13, kidney,14,15 heart,16,17 adipose,18 pancreas19 and
intestine through integrin-dependent and independent
mechanisms.20 Kindlin-2 appears to be extremely critical for
skeletal development and homeostasis. For example, deleting
Kindlin-2 in Prx1-expressing cells severely impaired both
intramembranous and endochondral ossification by inhibiting
Tgf-β signaling and Sox9 expression.10 Furthermore, Kindlin-2
loss in mature osteoblasts and osteocytes caused severe
osteopenia in mice throughout life due to abnormal bone
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remodeling through upregulation of expression of Sclerostin
and Rankl.11 In addition, more recent studies have revealed that
Kindlin-2 expression in osteocytes mediates the anabolic
actions of the intermittent parathyroid hormone in bone21

and modulates mechanotransduction in bone.22 While above
studies clearly confirm the critical requirement for Kindlin-2 in
bone and cartilage, whether or not it plays an important role in
regulation of IVD homeostasis is unclear.
By utilizing a combination of loss- and gain-of-function

approaches at the molecular and histological levels, as well as
multiple murine IVDD models, we demonstrate that Kindlin-2 is
integral to the IVD homeostasis. Kindlin-2 loss activates NOD-, LRR-
and pyrin domain-containing protein 3 (Nlrp3) inflammasome,
and accelerates cell apoptosis and ECM catabolism in NP, resulting
in spontaneous striking IVDD.

RESULTS
Kindlin-2 is highly expressed in NP cells in IVD and drastically
reduced in aged mice and severe IVDD patients
As an initial attempt to explore the potential role of FA proteins
in the pathogenesis of IVDD, we collected a total of 18
degenerative NP samples from IVDD patients and determined
the expression of Kindlin-1, Kindlin-2, Kindlin-3, Talin and
Vinculin. Pfirrmann grading system, which is based on magnetic
resonance imaging (MRI), was first used to grade the
degenerative NP specimens (Fig. 1a), and Alcian blue as well
as hematoxylin and eosin (H/E) stainings were utilized to further
confirm the degenerative degree of the NP samples (Fig. 1b).
Immunofluorescent (IF) staining revealed that in human NP
tissues, Kindlin-2 was highly expressed. On the contrary, both
Kindlin-1 and Kindlin-3 were not expressed in human NP cells.
Furthermore, few Vinculin- and Talin- positive cells were
detected in human NP (Fig. 1c, d). Importantly, we found that
Kindlin-2-positive cells were largely lost in NP tissues from
severe IVDD group (Grade IV/V) compared to that from mild
IVDD group (Grade II/III) (Fig. 1c, d). Similarly, the numbers of
both Talin- and Vinculin-positive cells were obviously decreased
in severe versus mild IVDD samples. Results from safranin O and
fast green (SO&FG) staining of IVD sections revealed centralized
NP mass of vacuolated cells enclosed within a layer of
proteoglycan-rich matrix in young (3-month-old) mice (Fig. 1e,
top), while loss of clear boundary between the AF and NP and
the presence of hypertrophic cells in NP were observed in aged
(20-month-old) mice (Fig. 1e, bottom). The histological changes
were quantified according to the histological scoring system for
mouse IVD.23 The histological scores of IVDs in aged mice were
significantly higher than in young mice (Fig. 1f). Similar to
results from human NP samples, IF staining revealed a strong
expression of Kindlin-2, a low expression of Talin and Vinculin
and no expression of Kindlin-1 and Kindlin-3 in NP cells in mice
(Fig. 1g–l). Furthermore, the expression of Kindlin-2 was
drastically decreased in NP tissues from aged versus young
mice (Fig. 1g–l).

Kindlin-2 deletion causes spontaneous and striking IVDD-like
phenotypes in lumbar IVDs in mice
Above results of Kindlin-2 specific expression in NP cells prompt
us to investigate whether Kindlin-2 plays a role in IVD. To this
end, we deleted its expression in Aggrecan-expressing cells by
treating the two-month-old Kindlin-2fl/fl; AggrecanCreERT2 male
mice with five daily i.p. injections of tamoxifen (TM) (referred to
as cKO). Age- and sex-matched mice injected with corn oil were
used as controls (Fig. 2a). IF staining indicated that Kindlin-2 was
highly expressed in NP cells of lumbar IVD in control mice, which
was significantly abolished in NP cells of cKO mice from 1 month
after TM injections (Fig. 2b, c, Supplementary Fig. 3a–d). One
month after TM injections, cKO mice displayed fairly normal

architectures of the lumbar IVD, as revealed by SO&FG staining
(Fig. 2d). However, at 3 months after TM injections, apparently
less proteoglycan matrix enclosing the NP cells of the lumbar
IVD was observed in cKO than that in control mice. Unlike cells in
control mice, cKO NP cells did not accomplish a normal
morphologic shift from vacuolated and round cells to more
flattened cells. Furthermore, loss of clear boundary between
the inner AF and NP and the presence of hypertrophic cells in
the inner AF were observed in cKO, but not in control mice
(Fig. 2d). At 6 months after Kindlin-2 deletion, cell number in the
NP area in cKO mice was dramatically decreased, while the
remaining cells still exhibited a round and vacuolated morphol-
ogy (Fig. 2d, e). At all times, no significant differences in outer
AF, CEP, and disc height index (DHI) percentage in lumbar IVDs
were observed between the two genotypes (Fig. 2d, Supple-
mentary Fig. 3e, f). From 3 months after TM injections, the
histological scores in lumbar IVDs were significantly higher in
cKO than in control (Fig. 2f).
Disruption of ECM homeostasis and increased cell death are

two main characteristics of IVDD. Our results showed that
the severity of both features was positively correlated to the
progression of IVDD in human NP samples (Supplementary Fig.
4a–f). Results from mice at 6 months after TM injection revealed
that Kindlin-2 deletion decreased expression of the anabolic
ECM proteins Aggrecan (Acan) and collagen type II (Col2a1) and
increased that of the catabolic ECM proteins a disintegrin and
metalloproteinase with thrombospondin motif 5 (Adamts5)
and matrix metalloproteinase 13 (Mmp13) in lumbar IVDs
(Fig. 2g–i). Kindlin-2 deletion promoted NP cell apoptosis in
lumbar IVDs (Fig. 2j–n), as demonstrated by increased expres-
sion of proapoptotic Bax and active Caspase3 and down-
regulated expression of the anti-apoptotic Bcl2 as well as
increased number of the TUNEL positive cells.
Notably, similar to result from lumbar IVD, Kindlin-2 was

highly expressed in the NP cells of coccygeal IVD in control
mice, which was drastically decreased in cKO mice from
1 month after TM injection (Supplementary Fig. 5a–c, g).
Surprisingly, no remarkable histological changes in coccygeal
IVDs were observed between control and cKO groups at all time
points (Supplementary Fig. 4d–f). Likewise, there were no
significant changes in DHI percentage and histological scores in
coccygeal IVDs between the two groups of mice (Supplemen-
tary Fig. 4h–j). Collectively, we find that Kindlin-2 loss can cause
spontaneous and progressive IVDD in lumbar but not coccygeal
IVDs in mice.

Kindlin-2 deletion accelerates coccygeal IVDD in the presence of
abnormal mechanical stress in mice
Abnormal mechanical stress is an important contributor of
IVDD. In mice, lumbar IVDs bear much greater mechanical
stress than coccygeal IVDs do. We wondered whether Kindlin-2
deficiency could promote the degenerative progression of IVDs
challenged by abnormal mechanical stress, which may explain
above results in that Kindlin-2 deletion caused marked IVDD-
like phenotypes in lumbar but not coccygeal IVDs. We next
used a coccygeal IVDs needle stab (CINS) model (Fig. 3a), in
which the operated coccygeal IVDs were subjected to
abnormal mechanical stress due to the altered neutral zone
mechanics.24 Results from SO&FG staining of coccygeal
IVDs in CINS control mice revealed degenerated IVDs char-
acterized by NP clefts, bulging inward inner AF and the
presence of hypertrophic AF cells (Fig. 3b). However, more
severe degeneration of coccygeal IVDs in CINS cKO mice was
observed, as manifested by interrupted border between NP
and AF, loss of NP compartment and more hypertrophic AF
cells (Fig. 3b). The histologic scores were dramatically increased
in CINS cKO mice compared to those in CINS control mice
(Fig. 3c). Moreover, micro-computed tomography (μCT) analysis
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Fig. 1 The expression of Kindlin, Talin, and Vinculin proteins in degenerative human nucleus pulposus (NP) specimens and mouse intervertebral
discs (IVDs). a Representative MRI images and general views of NP tissues with different Pfirrmann degrees. Scale bar, 1 cm. b Hematoxylin and eosin
(H/E) and Alcian blue staining of human NP samples. Scale bar, 50 μm. c, d Immunofluorescent (IF) staining of KINDLIN-1, 2, 3 (K1, 2, 3), TALIN, and
VINCULIN in human NP samples. Scale bar, 50 μm. n= 9. e, f Safranin O and Fast Green (SO&FG) staining and histological scores of lumbar IVDs in
young mice (3-month-old) and aged mice (20-month-old). Scale bar, 200 μm. n= 6 (young) and 5 (aged). g–l IF staining of K1, K2, K3, Talin, and
Vinculin in young and aged mice. Scale bar, 200 μm. n= 6 (young) and 5 (aged). NS, no statistical significance, **P< 0.01, ***P< 0.001
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suggested that CINS decreased the DHI percentage, which was
exacerbated by Kindlin-2 deletion (Fig. 3d, e). As revealed
by IF staining and TUNEL staining, CINS disrupted ECM
homeostasis and promoted cell apoptosis in IVDs, which

were aggravated by Kindlin-2 deficiency (Fig. 3f–j). Thus,
these results indicate that Kindlin-2 deletion accelerates the
progression of coccygeal IVDD in the presence of abnormal
mechanical stress.
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Abnormal mechanical stress downregulates Kindlin-2, leading to
Nlrp3 inflammasome activation, ECM catabolism, and cell
apoptosis in NP cells
Previous studies reported that Nlrp3 inflammasome activation
plays a key role in promoting IVDD.25 In human NP samples, the
expression of Nlrp3 inflammasome-related proteins Nlrp3,
Caspase-1 (Casp1) and IL-1β was markedly increased in severe
IVDD group relative to that in mild IVDD group, as revealed by
immunohistochemical (IHC) staining (Fig. 4a). We found that the
expression of Nlrp3, Casp1, and IL-1β was upregulated in lumbar
IVDs of cKO mice compared to that in control mice (Fig. 4b, c). To
further confirm whether Kindlin-2 deletion leads to the Nlrp3
inflammasome activation, we performed Kindlin-2 siRNA knock-
down and overexpression experiments in NP cells with and
without abnormal compression loading (CL) generated by a
customized compression apparatus. Results showed that CL
reduced the level of Kindlin-2 protein in NP cells (Fig. 4d, e).
Consistent with our in vivo results, Kindlin-2 knockdown decreased
the level of Col2a1, increased that of Mmp13 and promoted NP cell
apoptosis (Fig. 4d, e, h, i). Consistent with our previously published
results,26 CL reduced anabolic, but promoted catabolic, protein
expression and accelerated apoptosis in NP cells (Fig. 4d, e, h, i).
Kindlin-2 knockdown exacerbated the cellular and molecular
changes induced by CL (Fig. 4d, e, h, i). In contrast, overexpression
of Kindlin-2 alleviated the CL-induced catabolism and cell
apoptosis in NP cells (Fig. 4d, f, h, i). Meanwhile, enzyme-linked
immunosorbent assay (ELISA) and western blotting analyses
showed that Kindlin-2 knockdown or CL activated Nlrp3 inflamma-
some, as revealed by increased expression of Nlrp3, Casp1, and
IL-1β (Fig. 4d–g). Kindlin-2 knockdown further increased the
expression levels of Nlrp3, Casp1, IL-1β proteins in CL-treated NP
cells, while overexpression of Kindlin-2 suppressed the CL-induced
Nlrp3 inflammasome activation (Fig. 4d–g). IL-1β increased the
expression of Nlrp3 and Casp1 (Fig. 4j, k), which was previously
reported.25 More importantly, we found that IL-1β decreased the
expression of Kindlin-2 and CL further downregulated Kindlin-2
and upregulated Nlrp3 and Casp1 in IL-1β treated NP cells
(Fig. 4j–m). MCC950, a specific inhibitor of Nlrp3 inflammasome
activation, blocked basal and CL-induced Nlrp3 inflammasome
activation in NP cells with Kindlin-2 knockdown (Fig. 4n–p).
Furthermore, MCC950 partially reversed basal and CL-stimulated
ECM catabolism and apoptosis in NP cells with Kindlin-2 knock-
down (Fig. 4n, o, q, r). Collectively, these results suggest that
abnormal mechanical stress stimulates NP cell catabolism and
apoptosis probably by promoting the Nlrp3 inflammasome
activation through at least in part down-regulation of Kindlin-2.

Systemic inhibition of Nlrp3 inflammasome activation limits IVDD
progression caused by Kindlin-2 deficiency in mice
We next investigated whether pharmacological inhibition of Nlrp3
inflammasome activation can attenuate IVDD in cKO mice with or
without CINS. In this experiment, cKO mice with or without CINS
were subjected to i.p. injection of MCC950 or PBS as indicated
(Fig. 5a). IF staining confirmed that MCC950 essentially abolished
the Nlrp3 inflammasome activation (Supplementary Fig. 6a–c).
MCC950 ameliorated the progression of coccygeal IVDD and
decreased the histologic scores in CINS-treated cKO mice, as
revealed by SO&FG staining (Fig. 5b, c). Furthermore, MCC950
improved the DHI percentage in CINS-treated cKO mice, as
revealed by μCT analysis (Fig. 5d, e). MCC950 treatment partially
alleviated ECM catabolism and increased cell apoptosis in IVDs of
CINS cKO mice, as revealed by IF staining and TUNEL staining
(Fig. 5f–j). It should be noted that MCC950 treatment also
improved ECM catabolism and accelerated cell apoptosis in cKO
mice in the absence of CINS (Fig. 5f–j). Moreover, MCC950
treatment alleviated the IVDD-like phenotypes in WT mice with
CINS and increased expression of Kindlin-2 protein in NP cells
(Supplementary Fig. 7a–d).

AAV-mediated Kindlin-2 overexpression improves ECM
homeostasis and apoptosis in primary human NP cells and
alleviates abnormal mechanical stress-induced coccygeal IVDD
progression in rat
We finally determined whether overexpression of Kindlin-2
impacted IVDD progression by using Kindlin-2-expressing adeno-
associated virus (AAV). We first infected human primary NP cells
with AAV expressing enhanced green fluorescent protein (AAV
EGFP) as control AAV (CTL AAV) or Kindlin-2 AAV (K2 AAV). Results
demonstrated a high infection efficiency (Supplementary Fig. 8a,
b). Results from IF staining, ELISA analysis, and TUNEL staining
showed that Kindlin-2 AAV significantly increased Kindlin-2
expression and inhibited the Nlrp3 inflammasome activation,
and protected human NP cells from CL-induced ECM catabolism
and cell apoptosis (Fig. 6a–h). We next injected the CTL AAV or
Kindlin-2 AAV directly into the rat coccygeal IVDs and applied a
coccygeal IVDs compression (CIC) model to induce IVDD (Fig. 6i).
Results showed that the strong GFP signal was detected in NP
cells at three weeks after AAV injection (Supplementary Fig. 8c, d).
Furthermore, administration of Kindlin-2 AAV increased Kindlin-2
expression (Fig. 6m, p), inhibited the Nlrp3 inflammasome
activation (Supplementary Fig. 9a–d), and alleviated abnormal
mechanical stress-induced coccygeal IVDD, as revealed by
improved IVD Pfirrmann grades, histological scores, ECM home-
ostasis and cell apoptosis (Fig. 6j–s). In addition, AAV-mediated
overexpression of Kindlin-2 had no significant effect on IVD
structure in rats without loading (Supplementary Fig. 10a–d).

DISCUSSION
In this study, we for the first time to our knowledge demonstrate
an important role of the FA protein Kindlin-2 in NP cells in
maintaining the IVD homeostasis. Specifically, we find that Kindlin-
2, but not Kindlin-1 and Kindlin-3, is highly expressed in NP cells,
but not in AF or CEP cells, in the IVD tissues. We demonstrate that
inducible deletion of Kindlin-2 in NP cells in adult mice causes
spontaneous striking IVDD phenotypes in lumbar IVDs and largely
accelerates the progression of IVDD induced by abnormal
mechanical stress in coccygeal IVDs. These important findings
uncover a previously unknown role of Kindlin-2 through its
expression in NP cells in maintaining integrity of the IVD
homeostasis. These results, along with our observations that
Kindlin-2 is largely downregulated in NP cells in aged mice and
severe IVDD patients, indicate that Kindlin-2 loss may play an
essential role in the pathogenesis of IVDD development and
progression in humans, which requires further investigation.
While fairly normal architectures of the lumbar IVDs are

observed at one month after TM injections, mutant mice start to
display marked IVDD phenotypes, which highly mimic those
observed in human IVDD patients, at 3 months after TM injections,
which becomes worse over time. Kindlin-2 loss dramatically
increases the histological scores and decreases DHI percentage in
lumbar IVDs at 3 or 6 months after TM injections. At the molecular
level, Kindlin-2 loss decreases expression of Acan and Col2a1 and
increases that of Mmp13 and Adamts5 and stimulates dramatic
ECM catabolism in NP cells. Kindlin-2 loss accelerates NP cell
apoptosis by increasing the expression levels of active Caspase3
and Bax proteins and decreasing that of Bcl2 protein. Thus,
Kindlin-2 loss impairs the balance of ECM homeostasis and
promotes NP cell death in IVDs, two main characteristics of IVDD
in humans.27,28

We provide several lines of convincing evidence supporting that
Kindlin-2 deficiency causes IVDD by promoting Nlrp3 inflamma-
some activation in NP cells. First, Kindlin-2 loss increases expression
of Nlrp3 and IL-1β in NP cells in vitro and in vivo. Second, IL-1β,
which is known to activate Nlrp3 inflammasome and plays a key
role in the pathogenesis of IVDD,25 downregulates Kindlin-2
expression and, in the meantime, increases that of Nlrp3 and
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Casp1 in dose- and time-dependent manners in NP cells. Third,
pharmacological inhibition of Nlrp3 inflammasome activation
blocks Kindlin-2 loss induced ECM catabolism and apoptosis in
NP cells in vitro and attenuates the progression of IVDD caused by

Kindlin-2 loss in mice. Consistent with our findings, recent studies
reported that the dysregulated Nlrp3 inflammasome activation is
linked to the pathogenesis of other chronic diseases, including
neurodegenerative diseases and degenerative osteoarthritis.29,30
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Furthermore, results from several studies suggest that targeting
Nlrp3 inflammasome has a therapeutic effect on IVDD.25,31 Results
from Tang et al.32 demonstrated that honokiol could alleviate
oxidative stress-induced ECM degradation and NP cell apoptosis by
inhibiting thioredoxin interacting protein/Nlrp3/Casp1/IL-1β signal-
ing axis. Zhao et al33 reported that cortistatin could protect against
IVDD by suppressing mitochondrial reactive oxygen species (ROS)-
dependent activation of the Nlrp3 inflammasome.
It is interesting to note that the IVDD phenotypes caused by

Kindlin-2 deficiency are much severe in lumbar IVDs than those in
coccygeal IVDs. In fact, at the histological level, the IVDD
phenotypes are subtle in coccygeal IVDs in mutant mice even at
3 or 6 months after TM injections, even though marked catabolic
gene expression and NP cell apoptosis occur in coccygeal IVDs at
these time points. This difference is probably related to the fact
that coccygeal IVDs usually bear smaller mechanical force than
lumbar IVDs do under physiological conditions.34 In support of this
notion, we find that, in the presence of abnormal mechanical
stress generated via needle stab, Kindlin-2 loss greatly accelerates
development and progression of IVDD in coccygeal IVD in adult
mice. It is now widely believed that abnormal mechanical stress is
one important contributor of IVDD.35,36 In human lumbar disc
degenerative disease, the majority of spinal disc herniations occur
in the lumbar spine at L4-S1 segments, which bear greater
mechanical loading than other segments.37 Our in vitro gain- and
loss-of-function studies demonstrate that either Kindlin-2 knock-
down or CL treatment promotes ECM catabolism and cell
apoptosis. Furthermore, knockdown of Kindlin-2 exacerbates,
while overexpression of Kindlin-2 alleviates, these abnormalities
induced by CL treatment. Thus, our results demonstrate that
Kindlin-2 loss induces the onset of IVDD and promotes the
progression of IVDD under abnormal mechanical stress. Interest-
ingly, we recently reported that Kindlin-2 loss in osteocytes causes
significant mechanical property defects and bone loss in weight-
bearing long bones, such as ulna, tibia and radius, but not in non-
weight-bearing calvarial bones. Furthermore, the loss of Kindlin-2
impairs skeletal responses to mechanical loading stimulation of
bone formation in weight-bearing long bones.22

In this study, we find that both Kindlin-2 loss or abnormal
mechanical stress activates the apoptotic pathway in NP cells,
leading to dramatic cell death. In addition, we provide further
evidence that Kindlin-2 loss accelerates NP cell apoptosis by
activating the IL-1β -Nlrp3 inflammasome axis, which in turn
downregulates Kindlin-2, thus creating a vicious cycle in NP cells.
First, Kindlin-2 loss increases apoptosis in NP cells, activates Nlrp3
inflammasome, and promotes the release of IL-1β. Second, IL-1β,
which is known to induce NP cell apoptosis38,39, decreases
expression of Kindlin-2 and promotes Nlrp3 inflammasome
activation in NP cells, and these changes can be further enhanced
by mechanical stress. Importantly, results from the present study
show that breaking the vicious cycle by pharmacological
inhibition of the Nlrp3 inflammasome activation prevents ECM
catabolism, NP cell apoptosis, and IVDD progression induced by
Kindlin-2 loss and abnormal mechanical stress.
IVDD is the primary cause of chronic low back pain, which is a

public health problem with major social and economic burdens.40

Of translational significance, we demonstrate that AAV-mediated
expression of Kindlin-2 in IVD tissues benefits ECM homeostasis
and inhibits cell apoptosis in human primary NP cells and
alleviates coccygeal IVDD progression in rats, thus defining a
potential therapeutic target for IVDD.
While, unlike in humans, the NP vacuolar structure in mice

remains into adulthood and beyond,41 we find that the amount of
the NP vacuolar structure is decreased with increased age in
control mice, which is delayed in the mutant mice. The underlying
molecular mechanism(s) remain to be determined.42

It should be pointed out that the expression level of Kindlin-2
protein is extremely low in AF cells in IVDs. While we cannot

exclude the possibility that the low Kindlin-2 expression in these
cells contributes to the IVDD-like phenotypes in the transgenic
mice, this contribution should be very limited. The IVDD-like
phenotypes should be primarily due to the deletion of Kindlin-2 in
the NP cells, which highly express Kindlin-2 protein.
Our results show that Kindlin-2 protein is almost undetectable

in the endplate chondrocytes in adult mice. This may explain why
we do not observe any marked phenotypes in the endplate in the
mutant mice, although the Cre protein driven by the Aggrecan
gene promoter may be expressed in these cells.
There are several limitations to this study. First, majority of data

from this study were obtained from experiments using small
animals, including mice and rats. We plan to investigate the role of
Kindlin-2 in IVD in primates in our future study. Second, while our
results show that administration of Kindlin-2 AAV by direct
injection into IVDs can alleviate abnormal mechanical stress-
induced degeneration of rat coccygeal IVDs, the long-term
therapeutic effect, and potential side effects are still unclear and
need to be studied in the long period experiment. Third, although
our results indicate that Kindlin-2 can maintain IVD homeostasis
by inhibiting Nlrp3 inflammasome activation in NP cells, detailed
molecular mechanisms require further investigation.
In conclusion, we demonstrate that the FA protein Kindlin-2

maintains IVD homeostasis to protect against IVDD by suppressing
Nlrp3 inflammasome activation. This work may shed new light on
the pathogenesis and therapy of IVDD.

MATERIALS AND METHODS
Patient nucleus pulposus (NP) samples
Human NP samples were obtained from 18 patients (8 females
and 10 males; mean age 47.9 ± 16.3 years) who were diagnosed
with lumbar disc herniation and underwent nucleotomy opera-
tions (Supplementary Table 1). MRI-based Pfirrmann grading
system was applied to assess the degenerative grade of the NP
specimens.43 Grade II (n= 3)/grade III (n= 6) NP specimens were
considered as a mild IVD degeneration (IDD) group, and Grade IV
(n= 5)/grade V (n= 4) NP specimens were considered as a severe
IDD group.44 Ethics approval was obtained from the Ethics
Committee of Tongji Medical College, Huazhong University of
Science and Technology (No. [2021] IEC (134)). Informed consent
was obtained from each participant enrolled in this study.

Animals
The Kindlin-2fl/fl mice were developed by our lab as previously
described.10 The AggrecanCreERT2 knockin mice were described
previously.45 To delete Kindlin-2 in aggrecan-expressing cells, the
Kindlin-2fl/fl mice were crossed with AggrecanCreERT2 mice to get
Kindlin-2fl/+; AggrecanCreERT2 mice, which were then backcrossed
with Kindlin-2fl/fl mice to generate Kindlin-2fl/fl; AggrecanCreERT2 mice
(Supplementary Fig. 1). Two-month-old Kindlin-2fl/fl; Aggrecan-
CreERT2 male mice were treated with daily i.p. injections of
tamoxifen (Sigma-Aldrich; T5648) (1 mg per 10 g body weight)
for five days to delete Kindlin-2 expression in aggrecan-positive
cells. Sex- and age-matched Kindlin-2fl/fl; AggrecanCreERT2 mice
treated with corn oil (Sigma-Aldrich; C8267) were considered as
control mice. We only used male mice for our experiments in
order to minimize the use of mice and keep consistency. Mice
were group-housed at 20–24 °C and in a cycle of 12-h dark/12-h
light. All experimental protocols of animal experiments were
approved by the IACUC of SUSTC (No. SUSTC-JY2020119).

Coccygeal IVDs needle stab IDD model
Two-month-old Kindlin-2fl/fl; AggrecanCreERT2 mice were subjected
with tamoxifen or corn oil via i.p. injection. One month later, CINS
IDD model was used to induce IDD as previously described.24

Briefly, anesthesia was administered using 2.5% avertin. To locate
the position of coccygeal IVDs for needle stab, we performed a
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small sagittal incision was from Co6 to Co8 in mice tail. Then, we
inserted a 31-G needle for 1.5 mm into Co6-7 IVD along vertical
direction and parallel to the endplates. Subsequently, the needle
was rotated by 180° in the axial direction and held for 10 s. Co7–8
disc was left intact to be a segment of contrast. For IDD
experiment, IVDs were obtained at 6 weeks after surgery. For
therapeutic experiment, the operated mice were intraperitoneally
injected with Nlrp3 inflammasome activation inhibitor MCC950
(Selleck; S7809) at dose of 10mg/kg body weight or equivalent
volume of PBS every 2 days for 6 weeks, then the mice were
sacrificed.

Cell culture and treatments
NP cell line was described in previous studies.46,47 The cells were
cultured in DMEM with 5% CO2 at 37 °C. The DMEM contains 10%
fetal bovine serum (Gibco; 10099-141) and is supplemented with
1% penicillin–streptomycin (Hyclone; SV30010). We replaced
medium every three days and used cells at passage 5–10.
Human primary NP cells were harvested from the part of above

patients’ NP samples as previously described.48 The obtained NP
cells were cultured in DMEM/F-12 (Hyclone; SH30023.01) contain-
ing 10% FBS (Gibco; 10099-141) supplemented with 1%
penicillin–streptomycin (Hyclone; SV30010) with 5% CO2 at
37 °C. We replaced the culture medium every three days and
used cells at passage 2.
For CL experiment, a customized compression apparatus (ZL

201120082425.3) was applied. This apparatus provided 1 MPa CL
to mimic the abnormal mechanical loading condition in IVD.36,49,50

NP cells with or without small interfering RNA (siRNA) transfection,
plasmid transfection, Nlrp3 inflammasome activation inhibitor
MCC950 treatment (1 μmol·L−1; Selleck; S7809) or AAV infection,
were seeded on cell culture plates and placed in the compression
apparatus for 24 h.
For siRNA transfection, three independent Kindlin-2-siRNAs and

a negative control (NC) siRNA (GenePharma) were transfected in
NP cells by LipofectamineTM RNAiMAX Transfection Reagent
(50 pmol per 105 cells; ThermoFisher Scientific; 13778150). The
most effective target sequence for Kindlin-2-siRNA (#3) was used
(Supplementary Fig. 2 and Supplementary Table 2). For plasmid
transfection, NC plasmid or Kindlin-2 plasmid (OBIO) were
transfected in NP cells by LipofectamineTM 3000 Transfection
Reagent (5 μg per 105 cells; Invitrogen; L3000015). For AAV
infection, NP cells were infected with AAV5 expressing enhanced
green fluorescent protein (AAV EGFP) as control AAV5 or Kindlin-2
AAV5 (K2 AAV5) (OBIO) at a MOI of 100.

Western blotting analyses
NP cells and tissues were lysed with RIPA buffer (Sigma-Aldrich;
R0278). After centrifugation (13 000 r·min−1, 4 °C, 10 min), the
protein supernatants were isolated from the lysate and used for
analysis. Proteins were separated in SDS-PAGE. Then, we blocked
membranes using 5% skimmed milk (room temperature, 1 h) after
protein transfer, and they were incubated with primary antibody
(4 °C, overnight). Next, we washed membranes by TBST (three
times) and they were incubated with secondary antibodies (room
temperature, 1 h). The enhanced chemiluminescence technique
was used to detect the bands. Antibody information are listed in
Supplementary Table 3.

Histology and immunostaining assays
Human NP samples were fixed for 48 h using 4% paraformalde-
hyde (PFA), dehydrated, paraffin-embedded, and sectioned at
5 μm. The sections were stained by Alcian blue and H/E. Mice IVDs
(L4-5 lumbar discs, Co6-7, 7–8 coccygeal discs) were fixed for 48 h
in 4% PFA, decalcified for 14 days with 10% ethylenediaminete-
traacetic acid (EDTA; pH 7.2), dehydrated, paraffin embedded and
sectioned at 5 μm before staining. Rat IVDs (Co8-9 coccygeal discs)
were fixed for 48 h in 4% PFA, decalcified for 8 weeks with 10%

EDTA, dehydrated, paraffin embedded and sectioned at 5 μm. The
prepared sections were stained by safranin O and fast green
(SO&FG). The histological scores of IVDs were assessed according
to histological scoring system for IVD as previously described.23

For IHC staining, sections were deparaffinized by xylene, and
then they were rehydrated using ethanol. Citrate buffer
(0.1 mol·L−1, pH 6.0) was used to perform antigen-retrieval. After
blocked using peroxidase-blocking solution and normal horse
serum, sections were incubated with primary antibodies (4 °C,
overnight). Then, sections were incubated with biotinylated IgG
and streptavidin-horseradish peroxidase. DAB Peroxidase Sub-
strate Kit was used to visualize the immunoreactivity. Finally,
sections were counterstained by hematoxylin, and then mounted.
Antibody information are listed in Supplementary Table 3.
For IF staining, sections were prepared in the same way of IHC

staining. After blocked with QuickBlock™ Blocking Buffer (Beyo-
time) added with Triton 100 (Sigma-Aldrich), sections were
incubated with primary antibodies (4°C, overnight). Then, sections
were incubated with anti-mouse/rabbit Alexa Fluor 488 or
568 secondary antibodies. Finally, sections were examined by
confocal microscope and evaluated using ImageJ software.
Antibody information are listed in Supplementary Table 3.

Micro-Computed Tomography (μCT) analysis
After anesthesia with 2.5% avertin, the lumbar and caudal spine
of mice was scanned with source voltage of 60 kV and current of
100 μA resulting in 18 μm image pixel size by the high-
resolution μCT scanner (Bruker, Skyscan1276). IVD height and
the length of the adjacent vertebral body (L4-5, Co6-7, 7–8)
were obtained by measuring the midline and the lines of 1/4
IVD’s width from the midline on both sides. The DHI was
calculated by the mean of the 3 measurements of IVD height
divided by the length of adjacent vertebral body. DHI change
(%DHI) was calculated by a percentage of post-DHI/pre-DHI as
previously described.51

Apoptosis analysis
TUNEL staining was used to analyze cell apoptosis. For NP cells
seeded in the culture plate, after fixed for 15 min in 4% PFA, cells
were permeabilized for 10min using 0.1% TritonX-100. Next, the
cells were washed by PBS and stained by TUNEL staining
(Beyotime; C1088, C1090) at 37 °C in the dark for 1 h. For paraffin
sections, after the processes of deparaffinization and rehydration,
sections were incubated using protein Kinase (20 μg·mL−1) for
15min at 37 °C. Then, the sections were washed by PBS and
stained with TUNEL staining. Finally, apoptotic cells were assessed
by the confocal microscope (A1R; Nikon). The apoptosis rate of NP
cells was evaluated by Annexin V-FITC/PI Apoptosis Detection Kit
(Beyotime; C1062). Briefly, after trypsinization, NP cells were
resuspended in 500 μL binding buffer, followed by the addition of
5 μL Annexin V-FITC and PI. After incubated in the dark for 10 min
at room temperature, the apoptosis rate was analyzed by
FACSCanto Analyzer (BD Biosciences).

Enzyme-linked immunosorbent assay (ELISA)
The conditioned media of cultured NP cells with different
treatments were stored at −80 °C in a freezer until detection.
The levels of interleukin (IL)-1β were measured using the rat IL-1β
ELISA Kit (ABclonal; RK00009) or human IL-1β ELISA Kit (ABclonal;
RK00001) following the manufacturer’s instructions.

Coccygeal IVDs compression model
Three-month-old Sprague Dawley rats were administrated with
control AAV5 or K2 AAV5 (3.2 × 1010 particles in 2 μL) by direct
injection into the rat coccygeal IVDs with a 33-gauge needle
(Hamilton, Switzerland). Three weeks later, the CIC IDD model was
used to induce IDD as previously described35,50. Briefly, anesthesia
was administered using isoflurane (RWD; R510-22-4). Then, C8 and
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C9 caudal vertebras were attached by carbon fiber rings, through
0.8-mm Kirschner wires. Axial loading was applied using four
0.50-N·mm−1 calibrated springs installed over each rod. The
compressive loading provided by the device is 1.3 MPa. Sham
animals were administrated with PBS (2 μL) by direct injection into
the coccygeal IVDs 3 weeks before the surgery, and also attached
with the loading device, but no compressive pressure was exerted
onto the IVDs. The rats were examined with MRI (United Imaging;
uMR790) and sacrificed at 2 weeks after the surgery.

Statistical analysis
Data were presented as mean ± standard deviation (SD) from at
least three independent experiments. Unpaired student’s
t tests were applied in the analysis of two-group parameters.
One-way analysis of variance was used in comparisons of
multiple groups, followed by Tukey’s post hoc test. All
statistical analyses were carried out with GraphPad Prism
6 software (GraphPad Software Inc.). P < 0.05 was considered
statistically significant.
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