Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of polyclonal immuno-reconstitution after allogeneic transplant with post-transplant cyclophosphamide and letermovir

Abstract

Cytomegalovirus (CMV) reactivations are strong stimulators of immune-reconstitution (IR) in hematopoietic stem cell transplantation (HSCT) recipients. Herein, we analyzed 317 CMV-seropositive consecutive patients (n = 109 letermovir, LTV; n = 208 no-LTV), undergoing HSCT with post-transplant cyclophosphamide (PTCy) and calcineurin inhibitor- (CNI) free graft-versus-host-disease (GvHD) prophylaxis. At day+90, median CD19+/mm3 was higher in LTV-cohort: 5.5 [0;439] versus 2 [0;294], p = 0.008; median CD3+/mm3 counts were lower in LTV-cohort, with no differences in CD4+, CD8+ and NK-cells. At day+180 median CD3+, CD4+ and CD8+/mm3 values were comparable between groups. Higher CD19+/mm3 counts were observed in LTV-cohort: 62 [0; 2983] versus 42 [0; 863]. Significantly higher median NK/mm3 values were seen in LTV-cohort: 225.5 [0;763] versus 163.5 [0;1181], p = 0.0003. The impact of LTV on B-cell IR at 3 months and NK-cell levels at 6 months was retained in multivariate analysis (p < 0.01), whereas the effect on T-cells was not confirmed. Moreover, we confirmed a significant reduction of clinically-relevant CMV, and moderate-to- severe chronic GvHD in LTV-cohort. Overall, in our study the use of LTV was associated with a slight improvement of B-cell and NK-cells reconstitution, with only minor impact on T-cell subsets, giving new insights on polyclonal IR for HSCT recipients in the LTV era.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two years cumulative incidence of Graft versus Host disease in letermovir (LTV) and no-LTV groups.
Fig. 2: CMV reactivation in letermovir (LTV) and no-LTV groups.
Fig. 3: Cellular and humoral immune reconstitution in letermovir (LTV) and no-LTV groups.
Fig. 4: Cellular and humoral immune reconstitution in letermovir (LTV) and no-LTV groups.

Similar content being viewed by others

Data availability

The datasets generated for this study are available on request to the corresponding author.

References

  1. Luznik L, O'Donnell PV, Symons HJ, Chen AR, Leffell MS, Zahurak M, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transpl. 2008;14:641–50.

    Article  CAS  Google Scholar 

  2. Kanakry CG, Tsai HL, Bolanos-Meade J, Smith BD, Gojo I, Kanakry JA, et al. Single-agent GVHD prophylaxis with posttransplantation cyclophosphamide after myeloablative, HLA-matched BMT for AML, ALL, and MDS. Blood. 2014;124:3817–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holtick U, Chemnitz JM, Shimabukuro-Vornhagen A, Theurich S, Chakupurakal G, Krause A, et al. OCTET-CY: a phase II study to investigate the efficacy of post-transplant cyclophosphamide as sole graft-versus-host prophylaxis after allogeneic peripheral blood stem cell transplantation. Eur J Haematol. 2016;96:27–35.

    Article  CAS  PubMed  Google Scholar 

  4. Alousi AM, Brammer JE, Saliba RM, Andersson B, Popat U, Hosing C, et al. Phase II trial of graft-versus-host disease prophylaxis with post-transplantation cyclophosphamide after reduced-intensity busulfan/fludarabine conditioning for hematological malignancies. Biol Blood Marrow Transpl. 2015;21:906–12.

    Article  CAS  Google Scholar 

  5. Bradstock KF, Bilmon I, Kwan J, Micklethwaite K, Blyth E, Deren S, et al. Single-agent high-dose cyclophosphamide for graft-versus-host disease prophylaxis in human leukocyte antigen-matched reduced-intensity peripheral blood stem cell transplantation results in an unacceptably high rate of severe acute graft-versus-host disease. Biol Blood Marrow Transpl. 2015;21:941–4.

    Article  CAS  Google Scholar 

  6. Greco R, Lorentino F, Morelli M, Giglio F, Mannina D, Assanelli A, et al. Posttransplantation cyclophosphamide and sirolimus for prevention of GVHD after HLA-matched PBSC transplantation. Blood. 2016;128:1528–31.

    Article  CAS  PubMed  Google Scholar 

  7. Greco R, Lorentino F, Albanese S, Lupo Stanghellini MT, Giglio F, Piemontese S, et al. Posttransplantation cyclophosphamide- and sirolimus-based graft-versus-host-disease prophylaxis in allogeneic stem cell transplant. Transpl Cell Ther. 2021;27:776 e1–e13.

    Article  Google Scholar 

  8. Cordonnier C, Ljungman P, Cesaro S, Hirsch HH, Maschmeyer G, von Lilienfeld-Toal M, et al. The EHA research roadmap: infections in hematology. Hemasphere. 2021;5:e662.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Greco R, Ciceri F, Noviello M, Bondanza A, Vago L, Oliveira G, et al. Immune monitoring in allogeneic hematopoietic stem cell transplant recipients: a survey from the EBMT-CTIWP. Bone Marrow Transpl. 2018;53:1201–5.

    Article  CAS  Google Scholar 

  10. Greco R, Hoogenboom JD, Bonneville EF, Anagnostopoulos A, Cuoghi A, Dalle JH, et al. Monitoring for virus-specific T-cell responses and viremia in allogeneic HSCT recipients: a survey from the EBMT Cellular Therapy & Immunobiology Working Party. Bone Marrow Transpl. 2023;58:1–4.

  11. Oltolini C, Greco R, Galli L, Clerici D, Lorentino F, Xue E, et al. Infections after allogenic transplant with post-transplant cyclophosphamide: impact of donor HLA matching. Biol Blood Marrow Transpl. 2020;26:1179–88.

    Article  Google Scholar 

  12. Massoud R, Gagelmann N, Fritzsche-Friedland U, Zeck G, Heidenreich S, Wolschke C, et al. Comparison of immune reconstitution between anti-T-lymphocyte globulin and posttransplant cyclophosphamide as acute graft-versus-host disease prophylaxis in allogeneic myeloablative peripheral blood stem cell transplantation. Haematologica. 2022;107:857–67.

    Article  CAS  PubMed  Google Scholar 

  13. Goldsmith SR, Abid MB, Auletta JJ, Bashey A, Beitinjaneh A, Castillo P, et al. Posttransplant cyclophosphamide is associated with increased cytomegalovirus infection: a CIBMTR analysis. Blood. 2021;137:3291–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gimenez E, Torres I, Albert E, Pinana JL, Hernandez-Boluda JC, Solano C, et al. Cytomegalovirus (CMV) infection and risk of mortality in allogeneic hematopoietic stem cell transplantation (Allo-HSCT): A systematic review, meta-analysis, and meta-regression analysis. Am J Transpl. 2019;19:2479–94.

    Article  Google Scholar 

  15. Marty FM, Ljungman P, Chemaly RF, Maertens J, Dadwal SS, Duarte RF, et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N Engl J Med. 2017;377:2433–44.

    Article  CAS  PubMed  Google Scholar 

  16. Lin A, Maloy M, Su Y, Bhatt V, DeRespiris L, Griffin M, et al. Letermovir for primary and secondary cytomegalovirus prevention in allogeneic hematopoietic cell transplant recipients: Real-world experience. Transpl Infect Dis. 2019;21:e13187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin A, Flynn J, DeRespiris L, Figgins B, Griffin M, Lau C, et al. Letermovir for prevention of cytomegalovirus reactivation in haploidentical and mismatched adult donor allogeneic hematopoietic cell transplantation with post-transplantation cyclophosphamide for graft-versus-host disease prophylaxis. Transpl Cell Ther. 2021;27:85 e1–e6.

    Article  Google Scholar 

  18. Mori Y, Jinnouchi F, Takenaka K, Aoki T, Kuriyama T, Kadowaki M, et al. Efficacy of prophylactic letermovir for cytomegalovirus reactivation in hematopoietic cell transplantation: a multicenter real-world data. Bone Marrow Transpl. 2021;56:853–62.

    Article  CAS  Google Scholar 

  19. Robin C, Thiebaut A, Alain S, Sicre de Fontbrune F, Berceanu A, D'Aveni M, et al. Letermovir for secondary prophylaxis of cytomegalovirus infection and disease after allogeneic hematopoietic cell transplantation: results from the french compassionate program. Biol Blood Marrow Transpl. 2020;26:978–84.

    Article  CAS  Google Scholar 

  20. Sharma P, Gakhar N, MacDonald J, Abidi MZ, Benamu E, Bajrovic V, et al. Letermovir prophylaxis through day 100 post transplant is safe and effective compared with alternative CMV prophylaxis strategies following adult cord blood and haploidentical cord blood transplantation. Bone Marrow Transpl. 2020;55:780–6.

    Article  CAS  Google Scholar 

  21. Lorentino F, Xue E, Mastaglio S, Giglio F, Clerici D, Farina F, et al. Letermovir reduces chronic GVHD risk in calcineurin inhibitor-free GVHD prophylaxis after hematopoietic cell transplantation. Blood Adv. 2022;6:3053–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Su Y, Stern A, Karantoni E, Nawar T, Han G, Zavras P, et al. Impact of letermovir primary cytomegalovirus prophylaxis on 1-year mortality after allogeneic hematopoietic cell transplantation: a retrospective cohort study. Clin Infect Dis. 2022;75:795–804.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sperotto A, Candoni A, Gottardi M, Facchin G, Stella R, De Marchi R, et al. Cytomegalovirus prophylaxis versus pre-emptive strategy: different CD4(+) and CD8(+) T cell reconstitution after allogeneic hematopoietic stem cell transplantation. Transpl Cell Ther. 2021;27:518 e1–e4.

    Article  Google Scholar 

  24. Gabanti E, Borsani O, Colombo AA, Zavaglio F, Binaschi L, Caldera D, et al. Human cytomegalovirus-specific T-cell reconstitution and late-onset cytomegalovirus infection in hematopoietic stem cell transplantation recipients following letermovir prophylaxis. Transpl Cell Ther. 2022;28:211 e1–e9.

    Article  Google Scholar 

  25. Zamora D, Duke ER, Xie H, Edmison BC, Akoto B, Kiener R, et al. Cytomegalovirus-specific T-cell reconstitution following letermovir prophylaxis after hematopoietic cell transplantation. Blood 2021;138:34–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huntley D, Talaya A, Gimenez E, Martinez A, Hernandez-Boluda JC, Hernani R, et al. Features of cytomegalovirus DNAemia blips in allogeneic hematopoietic stem cell transplant recipients: implications for optimization of preemptive antiviral therapy strategies. Biol Blood Marrow Transpl. 2020;26:972–7.

    Article  CAS  Google Scholar 

  27. Cassaniti I, Colombo AA, Bernasconi P, Malagola M, Russo D, Iori AP, et al. Positive HCMV DNAemia in stem cell recipients undergoing letermovir prophylaxis is expression of abortive infection. Am J Transpl. 2021;21:1622–8.

    Article  CAS  Google Scholar 

  28. Marty FM, Ljungman PT, Chemaly RF, Wan H, Teal VL, Butterton JR, et al. Outcomes of patients with detectable CMV DNA at randomization in the phase III trial of letermovir for the prevention of CMV infection in allogeneic hematopoietic cell transplantation. Am J Transpl. 2020;20:1703–11.

    Article  CAS  Google Scholar 

  29. Ljungman P, Boeckh M, Hirsch HH, Josephson F, Lundgren J, Nichols G, et al. Definitions of cytomegalovirus infection and disease in transplant patients for use in clinical trials. Clin Infect Dis. 2017;64:87–91.

    Article  PubMed  Google Scholar 

  30. Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, Clift RA, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 1974;18:295–304.

    Article  CAS  PubMed  Google Scholar 

  31. Rowlings PA, Przepiorka D, Klein JP, Gale RP, Passweg JR, Henslee-Downey PJ, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97:855–64.

    Article  CAS  PubMed  Google Scholar 

  32. Harris AC, Young R, Devine S, Hogan WJ, Ayuk F, Bunworasate U, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the mount sinai acute GVHD international consortium. Biol Blood Marrow Transpl. 2016;22:4–10.

    Article  Google Scholar 

  33. Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transpl. 2015;21:389–401.e1.

    Article  Google Scholar 

  34. Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V, et al. Defining the intensity of conditioning regimens: working definitions. Biol Blood Marrow Transpl. 2009;15:1628–33.

    Article  Google Scholar 

  35. Gagelmann N, Kroger N. Dose intensity for conditioning in allogeneic hematopoietic cell transplantation: can we recommend "when and for whom" in 2021? Haematologica. 2021;106:1794–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peccatori J, Forcina A, Clerici D, Crocchiolo R, Vago L, Stanghellini MT, et al. Sirolimus-based graft-versus-host disease prophylaxis promotes the in vivo expansion of regulatory T cells and permits peripheral blood stem cell transplantation from haploidentical donors. Leukemia. 2015;29:396–405.

    Article  CAS  PubMed  Google Scholar 

  37. Duong A, Sweet A, Jain R, Hill JA, Pergam SA, Boeckh M, et al. Clinically significant drug interaction: letermovir and voriconazole. J Antimicrob Chemother. 2020;75:775–7.

    Article  CAS  PubMed  Google Scholar 

  38. Marty FM, Lowry CM, Cutler CS, Campbell BJ, Fiumara K, Baden LR, et al. Voriconazole and sirolimus coadministration after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2006;12:552–9.

    Article  CAS  Google Scholar 

  39. Greco R, Barbanti MC, Lupo Stranghellini MT, Giglio F, Morelli M, Messina C, et al. Coadministration of posaconazole and sirolimus in allogeneic hematopoietic stem cell transplant recipients. Bone Marrow Transpl. 2016;51:1022–4.

    Article  CAS  Google Scholar 

  40. Mfarrej B, Gaude J, Couquiaud J, Calmels B, Chabannon C, Lemarie C. Validation of a flow cytometry-based method to quantify viable lymphocyte subtypes in fresh and cryopreserved hematopoietic cellular products. Cytotherapy. 2021;23:77–87.

    Article  CAS  PubMed  Google Scholar 

  41. McCrea JB, Macha S, Adedoyin A, Marshall W, Menzel K, Cho CR, et al. Pharmacokinetic drug-drug interactions between letermovir and the immunosuppressants cyclosporine, tacrolimus, sirolimus, and mycophenolate mofetil. J Clin Pharm. 2019;59:1331–9.

    Article  CAS  Google Scholar 

  42. Stevanovic S, van Bergen CA, van Luxemburg-Heijs SA, van der Zouwen B, Jordanova ES, Kruisselbrink AB, et al. HLA class II upregulation during viral infection leads to HLA-DP-directed graft-versus-host disease after CD4+ donor lymphocyte infusion. Blood. 2013;122:1963–73.

    Article  CAS  PubMed  Google Scholar 

  43. Palaniyandi S, Radhakrishnan SV, Karlsson FJ, Stokes KY, Kittan N, Huber E, et al. Murine cytomegalovirus immediate-early 1 gene expression correlates with increased GVHD after allogeneic hematopoietic cell transplantation in recipients reactivating from latent infection. PLoS One. 2013;8:e61841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Itzykson R, Robin M, Moins-Teisserenc H, Delord M, Busson M, Xhaard A, et al. Cytomegalovirus shapes long-term immune reconstitution after allogeneic stem cell transplantation. Haematologica. 2015;100:114–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Olkinuora H, von Willebrand E, Kantele JM, Vainio O, Talvensaari K, Saarinen-Pihkala U, et al. The impact of early viral infections and graft-versus-host disease on immune reconstitution following paediatric stem cell transplantation. Scand J Immunol. 2011;73:586–93.

    Article  CAS  PubMed  Google Scholar 

  46. Lugthart G, van Ostaijen-Ten Dam MM, Jol-van der Zijde CM, van Holten TC, Kester MG, Heemskerk MH, et al. Early cytomegalovirus reactivation leaves a specific and dynamic imprint on the reconstituting T cell compartment long-term after hematopoietic stem cell transplantation. Biol Blood Marrow Transpl. 2014;20:655–61.

    Article  CAS  Google Scholar 

  47. Rashidi A, Luo X, Cooley S, Anasetti C, Waller EK, Brunstein CG, et al. The association of CMV with NK-cell reconstitution depends on graft source: results from BMT CTN-0201 samples. Blood Adv. 2019;3:2465–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. von Niederhausern V, Ruder J, Ghraichy M, Jelcic I, Muller AM, Schanz U, et al. B-cell reconstitution after autologous hematopoietic stem cell transplantation in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2022;9:e200027.

    Article  Google Scholar 

  49. Della Chiesa M, Falco M, Muccio L, Bertaina A, Locatelli F, Moretta A. Impact of HCMV infection on NK cell development and function after HSCT. Front Immunol. 2013;4:458.

    PubMed  PubMed Central  Google Scholar 

  50. Basílio-Queirós D, Venturini L, Luther-Wolf S, Dammann E, Ganser A, Stadler M, et al. Adaptive NK cells undergo a dynamic modulation in response to human cytomegalovirus and recruit T cells in in vitro migration assays. Bone Marrow Transpl. 2022;57:712–20.

    Article  Google Scholar 

  51. Kuijpers TW, Baars PA, Dantin C, van den Burg M, van Lier RA, Roosnek E. Human NK cells can control CMV infection in the absence of T cells. Blood. 2008;112:914–5.

    Article  CAS  PubMed  Google Scholar 

  52. Jin F, Lin H, Gao S, Wang H, Yan H, Guo J, et al. Characterization of IFNγ-producing natural killer cells induced by cytomegalovirus reactivation after haploidentical hematopoietic stem cell transplantation. Oncotarget. 2017;8:51–63.

    Article  PubMed  Google Scholar 

  53. Zaia JA, Sun JY, Gallez-Hawkins GM, Thao L, Oki A, Lacey SF, et al. The effect of single and combined activating killer immunoglobulin-like receptor genotypes on cytomegalovirus infection and immunity after hematopoietic cell transplantation. Biol Blood Marrow Transpl. 2009;15:315–25.

    Article  Google Scholar 

  54. Muccio L, Bertaina A, Falco M, Pende D, Meazza R, Lopez-Botet M, et al. Analysis of memory-like natural killer cells in human cytomegalovirus-infected children undergoing αβ+T and B cell-depleted hematopoietic stem cell transplantation for hematological malignancies. Haematologica 2016;101:371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Russo A, Oliveira G, Berglund S, Greco R, Gambacorta V, Cieri N, et al. NK cell recovery after haploidentical HSCT with posttransplant cyclophosphamide: dynamics and clinical implications. Blood. 2018;131:247–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rambaldi B, Kim HT, Reynolds C, Chamling Rai S, Arihara Y, Kubo T, et al. Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide. Blood Adv. 2021;5:352–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaghi E, Calvi M, Puccio S, Spata G, Terzoli S, Peano C, et al. Single-cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI Insight. 2021;6:e146973.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge all the patients, family members, and staff who participated in the study.

Author information

Authors and Affiliations

Authors

Contributions

GO, EX, MD, MTLS and RG designed the study. RM performed flow cytometry analysis. MD, who has consolidated statistical expertise, performed statistical analysis and prepared the figures. GO, EX and MD prepared the table. GO, EX, MD, MTLS and RG interpreted the data and wrote the manuscript. RG and MTLS provided scientific advice and supervision. All authors contributed to sample and data collection, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Fabio Ciceri or Raffaella Greco.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical statement

All patients were treated according to current Institutional programs upon written informed consent for transplant procedures, use of medical records and immunological studies for patients undergoing allogeneic HSCT within the non-interventional ALMON study, approved by San Raffaele Institutional Ethical Committee in date 19/10/2007.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orofino, G., Xue, E., Doglio, M. et al. Dynamics of polyclonal immuno-reconstitution after allogeneic transplant with post-transplant cyclophosphamide and letermovir. Bone Marrow Transplant 58, 1104–1111 (2023). https://doi.org/10.1038/s41409-023-02046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-023-02046-9

Search

Quick links