Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Galectin-3 predicts acute GvHD and overall mortality post reduced intensity allo-HCT: a BMT-CTN biorepository study

Abstract

Identifying plasma biomarkers early after allo-HCT may become crucial to prevent and treat severe aGvHD. We utilized samples from 203 allo-HCT patients selected from the Blood & Marrow Transplant Clinical Trials Network (BMT CTN) to identify new biomarker models to predict aGvHD and overall mortality. Two new biomarkers (Gal-3 and LAG-3), and previously identified biomarkers (ST2/IL33R, IL6, Reg3A, PD-1, TIM-3, TNFR1) were screened. Increased Gal-3 levels measured at Day +7 post-transplant predicted the development of aGvHD (grade 2–4) in the total population [AUC: 0.602; P = 0.045] while higher Day +14 levels predicted overall mortality due to toxicity among patients receiving reduced intensity conditioning [P = 0.028] but not myeloablative conditioning. Elevated LAG-3 levels (Day +21) were associated with less severe aGvHD [159.1 ng/mL vs 222.0 ng/mL; P = 0.046]. We developed a model utilizing Gal-3, LAG-3, and PD-1 levels at Days +14 and +21 with an improved performance to predict aGvHD and overall non-relapse mortality. We confirmed four informative biomarkers (Reg3A, ST2, TIM-3, and TNFR1) predict severe aGvHD at day +14 and day +21 (grade 3–4). In conclusion, the combination of Gal-3 alone or in combination with LAG-3, and PD-1 is a new informative model to predict aGvHD development and overall non-relapse mortality after allo-HCT.

Graphical abstract

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasma levels of Gal-3 in patients with grade 0–1, 2, and 3–4 aGvHD and time to develop aGvHD.
Fig. 2

Similar content being viewed by others

References

  1. Zeiser R, Blazar BR. Acute graft-versus-host disease - biologic process, prevention, and therapy. N Engl J Med. 2017;377:2167–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Paczesny S. Biomarkers for posttransplantation outcomes. Blood. 2018;131:2193–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Srinagesh HK, Levine JE, Ferrara JL. Biomarkers in acute graft-versus-host disease: new insights. Ther Adv Hematol. 2019;10:2040620719891358.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Adom D, Rowan C, Adeniyan T, Yang J, Paczesny S. Biomarkers for allogeneic HCT outcomes. Front Immunol. 2020;11:673.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen S, Zeiser R. Novel biomarkers for outcome after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:1854.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bacigalupo A, Lamparelli T, Milone G, Sormani MP, Ciceri F, Peccatori J, et al. Pre-emptive treatment of acute GVHD: a randomized multicenter trial of rabbit anti-thymocyte globulin, given on day+7 after alternative donor transplants. Bone Marrow Transpl. 2010;45:385–91.

    CAS  Google Scholar 

  7. Sormani MP, Oneto R, Bruno B, Fiorone M, Lamparelli T, Gualandi F, et al. A revised day +7 predictive score for transplant-related mortality: serum cholinesterase, total protein, blood urea nitrogen, gamma glutamyl transferase, donor type and cell dose. Bone Marrow Transpl. 2003;32:205–11.

    CAS  Google Scholar 

  8. Bidgoli A, DePriest BP, Saatloo MV, Jiang H, Fu D, Paczesny S. Current definitions and clinical implications of biomarkers in graft-versus-host disease. Transpl Cell Ther. 2022;28:657–66.

    CAS  Google Scholar 

  9. Miyamoto T, Akashi K, Hayashi S, Gondo H, Murakawa M, Tanimoto K, et al. Serum concentration of the soluble interleukin-2 receptor for monitoring acute graft-versus-host disease. Bone Marrow Transpl. 1996;17:185–90.

    CAS  Google Scholar 

  10. Nakamura H, Komatsu K, Ayaki M, Kawamoto S, Murakami M, Uoshima N, et al. Serum levels of soluble IL-2 receptor, IL-12, IL-18, and IFN-gamma in patients with acute graft-versus-host disease after allogeneic bone marrow transplantation. J Allergy Clin Immunol. 2000;106:S45–50.

    CAS  PubMed  Google Scholar 

  11. Holler E, Kolb HJ, Möller A, Kempeni J, Liesenfeld S, Pechumer H, et al. Increased serum levels of tumor necrosis factor alpha precede major complications of bone marrow transplantation. Blood. 1990;75:1011–6.

    CAS  PubMed  Google Scholar 

  12. Kayaba H, Hirokawa M, Watanabe A, Saitoh N, Changhao C, Yamada Y, et al. Serum markers of graft-versus-host disease after bone marrow transplantation. J Allergy Clin Immunol. 2000;106:S40–4.

    CAS  PubMed  Google Scholar 

  13. Or R, Kalinkovich A, Nagler A, Weisman Z, Naparstek E, Weiss L, et al. Soluble tumor necrosis factor (sTNF) receptors: a possible prognostic marker for bone marrow transplantation-related complications. Cytokines Mol Ther. 1996;2:243–50.

    CAS  PubMed  Google Scholar 

  14. Okamoto T, Takatsuka H, Fujimori Y, Wada H, Iwasaki T, Kakishita E. Increased hepatocyte growth factor in serum in acute graft-versus-host disease. Bone Marrow Transpl. 2001;28:197–200.

    CAS  Google Scholar 

  15. Schots R, Kaufman L, Van Riet I, Ben Othman T, De Waele M, Van Camp B, et al. Proinflammatory cytokines and their role in the development of major transplant-related complications in the early phase after allogeneic bone marrow transplantation. Leukemia. 2003;17:1150–6.

    CAS  PubMed  Google Scholar 

  16. Liem LM, van Lopik T, van Nieuwenhuijze AE, van Houwelingen HC, Aarden L, Goulmy E. Soluble Fas levels in sera of bone marrow transplantation recipients are increased during acute graft-versus-host disease but not during infections. Blood. 1998;91:1464–8.

    CAS  PubMed  Google Scholar 

  17. Imamura M, Hashino S, Kobayashi H, Kubayashi S, Hirano S, Minagawa T, et al. Serum cytokine levels in bone marrow transplantation: synergistic interaction of interleukin-6, interferon-gamma, and tumor necrosis factor-alpha in graft-versus-host disease. Bone Marrow Transpl. 1994;13:745–51.

    CAS  Google Scholar 

  18. Mohty M, Blaise D, Faucher C, Vey N, Bouabdallah R, Stoppa AM, et al. Inflammatory cytokines and acute graft-versus-host disease after reduced-intensity conditioning allogeneic stem cell transplantation. Blood. 2005;106:4407–11.

    CAS  PubMed  Google Scholar 

  19. Fujimori Y, Takatsuka H, Takemoto Y, Hara H, Okamura H, Nakanishi K, et al. Elevated interleukin (IL)-18 levels during acute graft-versus-host disease after allogeneic bone marrow transplantation. Br J Haematol. 2000;109:652–7.

    CAS  PubMed  Google Scholar 

  20. Luft T, Conzelmann M, Benner A, Rieger M, Hess M, Strohhaecker U, et al. Serum cytokeratin-18 fragments as quantitative markers of epithelial apoptosis in liver and intestinal graft-versus-host disease. Blood. 2007;110:4535–42.

    CAS  PubMed  Google Scholar 

  21. Piper KP, Horlock C, Curnow SJ, Arrazi J, Nicholls S, Mahendra P, et al. CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation. Blood. 2007;110:3827–32.

    CAS  PubMed  Google Scholar 

  22. Seidel C, Ringdén O, Remberger M. Increased levels of syndecan-1 in serum during acute graft-versus-host disease. Transplantation. 2003;76:423–6.

    PubMed  Google Scholar 

  23. Hori T, Naishiro Y, Sohma H, Suzuki N, Hatakeyama N, Yamamoto M, et al. CCL8 is a potential molecular candidate for the diagnosis of graft-versus-host disease. Blood. 2008;111:4403–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liem LM, van Houwelingen HC, Goulmy E. Serum cytokine levels after HLA-identical bone marrow transplantation. Transplantation. 1998;66:863–71.

    CAS  PubMed  Google Scholar 

  25. Zhang C, Huang W, Zhang P, Zhang Q, Guo G, Gu F, et al. Dynamic changes in serum cytokine levels and their clinical significance in predicting acute GVHD. Oncotarget. 2017;8:53691–700.

    PubMed  PubMed Central  Google Scholar 

  26. Kordelas L, Buttkereit U, Heinemann FM, Horn PA, Giebel B, Beelen DW, et al. Low soluble programmed cell death protein 1 levels after allogeneic stem cell transplantation predict moderate or severe chronic GvHD and inferior overall survival. Front Immunol. 2021;12:694843.

  27. Gallez-Hawkins GM, Thao L, Palmer J, Dagis A, Li X, Franck AE, et al. Increased programmed death-1 molecule expression in cytomegalovirus disease and acute graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2009;15:872–80.

    CAS  Google Scholar 

  28. Ferrara JL, Harris AC, Greenson JK, Braun TM, Holler E, Teshima T, et al. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood. 2011;118:6702–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levine JE, Braun TM, Harris AC, Holler E, Taylor A, Miller H, et al. A prognostic score for acute graft-versus-host disease based on biomarkers: a multicentre study. Lancet Haematol. 2015;2:e21–9.

    PubMed  PubMed Central  Google Scholar 

  30. Levine JE, Logan BR, Wu J, Alousi AM, Bolaños-Meade J, Ferrara JL, et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood. 2012;119:3854–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vander Lugt MT, Braun TM, Hanash S, Ritz J, Ho VT, Antin JH, et al. ST2 as a marker for risk of therapy-resistant graft-versus-host disease and death. N Engl J Med. 2013;369:529–39.

    Google Scholar 

  32. Ponce DM, Hilden P, Mumaw C, Devlin SM, Lubin M, Giralt S, et al. High day 28 ST2 levels predict for acute graft-versus-host disease and transplant-related mortality after cord blood transplantation. Blood. 2015;125:199–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hartwell MJ, Özbek U, Holler E, Renteria AS, Major-Monfried H, Reddy P, et al. An early-biomarker algorithm predicts lethal graft-versus-host disease and survival. JCI Insight. 2017;2:e89798.

    PubMed  PubMed Central  Google Scholar 

  34. Robin M, Porcher R, Michonneau D, Taurines L, de Fontbrune FS, Xhaard A, et al. Prospective external validation of biomarkers to predict acute graft-versus-host disease severity. Blood Adv. 2022;6:4763–72.

    PubMed  PubMed Central  Google Scholar 

  35. Hara A, Niwa M, Noguchi K, Kanayama T, Niwa A, Matsuo M, et al. Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules. 2020;10:389.

  36. Mohammadpour H, Tsuji T, MacDonald CR, Sarow JL, Rosenheck H, Daneshmandi S, et al. Galectin-3 expression in donor T cells reduces GvHD severity and lethality after allogeneic hematopoietic cell transplantation. Cell Rep. 2023;42:112250.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reshef R, Saber W, Bolaños-Meade J, Chen G, Chen YB, Ho VT, et al. Acute GVHD diagnosis and adjudication in a multicenter trial: a report from the BMT CTN 1202 biorepository study. J Clin Oncol. 2021;39:1878–87.

    PubMed  PubMed Central  Google Scholar 

  38. Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res. 2015;3:412–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Snarr BD, St-Pierre G, Ralph B, Lehoux M, Sato Y, Rancourt A, et al. Galectin-3 enhances neutrophil motility and extravasation into the airways during Aspergillus fumigatus infection. PLoS Pathog. 2020;16:e1008741.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, et al. The fibrosis marker galectin-3 and outcome in the general population. J Intern Med. 2012;272:55–64.

    PubMed  Google Scholar 

  41. Khadeja Bi A, Santhosh V, Sigamani K. Levels of galectin-3 in chronic heart failure: a case-control study. Cureus. 2022;14:e28310.

    PubMed  PubMed Central  Google Scholar 

  42. McDonald GB, Tabellini L, Storer BE, Lawler RL, Martin PJ, Hansen JA. Plasma biomarkers of acute GVHD and nonrelapse mortality: predictive value of measurements before GVHD onset and treatment. Blood. 2015;126:113–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maruhashi T, Sugiura D, Okazaki I-m, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer. 2020;8:e001014.

    PubMed  PubMed Central  Google Scholar 

  44. Graydon CG, Mohideen S, Fowke KR. LAG3’s Enigmatic Mechanism of Action. Front Immunol. 2020;11:615317.

  45. Asleh R, Enriquez-Sarano M, Jaffe AS, Manemann SM, Weston SA, Jiang R, et al. Galectin-3 levels and outcomes after myocardial infarction: a population-based study. J Am Coll Cardiol. 2019;73:2286–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fontana Estevez FS, Miksztowicz V, Seropián IM, Cassaglia P, Bustos R, Touceda V, et al. An experimental model of myocardial infarction for studying cardiac repair and remodeling in knockout mice. J Vis Exp. 2023;e64143. https://doi.org/10.3791/64143.

  47. DeFilipp Z, Navarro-Alvarez N, Li S, Andrews AR, Johnson A, Chen YB, et al. Elevated Galectin-3 Plasma Concentrations in Recipients of Allogeneic Hematopoietic Cell Transplantation. Clin Hematol Int. 2019;1:201–4.

    PubMed  PubMed Central  Google Scholar 

  48. Epstein RJ, McDonald GB, Sale GE, Shulman HM, Thomas ED. The diagnostic accuracy of the rectal biopsy in acute graft-versus-host disease: a prospective study of thirteen patients. Gastroenterology. 1980;78:764–71.

    CAS  PubMed  Google Scholar 

  49. Etra A, Gergoudis S, Morales G, Spyrou N, Shah J, Kowalyk S, et al. Assessment of systemic and gastrointestinal tissue damage biomarkers for GVHD risk stratification. Blood Adv. 2022;6:3707–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Niederwieser D, Maris M, Shizuru JA, Petersdorf E, Hegenbart U, Sandmaier BM, et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood. 2003;101:1620–9.

    CAS  PubMed  Google Scholar 

  51. Velanovich V. Bayesian analysis in the diagnostic process. Am J Med Qual. 1994;9:158–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support from Nancy L. DiFronzo, Program Director, Blood Epidemiology and Clinical Therapeutic Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, Amy Foley, Cynthia Vierra-Green and Valerie Stewart, National Marrow Donor Program, Kitty De Jong and Carlos Cedano from Flow Cytometry Shared Resource and Jee Eun Choi from Department of Immunology at Roswell Park. This study was supported by grants from the National Institutes of Health, National Heart Lung Blood Institute (K99 HL155792, R00HL155792 to Hemn. M.), the Roswell Park Alliance, and a donation from Brendan and Elise McCarthy (P.L.M.) and the National Institute of Allergy and Immunology R37 AI34495. Cytometry services were provided by the Flow and Image Cytometry Shared Resource at the Roswell Park Comprehensive Cancer Center which is supported in part by the NCI Cancer Center Support Grant 5P30 CA016056 and NCI R50CA211108 (Hans M.). BMT CTN 1202 biorepository is supported by 5U24CA076518 (NIAIAD, NCI, NHLBI) and U10HL069294 (NHLBI). Support for this study was provided by grants #U10HL069294 and #U24HL138660 to the Blood and Marrow Transplant Clinical Trials Network from the National Heart, Lung, and Blood Institute and the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Hemn. M. and P.L.M. designed the research, interpreted the data, and wrote the paper; BMT CTN staff supervised the collection and archiving of plasma samples, recorded clinical data; K.M.A served as the statistician responsible for analysis of data; X.L and Hans. M. executed Luminex assays and analyses; G.L.C., P.K.W., B.B., R.R., J.E.L. and R.M. assisted in the analysis of data and writing of the manuscript. A.A, A.B., R.L., D.B.M., P.W., G.Y., E.K.W. provided samples for the study. R.R., J.E.L. and G.L.C. participated in the 1202 adjudication committee. M.M.H. is the P.I. of the BMT CTN which provided the samples. All authors reviewed the manuscript and provided comments and edits.

Corresponding author

Correspondence to Hemn Mohammadpour.

Ethics declarations

Competing interests

P.L.M. Advisory Board/Consulting: BlueBird Biotech, Bristol-Myers Squibb, Celgene, Fate Therapeutics, Janssen, Juno, Karyopharm, Magenta Therapeutics, Sanofi, Takeda; Honoraria: BlueBird Biotech, Bristol-Myers Squibb, Celgene, Fate Therapeutics, Janssen, Juno, Karyopharm, Magenta Therapeutics, Sanofi, Takeda.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCarthy, P.L., Attwood, K.M., Liu, X. et al. Galectin-3 predicts acute GvHD and overall mortality post reduced intensity allo-HCT: a BMT-CTN biorepository study. Bone Marrow Transplant 59, 334–343 (2024). https://doi.org/10.1038/s41409-023-02168-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02168-0

Search

Quick links