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Analysis of donor-recipient chimerism after hematopoietic stem cell transplantation (HSCT) is of pivotal importance for patient’s
clinical management, especially in the context of mixed chimerism. Patients are routinely monitored for chimerism in sorted
subsets of peripheral blood cells. However, measurement of chimerism in sorted immune cell subsets is technically challenging and
time consuming. We here propose a novel, flow cytometry-based approach to detect donor cell chimerism in sex-mismatched
HSCT. We exploit RNA PrimeFlow™ system, based on RNA hybridization, to detect mRNA from a lysine demethylase encoded by Y
chromosome, KDM5D. This approach allows to distinguish male and female derived cells with around 1% sensitivity. The procedure
can be coupled with multiparametric immunophenotyping to assess chimerism in specific immune cell subsets without the need
for prior FACS-sorting. We apply this method to a cohort of HSCT patients (n= 10) and we show that it is consistent with standard
PCR-based method. We also show that different T lymphocyte subsets display variable degrees of donor chimerism, especially in
CD8+ T cell compartment where we observe an enrichment for recipient chimerism in central memory T cells. This method can be
exploited to advance current knowledge on immune reconstitution focusing on specific subsets avoiding prior FACS-sorting.

Bone Marrow Transplantation (2024) 59:171–177; https://doi.org/10.1038/s41409-023-02143-9

INTRODUCTION
Chimerism analysis is of pivotal importance after hematopoietic
stem cell transplantation (HSCT) as it allows to evaluate
engraftment of donor cells. From a technical standpoint, the gold
standard is to assess chimerism by PCR technique, in particular
short tandem repeat PCR (STR-PCR), a technique which however
allows only limited sensitivity (1–5%) [1, 2]. In non-malignant
diseases, such as sickle cell disease (SCD) or thalassemia, mixed
chimerism is often observed since the development of reduced
intensity conditioning regimens [3, 4]. In this context, a degree of
disease-specific donor chimerism can still be sufficient to relieve
the clinical phenotype but deserves close follow-up and specific
therapeutic interventions. To this aim, it has been established that
lineage-specific chimerism assessment is more predictive than
total chimerism both in the context of malignant and non-
malignant diseases and is therefore recommended for clinical
management of patients [5–8]. However, chimerism on specific
fractions can only be performed after FACS-sorting or magnetic
beads sorting of subsets of interest. This is technically challenging,
expensive and time consuming and, in case of FACS-sorting, it
requires adequate instruments and trained personnel.
To overcome these limitations, we develop a flow cytometry-

based system that allows to detect donor cell chimerism
without the need for prior sorting. This method is also
compatible with multicolor surface immunophenotyping, thus
allowing to dissect donor cell chimerism in very specific
immune cell subsets.

MATERIALS AND METHODS
Patients
Primary peripheral blood samples were obtained from pediatric patients
who underwent HSCT and follow-up at Pediatric Hematology Department
of IRCCS San Gerardo dei Tintori, Monza, Italy. All parents/guardians
provided written informed consent. All analyses presented were
performed on leftovers from routine clinical assessments and no extra
timepoints were required. Patients’ characteristics are presented in Table 1.
Of the 10 analyzed patients, 6 were transplanted for SCD, 2 for Beta-
thalassemia (Beta-thal), 1 for Mucopolysaccharidosis I (MPS1) and 1 for
acute lymphoblastic leukemia (ALL). Concerning donor type, 7 patients
were transplanted from matched sibling donor, 1 from mismatched donor
and 2 from matched unrelated donor. We analyzed timepoints from
2 months after HSCT to 58 months according to the patients.

Primeflow RNA assay and flow cytometry
To detect RNA in cells via flow cytometry we exploited Primeflow RNA
assay (Thermofisher, Waltham, Massachusetts, USA. Catalog number 88-
18005-210). KDM5D probe design was optimized to increase resolution
and signal intensity. Briefly, after a first attempt with a single probe, we
performed a 1:1 mixture of two different probes targeting KDM5D mRNA,
both conjugated with Alexa647 (assay ID VA1-16845 and VPKA3GJ).
RPL13A (assay ID VA4-13187) conjugated with Alexa 488 was used as
internal control to assess the efficiency of hybridization reaction as
suggested by manufacturer. Surface staining was performed prior to
fixation and permeabilization according to manufacturer’s instructions.
Antibodies used for surface staining are listed in Supplementary Table 1.
Staining for B cell subsets was performed modifying the DURAClone IM B
Cells tube (Beckman Coulter, Indianapolis, Indiana, USA) panel.
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Primeflow RNA procedures were performed in accordance with the
manufacturer’s instructions. Briefly, on the first day, after surface staining
with directly conjugated antibodies, cells are fixed and permeabilized.
After these steps, hybridization of the probes to target mRNA occurs at
40 °C for two hours. Samples are stored overnight at 4 °C in wash buffer
with RNAse inhibitor (provided in the kit). Subsequently, on the second
day, a pre-amplification step and amplification step are performed at 40 °C
to create a branched-DNA structure as shown in Supplementary Fig. 1A.
The final step is signal amplification to allow detection by flow cytometry.
Flow cytometric analysis was performed using 5-laser Aurora (Cytek,

Fremont, California, USA). Data analysis was performed exploiting Spectro-
flo software (Cytek, Fremont, California, USA). For the analysis of KDM5D+
cells, besides surface staining, we only considered cells that were positive
for RPL13A as internal control. This allowed us to focus only on cells where
the hybridization occurred (Supplementary Fig. 1A).
FACS sorting of healthy controls and CD8+ subsets was performed

using BD FACSAria I (Fondazione M. Tettamanti, Monza, Italy). FACS sorting
of KDM5D positive cells was performed using BD FACSAria Fusion
(Ospedale San Raffaele, Milan, Italy).
Purification of CD8+ and CD8+ naïve T cells was performed with CD8

microbeads and naïve CD8 T cell isolation kit (Miltenyi, Bergisch Gladbach,
Germany) according to manufacturer’s instructions.

DNA extraction
DNA from patients’ sample for STR-PCR analysis was extracted using
Wizard Genomic DNA purification kit (Promega, Madison, Wisconsin, USA)
according to manufacturer’s instructions.
DNA from sorted KDM5D+ cells was extracted using QuickExtract FFPE

DNA extraction kit according to manufacturer’s instructions. DNA from
sorted healthy donor cells or CD8+ T cells was extracted with QIAMP DNA
Mini kit (Qiagen, Hilden, Germany).

STR-PCR
STR-PCR was performed for diagnostic purposes according to international
guidelines [1, 2, 9, 10]. PowerPlex 16 HS system (Promega, Madison,
Wisconsin, USA) was used. PCR was performed according to manufac-
turer’s instructions.

Digital droplet PCR
To perform digital droplet PCR (ddPCR) to evaluate KDM5D expression RNA
was extracted with miRNeasy micro kit (Qiagen, Hilden, Germany)
according to manufacturer’s instructions. RNA quantification was per-
formed using Qubit (Invitrogen, Waltham, Massachusetts, USA) RNA BR
Assay. 10 ng of RNA were used for PCR with One-Step RT ddPCR advanced
kit for probes (Biorad, Hercules, California, USA). Primers for KDM5D FAM
(dHsaCPE5032220) and HPRT1 HEX (dHsaCPE5192872) were purchased
from Biorad.

Statistical analysis
Data were summarized as mean ± SEM, or mean ± SD depending on data
distribution. Statistical analyses were conducted using GraphPad Prism
9 software (GraphPad Prism, California, USA) according to data character-
istics and are indicated in each figure. P < 0.05 was considered to be
statistically significant.

RESULTS
Technical validation of the flow cytometric chimerism probe
We aimed at developing a flow cytometry-based method to assess
donor chimerism, so we decided to employ a commercially
available system based on RNA hybridization that allows detection
of mRNA (Primeflow™ RNA Assay, Thermofisher™) (Supplementary
Fig. 1A). To develop a platform that could be used on a wide
cohort of patients, we decided to exploit sex mismatch, which
allows a broad application to HSCT patients. We first screened a
list of potential candidate genes encoded by Y chromosome and
scored them according to the degree of sequence similarity
between the gene encoded by Y chromosome and its
X-chromosome counterpart and according to the levels of
expression in hematopoietic tissues in publicly available databases
(Supplementary Fig. 1B) [11, 12]. The best candidate geneTa
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according to these parameters was KDM5D, a Y-chromosome
encoded lysine demethylase containing zinc finger domains,
which showed <90% sequence similarity (to maximize probe
specificity) and intermediate expression levels in bone marrow
(Supplementary Fig. 1B). We then assessed by ddPCR the
expression of our target gene in immune cell subsets from male
and female healthy donors and confirmed a good level of
expression of KDM5D in male cells from several subsets such as
total peripheral blood mononuclear cells (PBMCs), sorted CD3+ T
lymphocytes, CD19+ B lymphocytes and in myeloid cells (Fig. 1a
and Supplementary Fig. 1C). As aforementioned, we exploited an
already available commercial system for RNA hybridization [13]
but we obtained only limited sensitivity with standard commercial
probe (Supplementary Fig. 1D). Therefore, we developed a dual-
probe system to detect the expression of KDM5D by flow
cytometry (Fig. 1b). With this dual probe system, we were able
to efficiently detect the presence of male cells in serial dilution mix
with female cells with around 1% sensitivity (Fig. 1c). We observed
a good technical reproducibility with a coefficient of variation of
2–5% on total chimerism tested in three technical replicates from
a mix of male and female cells and from a transplanted patient
with mixed chimerism (Supplementary Fig. 1E). Furthermore, we
were able to assess the presence of male cells in the main immune
cell subsets (Fig. 1f). We also compared mean fluorescence
intensity (MFI) in the different subsets of male cells and we found
no significant differences in the expression of KDM5D, confirming
the results obtained by ddPCR (Fig. 1e). Finally, we calculated stain
index [14] for positive male and negative female samples (n= 3)
and it resulted 2.9.

Validation with clinical samples, comparison with PCR and
dissection of chimerism among immunological subsets
After this technical validation, we decided to test the system on a
cohort of 10 pediatric HSCT patients with various degree of mixed
chimerism along the follow-up. Patients’ characteristics are
presented in Table 1. Briefly, 9 patients were transplanted for
non-malignant diseases and 1 was transplanted for ALL. Recipient
cell chimerism assessed via STR-PCR in our cohort ranged from 0
to 70% (median 15%). As shown in Fig. 2a, b, we obtained a
significant correlation between standard STR-PCR and flow
cytometry-based chimerism (recipient chimerism range 0–56%,
median 20%). By combining RNA hybridization with surface
staining, it was possible to distinguish donor vs recipient cells and
to quantify the latter within the main immune cell subsets (Fig. 2c,
d). Furthermore, we observed good degree of reproducibility over
time (i.e., intra-patient variability) and, of note, a similar long-
itudinal trend between PCR and flow cytometry measurements
(Fig. 2e, Suppl Fig. 2A). As for normal samples, we demonstrated,
also in HSCT-derived samples, that MFI of KDM5D does not
change significantly among the studied immune cell subsets
(Fig. 2f, Supplementary Fig. 2B–D).
To further exploit the potential of this platform, we decided to

expand our analyses to lymphocyte subsets thus correlating the
function of lymphocytes with recipient chimerism (Fig. 3a). We
observed no significant differences in the percentage of recipient
cells among the main CD3+ T cell subsets such as CD4+ , CD8+
and Gamma Delta T lymphocytes (Fig. 3b). We then quantified the
degree of recipient chimerism within CD4+ and CD8+ T cell
memory profile (Fig. 3c, d and Supplementary Fig. 3) and we
observed that central memory T cells (CM) tend to have a higher
degree of recipient chimerism as compared to terminally
differentiated cells (TEMRA); particularly in CD8+ T cells. Further-
more, we found that in both CD4+ and CD8+ T cells, the MFI
expression level of KDM5D was similar among the subsets
(Supplementary Fig. 3C, D).
In parallel, we also performed an analysis of B cell subsets and

we did not observe significant differences among the subsets
(Fig. 3e, f). We wondered whether pre-HSCT Rituximab might

impact on B cell chimerism but we did not observe a significant
difference in B cell chimerism (Supplementary Fig. 3I). Of note, we
could verify that none of the patients in the cohort was treated
with Rituximab after HSCT.

Validation of KDM5D probe in sorted cells
To confirm that the different percentages of KDM5D+ cells
corresponded to different degrees of recipient chimerism, we
sorted CD8+ T cell subsets from patient #1 (female patient with
male donor) and we performed ddPCR to assess the expression of
KDM5D and STR-PCR on sorted cells. As shown in Supplementary
Fig. 3E–G, we observe an inverse correlation between chimerism
and KDM5D expression and comparable results between flow-
cytometry and STR-PCR as in the other analyzed populations.
We also analyzed the expression of KDM5D in CD8+ naïve

T cells from male and female healthy donors, and from HSCT
patients (Supplementary Fig. 3H) confirming that HSCT patients
express KDM5D proportionally to their mixed chimerism.
In conclusion, our data show that analysis of HSCT chimerism by

RNA PrimeFlow™ system is feasible, reproducible, and correlate
with standard STR-PCR method. Furthermore, by combining this
system with flow cytometry immunophenotyping, it is possible to
dissect the kinetics of chimerism within specific immune cell
subsets without the need of prior FACS-sorting. Besides, from a
biological perspective, this study highlights for the first time the
potential impact of dissecting the specific contribution of different
T lymphocyte subsets in the context of mixed chimerism during
post-HSCT reconstitution.

DISCUSSION
In the present study we showed that it is feasible to exploit RNA
hybridization to reproducibly assess donor cell chimerism by flow
cytometry in HSCT patients. As a proof of principle, we exploited
sex mismatch, as routinely done also for standard STR-PCR, which
allows direct application of the method to a high percentage of
patients independently from the degree of mismatch between
donor and recipient, differently from previously reported flow
cytometric methods [15]. So far, chimerism analysis on specific
subsets has been shown to have important prognostic implica-
tions [3, 4]. Indeed, the main advantage of this platform is that it
allows direct analysis of chimerism at single-cell resolution in
specific hematopoietic subsets avoiding prior FACS sorting
dramatically, thus abating the costs of such analysis (around 10-
fold less). Furthermore, from a biological standpoint, this platform
could be exploited to finely dissect the kinetics of lymphocyte
reconstitution, particularly in the context of mixed chimerism,
paving the way to biological studies on the kinetics of donor cell
reconstitution and the impact of the diverse treatments (e.g.,
donor lymphocyte infusion) on the process.
The main limitation of the here-presented method is the

sensitivity which is around 1%, similarly to STR-PCR. However,
combination with specific surface markers (e.g., specific immuno-
phenotype) could improve its sensitivity.
Moreover, although analysis on sex-mismatch does not apply to

all HSCT patients, in case of same sex donor-recipient HSCT it
would be possible to extend this platform by designing specific
probes for HLA genes if a sufficient degree of mismatch is present.
However, though not applicable to all HSCT patients, our platform
could still be useful for several clinical and biological applications.
Previous attempts to exploit flow cytometry for chimerism analysis
were performed with anti-HLA antibodies by Schumm and
collaborators [15]. Similarly to our method, those authors showed
that flow cytometry allows multiple approaches (from analysis of
cellular subsets to minimal residual disease). However, commer-
cially available anti-HLA antibodies would apply to a minority of
patients and customizing antibody for each donor-recipient pair
would troublesome and expensive.
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In our cohort, despite the small number of patients, we
observed a good quantitative correlation between STR-PCR and
flow cytometry, although with some limitations. However, kinetics
of longitudinal monitoring over time was reproducible between
the two methods. Indeed from a clinical standpoint [16]

longitudinal kinetics is far more relevant than a single value, to
decide post-HSCT clinical interventions.
Besides analyzing the recipient cell chimerism on myeloid and

lymphoid subsets, as currently done in clinical routine, we were
able to combine chimerism analysis with more specific
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immunophenotypic antibody panels, in particular for T and B
lymphocytes. The finding that in our cohort of patients, despite
limited, central memory T cells and in particular CD8+ central
memory T cells, showed a higher degree of recipient chimerism, is
compatible with data from mouse models and solid transplant

recipients after anti-T lymphocyte globulin (ATLG) treatment
[17, 18]. We could not assess this aspect in our cohort as 9
patients analyzed received ATLG as GvHD prophylaxis and the
only patient who did not receive ATLG (patient #6) developed a
full donor chimerism after the first two months post-HSCT.
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However, such observation should be considered a novel finding
for HSCT patients and paves the way for ad hoc studies to assess
the impact of recipient chimerism in central memory T cells.
In conclusion, we here provide a proof of principle that RNA

expression can be efficiently exploited to detect chimerism by flow
cytometry in sex-mismatched HSCT and that this approach allows to
abate the costs and expand the potential of chimerism analyses.
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