Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How adoptive transfer of components of the donor immune system boosts GvL and prevents GvHD in HLA-haploidentical hematopoietic transplantation for acute leukemia

Abstract

Why a new Perspective in allogeneic hematopoietic transplantation? A summary. Nowadays, for high-risk acute leukemia patients without an HLA-matched donor (sibling or volunteer), hematopoietic transplants that use HLA-haploidentical grafts combined with enhanced post transplant immune suppression (i.e., high-dose cyclophosphamide) are widely used. They are associated with low TRM rates. However, they are also associated with significant chronic GvHD while they only partially abrogate leukemia relapse rates. One may speculate that post-transplant immune suppression, required for GvHD prophylaxis, weakens the anti-leukemic potential of the graft. Historically, haploidentical transplants became feasible for the first time through transplantation of T cell-depleted peripheral blood hematopoietic progenitor cells. Lack of post-transplant immune suppression allowed the emergence of donor-versus-recipient NK-cell alloreactions that eradicated AML. In an attempt to improve these results we recently combined an age-adapted, irradiation-based conditioning regimen with transplant of T-cell-depleted grafts and infusion of regulatory and conventional T cells, without any post transplant immune suppression. With the obvious limitations of a single center experience, this protocol resulted in extremely low relapse and chronic GvHD rates and, consequently, in a remarkable 75% chronic GvHD/relapse-free survival in over 50 AML patients up to the age of 65 many of whom at high risk of relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Appelbaum FR, Forman SJ, Negrin RS, Blume KG (eds). Thomas’ Hematopoietic Cell Transplantation. 4th ed. Wiley-Blackwell, Oxford, 2009.

  2. Anasetti C, Aversa F, Velardi A. Hematopoietic cell transplantation from human leukocyte antigen partially matched related donors. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG (eds). Thomas’ Hematopoietic Cell Transplantation. 4th ed. Wiley-Blackwell, Oxford, 2009. pp 657-74.

  3. Mancusi A, Ruggeri L, Velardi A. Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation. Blood. 2016;128:2616–23. https://doi.org/10.1182/blood-2016-07-730564.

    Article  CAS  PubMed  Google Scholar 

  4. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:132. https://doi.org/10.1038/nrclinonc.2015.128.

    Article  CAS  PubMed  Google Scholar 

  5. O’Donnell PV, Luznik L, Jones RJ, Vogelsang GB, Leffell MS, Phelps M, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2002;8:377–86. https://doi.org/10.1053/bbmt.2002.v8.pm12171484.

    Article  Google Scholar 

  6. Luznik L, O’Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50. https://doi.org/10.1016/j.bbmt.2008.03.005.

    Article  CAS  Google Scholar 

  7. McCurdy SR, Kanakry JA, Showel MM, Tsai HL, Bolaños-Meade J, Rosner GL, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31. https://doi.org/10.1182/blood-2015-01-623991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ciurea SO, Zhang MJ, Bacigalupo AA, Bashey A, Appelbaum FR, Aljitawi OS, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40. https://doi.org/10.1182/blood-2015-04-639831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Solomon SR, St Martin A, Shah NN, Fatobene G, Al Malki MM, Ballen KK, et al. Myeloablative vs reduced intensity T-cell-replete haploidentical transplantation for hematologic malignancy. Blood Adv. 2019;3:2836–44. https://doi.org/10.1182/bloodadvances.2019000627.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gooptu M, Romee R, St Martin A, Arora M, Al Malki M, Antin JH, et al. HLA-haploidentical vs matched unrelated donor transplants with posttransplant cyclophosphamide-based prophylaxis. Blood. 2021;138:273–82. https://doi.org/10.1182/blood.2021011281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raiola AM, Angelucci E, Sica S, Bacigalupo A. Haploidentical bone marrow transplants with post transplant cyclophosphamide on day + 3 + 5: The Genova protocol. Blood Rev. 2022;62:101031. https://doi.org/10.1016/j.blre.2022.101031.

    Article  CAS  PubMed  Google Scholar 

  12. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl J Med. 1998;339:1186–93. https://doi.org/10.1056/NEJM199810223391702.

    Article  CAS  PubMed  Google Scholar 

  13. Aversa F, Terenzi A, Tabilio A, Falzetti F, Carotti A, Ballanti S, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54. https://doi.org/10.1200/JCO.2005.09.117.

    Article  PubMed  Google Scholar 

  14. Ciceri F, Labopin M, Aversa F, Rowe JM, Bunjes D, Lewalle P, et al. Acute Leukemia Working Party (ALWP) of European Blood and Marrow Transplant (EBMT) Group. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81. https://doi.org/10.1182/blood-2008-02-140095.

    Article  CAS  PubMed  Google Scholar 

  15. Ruggeri L, Capanni M, Casucci M, Volpi I, Tosti A, Perruccio K, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333–9. https://doi.org/10.1182/blood.V94.1.333.413a31_333_339.

    Article  CAS  PubMed  Google Scholar 

  16. Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097–100. https://doi.org/10.1126/science.1068440.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Kärre K. Immunology. A perfect mismatch. Science. 2002;295:2029–31. https://doi.org/10.1126/science.1070538.

    Article  PubMed  Google Scholar 

  18. Ruggeri L, Mancusi A, Capanni M, Urbani E, Carotti A, Aloisi T, et al. Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia: challenging its predictive value. Blood. 2007;110:433–40. https://doi.org/10.1182/blood-2006-07-038687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Velardi A, Ruggeri L, Mancusi A, Aversa F, Christiansen FT. Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation: a tool for immunotherapy of leukemia. Curr Opin Immunol. 2009;21:525–30. https://doi.org/10.1016/j.coi.2009.07.015.

    Article  CAS  PubMed  Google Scholar 

  20. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–49. https://doi.org/10.1126/science.1198687.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parham P. MHC class I molecules and KIRs in human history, health and survival. Nat Rev Immunol. 2005;5:201–14. https://doi.org/10.1038/nri1570.

    Article  CAS  PubMed  Google Scholar 

  22. Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319:675–8. https://doi.org/10.1038/319675a0.

    Article  ADS  PubMed  Google Scholar 

  23. Colonna M, Brooks EG, Falco M, Ferrara GB, Strominger JL. Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C. Science. 1993;260:1121–4. https://doi.org/10.1126/science.8493555.

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Haas P, Loiseau P, Tamouza R, Cayuela JM, Moins-Teisserenc H, Busson M, et al. NK-cell education is shaped by donor HLA genotype after unrelated allogeneic hematopoietic stem cell transplantation. Blood. 2011;117:1021–9. https://doi.org/10.1182/blood-2010-02-269381.

    Article  CAS  PubMed  Google Scholar 

  25. Leung W, Iyengar R, Turner V, Lang P, Bader P, Conn P, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172:644–50. https://doi.org/10.4049/jimmunol.172.1.644.

    Article  CAS  PubMed  Google Scholar 

  26. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50. https://doi.org/10.1038/nm915.

    Article  CAS  PubMed  Google Scholar 

  27. Martelli MF, Di Ianni M, Ruggeri L, Falzetti F, Carotti A, Terenzi A, et al. HLA-haploidentical transplantation with regulatory and conventional T cell adoptive immunotherapy prevents acute leukemia relapse. Blood. 2014;124:638–44. https://doi.org/10.1182/blood-2014-03-564401.

    Article  CAS  PubMed  Google Scholar 

  28. Booth NJ, McQuaid AJ, Sobande T, Kissane S, Agius E, Jackson SE, et al. Different proliferative potential and migratory characteristics of human CD4+ regulatory T cells that express either CD45RA or CD45RO. J Immunol. 2010;184:4317–26. https://doi.org/10.4049/jimmunol.0903781.

    Article  CAS  PubMed  Google Scholar 

  29. Ruggeri L, Carotti A, Pierini A, Falzetti F, Terenzi A, Urbani E, et al. How adoptive immunotherapy with conventional T and regulatory T cells exerts a Gvl effect without GvHD, after haploidentical hematopoietic transplantation. Blood. 2018;132:3333. https://doi.org/10.1182/blood-2018-99-112512.

    Article  Google Scholar 

  30. Pierini A, Ruggeri L, Carotti A, Falzetti F, Saldi S, Terenzi A, et al. Haploidentical age-adapted myeloablative transplant and regulatory and effector T cells for acute myeloid leukemia. Blood Adv. 2021;5:1199–208. https://doi.org/10.1182/bloodadvances.2020003739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong JY, Liu A, Schultheiss T, Popplewell L, Stein A, Rosenthal J, et al. Targeted total marrow irradiation using three-dimensional image-guided tomographic intensity-modulated radiation therapy: an alternative to standard total body irradiation. Biol Blood Marrow Transpl. 2006;12:306–15. https://doi.org/10.1016/j.bbmt.2005.10.026.

    Article  Google Scholar 

  32. Rosenthal J, Wong J, Stein A, Qian D, Hitt D, Naeem H, et al. Phase 1/2 trial of total marrow and lymph node irradiation to augment reduced-intensity transplantation for advanced hematologic malignancies. Blood. 2011;117:309–15. https://doi.org/10.1182/blood-2010-06-288357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jensen LG, Stiller T, Wong JYC, Palmer J, Stein A, Rosenthal J. Total marrow lymphoid irradiation/fludarabine/melphalan conditioning for allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2018;24:301–7. https://doi.org/10.1016/j.bbmt.2017.09.019.

    Article  CAS  Google Scholar 

  34. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117:3921–8. https://doi.org/10.1182/blood-2010-10-311894.

    Article  CAS  PubMed  Google Scholar 

  35. Fang M, Storer B, Estey E, Othus M, Zhang L, Sandmaier BM, et al. Outcome of patients with acute myeloid leukemia with monosomal karyotype who undergo hematopoietic cell transplantation. Blood. 2011;118:1490–4. https://doi.org/10.1182/blood-2011-02-339721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ciurea SO, Labopin M, Socie G, Volin L, Passweg J, Chevallier P, et al. Relapse and survival after transplantation for complex karyotype acute myeloid leukemia: a report from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation and the University of Texas MD Anderson Cancer Center. Cancer. 2018;124:2134–41. https://doi.org/10.1002/cncr.31311.

    Article  CAS  PubMed  Google Scholar 

  37. Walter RB, Gyurkocza B, Storer BE, Godwin CD, Pagel JM, Buckley SA, et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia. 2015;29:137–44. https://doi.org/10.1038/leu.2014.173.

    Article  CAS  PubMed  Google Scholar 

  38. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34:329–36. https://doi.org/10.1200/JCO.2015.63.3826.

    Article  PubMed  Google Scholar 

  39. Stein A, Palmer J, Tsai NC, Al Malki MM, Aldoss I, Ali H, et al. Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transpl. 2017;23:618–24. https://doi.org/10.1016/j.bbmt.2017.01.067.

    Article  Google Scholar 

  40. Pierini A, Strober W, Moffett C, Baker J, Nishikii H, Alvarez M, et al. TNF-a priming enhances CD41FoxP31 regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood. 2016;128:866–71. https://doi.org/10.1182/blood-2016-04-711275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Del Papa B, Ruggeri L, Urbani E, Baldoni S, Cecchini D, Zei T, et al. Clinical-grade-expanded regulatory T cells prevent graft-versus-host disease while allowing a powerful T cell-dependent graft-versus-leukemia effect in murine models. Biol Blood Marrow Transpl. 2017;23:1847–51. https://doi.org/10.1016/j.bbmt.2017.07.009.

    Article  CAS  Google Scholar 

  42. Honaker Y, Hubbard N, Xiang Y, Fisher L, Hagin D, Sommer K, et al. Gene editing to induce FOXP3 expression in human CD41 T cells leads to a stable regulatory phenotype and function. Sci Transl Med. 2020;12:eaay6422. https://doi.org/10.1126/scitranslmed.aay6422.

    Article  CAS  PubMed  Google Scholar 

  43. Mielcarek M, Furlong T, O’Donnell PV, Storer BE, McCune JS, Storb R, et al. Post-transplantation cyclophosphamide for prevention of graft-versus-host disease after HLA-matched mobilized blood cell transplantation. Blood. 2016;127:1502–8. https://doi.org/10.1182/blood-2015-10-672071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamae H. Systematic overview of HLA-matched allogeneic hematopoietic cell transplantation with post-transplantation cyclophosphamide. Int J Hematol. 2022;116:465–81. https://doi.org/10.1007/s12185-022-03428-3.

    Article  CAS  PubMed  Google Scholar 

  45. Broers AEC, de Jong CN, Bakunina K, Hazenberg MD, van Marwijk Kooy M, de Groot MR, et al. Posttransplant cyclophosphamide for prevention of graft-versus-host disease: results of the prospective randomized HOVON-96 trial. Blood Adv. 2022;6:3378–85. https://doi.org/10.1182/bloodadvances.2021005847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mehta RS, Saliba RM, Rondon G, Al-Atrash G, Bashir Q, Hosing CM, et al. Post-Transplantation Cyclophosphamide Versus Tacrolimus and Methotrexate Graft-Versus-Host Disease Prophylaxis for HLA-Matched Donor Transplantation. Transpl Cell Ther. 2022;28:695.e1–695.e10. https://doi.org/10.1016/j.jtct.2022.07.021.

    Article  CAS  Google Scholar 

  47. Nagler A, Labopin M, Swoboda R, Kulagin A, Labussière-Wallet H, Rovira M, et al. Allogeneic stem cell transplantation for patients with acute myeloid leukemia (AML) in second complete remission (CR2) transplanted from unrelated donors with post-transplant cyclophosphamide (PTCy). A study on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transpl. 2023;58:552–7. https://doi.org/10.1038/s41409-023-01940-6.

    Article  CAS  Google Scholar 

  48. Bolaños-Meade J, Hamadani M, Wu J, Al Malki MM, Martens MJ, Runaas L, et al. Post-transplantation cyclophosphamide-based graft-versus-host disease prophylaxis. N. Engl J Med. 2023;388:2338–48. https://doi.org/10.1056/NEJMoa2215943.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pierini A, Ruggeri L, Saldi S, Tricarico S, Marzuttini F, Viglione V, et al. HLA-Matched Treg/Tcon allogeneic hematopoietic cell transplantation is safe and ensures remarkable chronic GvHD/leukemia free survival in high-risk leukemia patients. Blood. 2022;140:2133–4. https://doi.org/10.1182/blood-2022-169351.

    Article  Google Scholar 

Download references

Acknowledgements

LR is PI of the project “Adoptive immunotherapies with regulatory and conventional T cells and/or Natural Killer cells: safe and effective strategies to minimize the risk of leukemia relapse after allogeneic hematopoietic stem cell transplantation”, RF-2016-02364383 funded by Italian Ministry of Health. AP is PI of the project “Insights into Treg biology and T cell-based cancer immunotherapies”, START-UP grant number 20456 funded by Associazione Italiana per la Ricerca sul Cancro.

Author information

Authors and Affiliations

Authors

Contributions

AV wrote the article; AM, LR, and AP edited the article.

Corresponding author

Correspondence to Andrea Velardi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velardi, A., Mancusi, A., Ruggeri, L. et al. How adoptive transfer of components of the donor immune system boosts GvL and prevents GvHD in HLA-haploidentical hematopoietic transplantation for acute leukemia. Bone Marrow Transplant 59, 301–305 (2024). https://doi.org/10.1038/s41409-024-02199-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-024-02199-1

Search

Quick links