Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allogeneic hematopoietic cell transplantation in patients with CALR-mutated myelofibrosis: a study of the Chronic Malignancies Working Party of EBMT

Abstract

Allogeneic hematopoietic cell transplantation (allo-HCT) is curative for myelofibrosis (MF) but assessing risk-benefit in individual patients is challenging. This complexity is amplified in CALR-mutated MF patients, as they live longer with conventional treatments compared to other molecular subtypes. We analyzed outcomes of 346 CALR-mutated MF patients who underwent allo-HCT in 123 EBMT centers between 2005 and 2019. After a median follow-up of 40 months, the estimated overall survival (OS) rates at 1, 3, and 5 years were 81%, 71%, and 63%, respectively. Patients receiving busulfan-containing regimens achieved a 5-year OS rate of 71%. Non-relapse mortality (NRM) at 1, 3, and 5 years was 16%, 22%, and 26%, respectively, while the incidence of relapse/progression was 11%, 15%, and 17%, respectively. Multivariate analysis showed that older age correlated with worse OS, while primary MF and HLA mismatched transplants had a near-to-significant trend to decreased OS. Comparative analysis between CALR- and JAK2-mutated MF patients adjusting for confounding factors revealed better OS, lower NRM, lower relapse, and improved graft-versus-host disease-free and relapse-free survival (GRFS) in CALR-mutated patients. These findings confirm the improved prognosis associated with CALR mutation in allo-HCT and support molecular profiling in prognostic scoring systems to predict OS after transplantation in MF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main outcomes in 346 patients with CALR-mutated myelofibrosis undergoing allogeneic hematopoietic cell transplantation.
Fig. 2: Main outcomes according to molecular subtype in 1272 patients with myelofibrosis undergoing allogeneic hematopoietic cell transplantation.
Fig. 3: Overall survival in 1272 patients with primary or post-essential thrombocythemia myelofibrosis undergoing allogeneic hematopoietic cell transplantation according to molecular subtype.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Tefferi A. Primary myelofibrosis: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. 2023;98:801–21.

    Article  CAS  PubMed  Google Scholar 

  2. Bewersdorf JP, Sheth AH, Vetsa S, Grimshaw A, Giri S, Podoltsev NA, et al. Outcomes of allogeneic hematopoietic cell transplantation in patients with myelofibrosis—a systematic review and meta-analysis. Transpl Cell Ther. 2021;27:873.e1–e13.

    Article  CAS  Google Scholar 

  3. McLornan D, Eikema DJ, Czerw T, Kroger N, Koster L, Reinhardt HC, et al. Trends in allogeneic haematopoietic cell transplantation for myelofibrosis in Europe between 1995 and 2018: a CMWP of EBMT retrospective analysis. Bone Marrow Transpl. 2021;56:2160–72.

    Article  CAS  Google Scholar 

  4. Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martinez-Trillos A, Casetti I, et al. Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014;124:1062–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M, et al. Driver mutations’ effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia. 2017;31:970–3.

    Article  CAS  PubMed  Google Scholar 

  6. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    Article  CAS  PubMed  Google Scholar 

  7. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115:1703–8.

    Article  CAS  PubMed  Google Scholar 

  8. Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29:392–7.

    Article  PubMed  Google Scholar 

  9. Mosquera-Orgueira A, Perez-Encinas M, Hernandez-Sanchez A, Gonzalez-Martinez T, Arellano-Rodrigo E, Martinez-Elicegui J, et al. Machine learning improves risk stratification in myelofibrosis: an analysis of the Spanish registry of myelofibrosis. Hemasphere. 2023;7:e818.

    Article  PubMed  Google Scholar 

  10. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36:310–8.

    Article  CAS  PubMed  Google Scholar 

  11. Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. J Clin Oncol. 2018;36:1769–70.

    Article  PubMed  Google Scholar 

  12. Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, et al. A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia. 2017;31:2726–31.

    Article  CAS  PubMed  Google Scholar 

  13. Kroger NM, Deeg JH, Olavarria E, Niederwieser D, Bacigalupo A, Barbui T, et al. Indication and management of allogeneic stem cell transplantation in primary myelofibrosis: a consensus process by an EBMT/ELN international working group. Leukemia. 2015;29:2126–33.

    Article  CAS  PubMed  Google Scholar 

  14. Gagelmann N, Ditschkowski M, Bogdanov R, Bredin S, Robin M, Cassinat B, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019;133:2233–42.

    Article  CAS  PubMed  Google Scholar 

  15. Tamari R, McLornan DP, Ahn KW, Estrada-Merly N, Hernandez-Boluda JC, Giralt SA, et al. A simple prognostic system in myelofibrosis patients undergoing allogeneic stem cell transplant: a CIBMTR/EBMT analysis. Blood Adv. 2023;7:3993–4002.

  16. Kroger N, Panagiota V, Badbaran A, Zabelina T, Triviai I, Araujo Cruz MM, et al. Impact of molecular genetics on outcome in myelofibrosis patients after allogeneic stem cell transplantation. Biol Blood Marrow Transpl. 2017;23:1095–101.

    Article  Google Scholar 

  17. Gagelmann N, Salit RB, Schroeder T, Badbaran A, Rautenberg C, Panagiota V, et al. High molecular and cytogenetic risk in myelofibrosis does not benefit from higher intensity conditioning before hematopoietic cell transplantation: an international collaborative. Anal Hemasphere. 2022;6:e784.

    Article  CAS  Google Scholar 

  18. Panagiota V, Thol F, Markus B, Fehse B, Alchalby H, Badbaran A, et al. Prognostic effect of calreticulin mutations in patients with myelofibrosis after allogeneic hematopoietic stem cell transplantation. Leukemia. 2014;28:1552–5.

    Article  CAS  PubMed  Google Scholar 

  19. Holtan SG, DeFor TE, Lazaryan A, Bejanyan N, Arora M, Brunstein CG, et al. Composite end point of graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation. Blood. 2015;125:1333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Copelan E, Casper JT, Carter SL, van Burik JA, Hurd D, Mendizabal AM, et al. A scheme for defining cause of death and its application in the T cell depletion trial. Biol Blood Marrow Transpl. 2007;13:1469–76.

    Article  Google Scholar 

  21. Hernandez-Boluda JC, Pereira A, Kroger N, Beelen D, Robin M, Bornhauser M, et al. Determinants of survival in myelofibrosis patients undergoing allogeneic hematopoietic cell transplantation. Leukemia. 2021;35:215–24.

    Article  PubMed  Google Scholar 

  22. Hernandez-Boluda JC, Pereira A, Kroger N, Cornelissen JJ, Finke J, Beelen D, et al. Allogeneic hematopoietic cell transplantation in older myelofibrosis patients: a study of the chronic malignancies working party of EBMT and the Spanish Myelofibrosis Registry. Am J Hematol. 2021;96:1186–94.

    Article  CAS  PubMed  Google Scholar 

  23. Ali H, Aldoss I, Yang D, Mokhtari S, Khaled S, Aribi A, et al. MIPSS70+ v2.0 predicts long-term survival in myelofibrosis after allogeneic HCT with the Flu/Mel conditioning regimen. Blood Adv. 2019;3:83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tamari R, Rapaport F, Zhang N, McNamara C, Kuykendall A, Sallman DA, et al. Impact of high-molecular-risk mutations on transplantation outcomes in patients with myelofibrosis. Biol Blood Marrow Transpl. 2019;25:1142–51.

    Article  CAS  Google Scholar 

  25. Murthy GSG, Kim S, Estrada-Merly N, Abid MB, Aljurf M, Assal A, et al. Association between the choice of the conditioning regimen and outcomes of allogeneic hematopoietic cell transplantation for myelofibrosis. Haematologica. 2023;108:1900–8.

  26. Holmstrom MO, Riley CH, Svane IM, Hasselbalch HC, Andersen MH. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016;30:2413–6.

    Article  CAS  PubMed  Google Scholar 

  27. Tvorogov D, Thompson-Peach CAL, Fosselteder J, Dottore M, Stomski F, Onnesha SA, et al. Targeting human CALR-mutated MPN progenitors with a neoepitope-directed monoclonal antibody. EMBO Rep. 2022;23:e52904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Handlos Grauslund J, Holmstrom MO, Jorgensen NG, Klausen U, Weis-Banke SE, El Fassi D, et al. Therapeutic cancer vaccination with a peptide derived from the calreticulin exon 9 mutations induces strong cellular immune responses in patients with CALR-mutant chronic myeloproliferative neoplasms. Front Oncol. 2021;11:637420.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gigoux M, Holmstrom MO, Zappasodi R, Park JJ, Pourpe S, Bozkus CC, et al. Calreticulin mutant myeloproliferative neoplasms induce MHC-I skewing, which can be overcome by an optimized peptide cancer vaccine. Sci Transl Med. 2022;14:eaba4380.

    Article  CAS  PubMed  Google Scholar 

  30. Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL, et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood. 2008;112:1402–12.

    Article  CAS  PubMed  Google Scholar 

  31. Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E, et al. A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia. 2013;27:2187–95.

    Article  CAS  PubMed  Google Scholar 

  32. Tefferi A, Lasho TL, Finke CM, Knudson RA, Ketterling R, Hanson CH, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28:1472–7.

    Article  CAS  PubMed  Google Scholar 

  33. Christopeit M, Badbaran A, Zabelina T, Zeck G, Fehse B, Ayuk F, et al. Similar outcome of calreticulin type I and calreticulin type II mutations following RIC allogeneic haematopoietic stem cell transplantation for myelofibrosis. Bone Marrow Transpl. 2016;51:1391–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JCHB, DJE, GB, NP, TC, IYA and DMcL were involved in study design, analysis and writing of the paper. LK was the data manager. All other co-authors contributed data to the study, critically revised the paper and approved the submitted and final version.

Corresponding authors

Correspondence to Juan Carlos Hernández-Boluda or Donal P. McLornan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This retrospective study was approved by the Chronic Malignancies Working Party (CMWP) of EBMT.

Informed consent

Informed consent for inclusion in the EBMT registry was obtained in all patients.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Boluda, J.C., Eikema, DJ., Koster, L. et al. Allogeneic hematopoietic cell transplantation in patients with CALR-mutated myelofibrosis: a study of the Chronic Malignancies Working Party of EBMT. Bone Marrow Transplant 58, 1357–1367 (2023). https://doi.org/10.1038/s41409-023-02094-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02094-1

Search

Quick links