Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fecal microbiota transplantation in capsules for the treatment of steroid refractory and steroid dependent acute graft vs. host disease: a pilot study

Abstract

Acute graft-versus-host disease (aGvHD) is a serious complication of allogeneic hematopoietic stem-cell transplantation with limited treatment options. The gut microbiome plays a critical role in aGvHD pathogenesis. Fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach to restore gut microbial diversity. In this prospective pilot study, 21 patients with steroid-resistant or steroid-dependent lower gastrointestinal aGvHD received FMT in capsule form. At 28 days after the first FMT, the overall response rate was 52.4%, with 23.8% complete and 28.6% partial responses. However, sustained responses were infrequent, with only one patient remaining aGvHD-free long-term. FMT was generally well-tolerated. Microbiome analysis revealed dysbiosis in pre-FMT patient stool samples, with distinct microbial characteristics compared to donors. Following FMT, there was an increase in beneficial Clostridiales and a decrease in pathogenic Enterobacteriales. These findings highlight the potential of FMT as a treatment option for steroid-resistant aGvHD. Trial registration number NCT #03214289.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patient trajectories following FMT.
Fig. 2: Response and overall survival following FMT.
Fig. 3: Microbiota characterization of pre-FMT patients’ samples.
Fig. 4: Microbiota dynamics as a response to FMT treatment.

Similar content being viewed by others

Data availability

Data are available upon request from the corresponding author and approval of data transfer from the IRB.

References

  1. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeiser R, von Bubnoff N, Butler J, Mohty M, Niederwieser D, Or R, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Engl J Med. 2020;382:1800–10.

    Article  PubMed  Google Scholar 

  3. MacMillan ML, DeFor TE, Weisdorf DJ. The best endpoint for acute GVHD treatment trials. Blood J Am Soc Hematol. 2010;115:5412–7.

    CAS  Google Scholar 

  4. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21:1373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8:339ra371–339ra371.

    Article  Google Scholar 

  6. Stein-Thoeringer C, Nichols K, Lazrak A, Docampo M, Slingerland A, Slingerland J, et al. Lactose drives Enterococcus expansion to promote graft-versus-host disease. Science. 2019;366:1143–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hayase E, Hayase T, Jamal MA, Miyama T, Chang C-C, Ortega MR, et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell. 2022;185:3705–3719.e3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burgos da Silva M, Ponce DM, Dai A, M Devlin S, Gomes ALC, Moore G, et al. Preservation of the fecal microbiome is associated with reduced severity of graft-versus-host disease. Blood. 2022;140:2385–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen CL, Markey KA, Miltiadous O, Dai A, Waters N, Sadeghi K, et al. High-resolution analyses of associations between medications, microbiome, and mortality in cancer patients. Cell. 2023;186:2705–2718.e2717.

    Article  CAS  PubMed  Google Scholar 

  10. Shouval R, Waters NR, Gomes ALC, Zuanelli Brambilla C, Fei T, Devlin SM, et al. Conditioning Regimens are Associated with Distinct Patterns of Microbiota Injury in Allogeneic Hematopoietic Cell Transplantation. Clin Cancer Res. 2023;29:165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiao X, Biliński J, Wang L, Yang T, Luo R, Fu Y, et al. Safety and efficacy of fecal microbiota transplantation in the treatment of graft-versus-host disease. Bone Marrow Transplant. 2023;58:10–19.

    Article  CAS  PubMed  Google Scholar 

  12. Dignan FL, Clark A, Amrolia P, Cornish J, Jackson G, Mahendra P, et al. Diagnosis and management of acute graft-versus-host disease. Br J Haematol. 2012;158:30–45.

    Article  CAS  PubMed  Google Scholar 

  13. Firoz BF, Lee SJ, Nghiem P, Qureshi AA. Role of skin biopsy to confirm suspected acute graft-vs-host disease: results of decision analysis. Arch Dermatol. 2006;142:175–82.

    Article  PubMed  Google Scholar 

  14. Weisdorf DJ, Hurd D, Carter S, Howe C, Jensen LA, Wagner J, et al. Prospective grading of graft-versus-host disease after unrelated donor marrow transplantation: a grading algorithm versus blinded expert panel review. Biol Blood Marrow Transpl. 2003;9:512–8.

    Article  Google Scholar 

  15. Ruutu T, Gratwohl A, de Witte T, Afanasyev B, Apperley J, Bacigalupo A, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transpl. 2014;49:168–73.

    Article  CAS  Google Scholar 

  16. Yang J, Cheuk DK, Ha SY, Chiang AK, Lee TL, Ho MH, et al. Infliximab for steroid refractory or dependent gastrointestinal acute graft-versus-host disease in children after allogeneic hematopoietic stem cell transplantation. Pediatr Transpl. 2012;16:771–8.

    Article  CAS  Google Scholar 

  17. Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, et al. Fecal microbiota transplantation for patients with steroid-resistant/dependent acute graft-versus-host disease of the gut. Blood. 2016;128:2083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sayer HG, Kroger M, Beyer J, Kiehl M, Klein SA, Schaefer-Eckart K, et al. Reduced intensity conditioning for allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia: disease status by marrow blasts is the strongest prognostic factor. Bone marrow Transplant. 2003;31:1089–95.

    Article  CAS  PubMed  Google Scholar 

  19. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA. 2014;312:1772–8.

    Article  CAS  PubMed  Google Scholar 

  20. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat methods. 2016;13:581–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eshel A, Sharon I, Nagler A, Bomze D, Danylesko I, Fein JA, et al. Origins of bloodstream infections following fecal microbiota transplantation: a strain-level analysis. Blood Adv. 2022;6:568–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shouval R, Geva M, Nagler A, Youngster I. Fecal Microbiota Transplantation for Treatment of Acute Graft-versus-Host Disease. Clin Hematol Int. 2019;1:28–35.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood J Am Soc Hematol. 2016;128:2083–8.

    CAS  Google Scholar 

  26. van Lier YF, Davids M, Haverkate NJE, de Groot PF, Donker ML, Meijer E, et al. Donor fecal microbiota transplantation ameliorates intestinal graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. Sci Transl Med. 2020;12:eaaz8926.

    Article  PubMed  Google Scholar 

  27. Spindelboeck W, Schulz E, Uhl B, Kashofer K, Aigelsreiter A, Zinke-Cerwenka W, et al. Repeated fecal microbiota transplantations attenuate diarrhea and lead to sustained changes in the fecal microbiota in acute, refractory gastrointestinal graft-versus-host-disease. Haematologica. 2017;102:e210.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qi X, Li X, Zhao Y, Wu X, Chen F, Ma X, et al. Treating steroid refractory intestinal acute graft-vs.-host disease with fecal microbiota transplantation: a pilot study. Front Immunol. 2018;9:2195.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109:1065.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suchman K, Luo Y, Grinspan A. Fecal Microbiota Transplant for Clostridioides Difficile Infection Is Safe and Efficacious in an Immunocompromised Cohort. Dig Dis Sci. 2022;67:4866–73. e-pub ahead of print 20220109.

    Article  CAS  PubMed  Google Scholar 

  31. DeFilipp Z, Bloom PP, Torres Soto M, Mansour MK, Sater MRA, Huntley MH, et al. Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. N. Engl J Med. 2019;381:2043–50.

    Article  PubMed  Google Scholar 

  32. DeFilipp Z, Peled JU, Li S, Mahabamunuge J, Dagher Z, Slingerland AE, et al. Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity. Blood Adv. 2018;2:745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gray AN, DeFilipp Z. Fecal Microbiota Transplantation for Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Cell Transplantation: Expanding the Horizon into Pediatrics. Transplant Cell Ther. 2023;29:484–91.

    Article  PubMed  Google Scholar 

  34. Malard F, Loschi M, Huynh A, Cluzeau T, Guenounou S, Legrand F, et al. Pooled allogeneic faecal microbiota MaaT013 for steroid-resistant gastrointestinal acute graft-versus-host disease: a single-arm, multicentre phase 2 trial. eClinicalMedicine. 2023;62:102111.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ponce DM, Kosuri S, Khera N, DeFilipp ZM, Lombardo M-J, Ford CB et al. A phase 1b study to evaluate the efficacy, safety, and pharmacokinetics of an investigational microbiome therapeutic, SER-155, in adults undergoing hematopoietic stem cell transplantation. J Clin Oncol. 2023;41:TPS7080

Download references

Funding

Funding

RS was supported by Memorial Sloan Kettering Cancer Center Core grant (P30 CA008748) from the National Institutes of Health/National Cancer Institute and by an NIH-NCI K-award (K08CA282987). The study was supported by the Dahlia Greidinger Anti Cancer Fund, the Gassner Fund for Medical Research, and an institutional grant from the Chaim Sheba Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

IY, RS, AN planned the study. AE, RS, DB, and RS analyzed the data. RS, ID, and TZ enrolled patients. IY manufactured the fecal microbiota transplant capsules. MG coded data into the database. RS wrote the manuscript. IY, OK, RS, and AN supervised the analysis and study. All authors edited and reviewed the manuscript.

Corresponding author

Correspondence to Roni Shouval.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youngster, I., Eshel, A., Geva, M. et al. Fecal microbiota transplantation in capsules for the treatment of steroid refractory and steroid dependent acute graft vs. host disease: a pilot study. Bone Marrow Transplant 59, 409–416 (2024). https://doi.org/10.1038/s41409-024-02198-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-024-02198-2

This article is cited by

Search

Quick links