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Busulfan (Bu) combined with cyclophosphamide (Cy) is commonly used as a myeloablative conditioning regimen for allogeneic
hematopoietic cell transplantation (allo-HCT). There is inter-individual variability of Bu pharmacokinetics (PK) and hence in toxicity
and efficacy. The introduction of therapeutic drug monitoring (TDM) of Bu has decreased toxicity of the regimen. Hepatic
metabolism of Bu is mediated through Glutathione-S-Transferases (GSTs), mainly GSTA1. Patients with GSTA1*A variants are
considered normal metabolizers and GSTA1*B corresponds to poor metabolism, defined by nucleotide changes at −52 or −69 locus
in GSTA1 promoter region. The aim of the study was to explore the correlation between GSTA1 polymorphisms and Bu-PK in 60
adult patients receiving an allo-HCT in the BuCyBu clinical study (ClinicalTrials.gov I, ID NCT01779882) comparing the sequence
BuCy to CyBu. DNA samples prior to conditioning were genotyped for candidate variants at −52 (rs3957356) and −69 (rs3957357)
loci in the GSTA1 promoter. Thirty-three % of patients were GSTA1*A*A, 49% GSTA1*A*B and 18% GSTA1*B*B. In GSTA1*A*A patients,
median Bu-AUC was 3.6 ± 0.7 mg*h/L, in GSTA1*A*B 4.5 ± 1.6 and in GSTA1*B*B 4.9 ± 1.4 (AUC 35% higher than GSTA1*A*A,
p= 0.03), with a similar significant correlation with Bu-clearance (p= 0.04). The correlation between GSTA1 polymorphism and AUC
remained significant in multivariate linear regression analysis. There was a trend for lower non-relapse mortality (NRM) in patients
with low AUC. We could not demonstrate a correlation between GSTA1 polymorphisms and NRM, acute graft-versus-host disease
(aGvHD) in this small cohort, but there is a trend of higher aGvHD incidence in GSTA1*B*B patients.
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INTRODUCTION
Busulfan (Bu) and cyclophosphamide (Cy) are commonly used
alkylating agents and their efficacy as a myeloablative
conditioning regimen for allogeneic hematopoietic cell trans-
plantation (allo-HCT) is well known [1–4]. It has been demon-
strated that Bu may affect the hepatic metabolism of Cy, and
may therefore increase hepatic toxicity when the combination
is given as Busulfan-Cyclophosphamide (BuCy) instead of
Cyclophosphamide-Busulfan (CyBu) [5, 6]. A previously pub-
lished randomized clinical trial (BuCyBu study) suggested that
CyBu could be beneficial over BuCy in terms of short-term liver
toxicity and long-term outcomes [7]. There is great inter-
individual variability of Bu pharmacokinetics (PK) [8–10]. The
introduction of Bu therapeutic drug monitoring (TDM) has
permitted a reduction in liver toxicity and sinusoidal obstruc-
tion syndrome (SOS) incidence. One of the contributing factors
to Bu-PK variability, is that hepatic Bu metabolism is mediated
by Glutathione-S-Transferases (GSTs) [11–13]. Hypothesis is that

some functional polymorphisms of GSTs, specifically the
Glutathione-S-Transferase Alpha1 (GSTA1) promoter region,
may influence enzyme activity and therefore PK and toxicity
[14–16]. The two main promoter variants of GSTA1 consist of
GSTA1*A, with individuals showing lower Bu exposure, and
GSTA1*B showing higher Bu exposure, but most studies have
been done in children [15, 17]. Pharmacogenomics (PG) data
may add information to better understand the Bu exposure and
thus efficacy or toxicity of Bu individually when associated with
PK. The current study aims to investigate the correlation
between the two main GSTA1 promoter polymorphisms (at
−52 and −69 loci) and Bu-exposure, as well as the impact of
GSTA1 polymorphisms on clinical outcomes in patients enrolled
in the BuCyBu trial (ClinicalTrials.gov I, ID NCT01779882).

Patients and methods
Study cohort and design. This is a translational research project
of a prospective multicenter (University Hospitals of Basel and
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Geneva, Switzerland) randomized trial, comparing the relation
between Bu-PK values and GSTA1 promoter polymorphisms in
adult patients receiving BuCy or CyBu as myeloablative condition-
ing regimen for allo-HCT, 2013 to 2017. DNA was obtained from
the Swiss Transplant Cohort and stored in Basel. Analysis of
genetic variants and statistical analysis were performed by the
CANSEARCH Research Platform in Pediatric Oncology and
Hematology of University of Geneva. The study was registered
with ClinicalTrials.gov as NCT01779882, approved by Swissmedic
(2012DR4164), and the local ethics committee (EKNZ EKBB179/12).
The primary endpoint of this study was the correlation between
the main GSTA1 promoter variants and Bu-PK in terms of Bu area-
under-the-curve (AUC) and Bu clearance of the first Bu dose.
Secondary outcomes were the impact of GSTA1 on adverse clinical
outcomes described in the literature, namely acute GvHD, relapse
and NRM at 2 years.
We included adult patients planned for myeloablative con-

ditioning before allo-HCT from an HLA-identical sibling or
minimum 10/10 matched unrelated donor who agreed to
participate to the study with an informed signed consent.
Hematological malignancies were acute myeloid leukemia (AML),
chronic myeloid leukemia (CML), and myelodysplastic syndrome
(MDS) or myeloproliferative neoplasia (MPN). Exclusion criteria
were patients with relevant comorbidities and/or previous
abnormal liver function tests within two weeks before first Bu
dose. All endpoints were measured from the time of transplanta-
tion. Early disease was defined as CR1, intermediate disease was
defined as CP1, CR2 or never treated and advanced stage was
defined as relapsed or refractory disease, disease persistence,
accelerated phase, blast crisis or CP > 1. Acute GvHD was defined
as clinically relevent with grade >II. Overall survival was measured
as time to death from any cause and NRM was defined as death
from any cause without previous relapse or progression. Graft-
versus-host-free-relapse-free survival (GRFS) was the earliest
occurrence of grade >III of aGvHD, severe cGvHD requiring
systemic treatment, relapse or death from any cause after
transplant [18]. Of the 70 patients participating in the BuCyBu
study [19], 60 had available Bu-PK data and DNA samples and
were therefore included in the present study.
The conditioning regimen consisted of either BuCy or CyBu

depending on randomization, (i.v. Bu 4x0.8mg/kg for 4 days with
a total of 16 doses, followed or preceded by i.v. Cy 60mg/kg for
2 days, see Supplementary Table 1 for detailed treatment). A
time interval of 24 h was respected between the infusion of Bu
and Cy [6]. Oral UDCA (3x 250 mg daily) and continuous infusion
of low-dose heparin (5000 IE/day) was used as SOS prophylaxis
and was usually started simultaneously with the conditioning
regimen and stopped either after engraftment, when liver values
were within normal range or until day+100 for GvHD
prophylaxis as per centers’ guidelines. Patients received antiviral
prophylaxis with valaciclovir (500mg/day PO) until day+30 (2
years post-HCT in Geneva), prophylaxis against Pneumocystis
jirovecii and Toxoplasmosis with trimethoprim/sulfamethoxazole
(160/800mg PO, 3 times weekly) at least for 6 months after HCT,
and fluconazole (400 mg PO once weekly) as prophylaxis against
yeast infections until day+30 (day +100 in Geneva). Most
patients did not receive mold-active prophylaxis but were
treated empirically or pre-emptively, following a diagnostic-
driven approach, based on chest CT scans and serum
galactomannan that were regularly performed [20]. GvHD
prophylaxis consisted of cyclosporine A (CsA) and methotrexate
(MTX) in doses described in Supplementary Table 2, or
mycophenolate mofetil (MMF). An addition of anti-T-cell
globulin (ATG-Grafalon; Neovii; 35mg/kg total dosis) or alemtu-
zumab (Campath; Sanofi Genzyme; 20mg for 2 days) was
administered if transplant was with an unrelated donor or if
donor or recipient were ≥40 years old [21]. Acute GvHD was
graded according to the modified Glucksberg criteria [22].

In case of clinically relevant acute GvHD grade ≥II, patients
were treated with i.v. corticosteroids (methylprednisolone,
2mg/kg/d)[23].

Pharmacokinetic and pharmacogenomic analysis. Bu-AUC was
determined with 5 Bu plasma concentrations at different time
points (2, 2.5, 3, 4 and 6 hours after the start of the first infusion
[24]). Bu dose adjustment according to first AUC (obtained using
non-compartmental analysis) was performed from the third or
fifth dose onward to achieve a target AUC from 3.65 to 5.48 mg
*h/L (i.e 900–1350 μmol/l*min) according to the European
Medicines Agency (EMA) therapeutic window. Dosis were adjusted
by adding or withholding a 25% dose in patients with AUC higher
or lower than 25% of the defined acceptable range. For deviation
more than 25%, dosis adjustement was not performed. Centers
performing the Bu PK were cross-validated to have comparable
analytical estimates.
Regarding PG, the genotyping of six SNPs (rs3957356,

rs3957357, rs11964968, rs4715332, rs4715333, rs58912740 [24])
in GSTA1 promoter region was performed using Sanger sequen-
cing of the entire GSTA1 promoter region as described previously
[17]. PHASE (Version 2.1) was used to resolve the haplotypes
including genotype data for six loci of CEU population from 1000
genome project along with the study population [25]. Our
population was separated in 3 groups according to global
grouping (GSTA1*A*A, GSTA1*A*B and GSTA1*B*B) derived from
variant allele presence or absence at −52 (rs3957356) and −69
(rs3957357) loci, irrespective of arm.

Statistical analysis. Non-parametric tests (due to non-normal
distribution) compared the Bu AUC levels between the groups
based on GSTA1 promoter polymorphisms (Mann-Whitney test or
Wilcoxon test). P value was adjusted for false discovery rate using
Benjamini and Hochberg (B-H) method for number of tests
investigated for a specific clinical outcome. Statistical significance
was set by a two-sided p value < 0.05. Similarly, the demographic
characteristics groups were compared between the genotype
groups for testing differences in their distribution.
ROC curve analyses was performed to define the cutoff in Bu

AUC levels with better sensitivity and specificity to predict NRM at
2 years post HCT, irrespective of treatment arm. Regarding PG, the
influence of GSTA1 on Bu AUC levels was analyzed using a
regression model taking into consideration of the following
variables (lab values measured within five days before beginning
of first Bu dose): albumin, ASAT, ALAT, AP, GGT and Bilirubin levels,
GSTA1 *A*A, *A*B and *B*B, age and weight. The final multivariate
model was selected based on the BIC criteria by back elimination.
The relation between PG and clinical outcomes was analyzed by
cumulative incidence using competing risk model with relapse as
a competing risk for non-relapse mortality and death as a
competing risk for aGvHD. Clinical outcomes correlation analyses
included individuals with no missing data in any of the variables
were included in multivariate analyses (n= 60). Cumulative
incidence was obtained using the cumulative incidence function
in the competing risk package (cmprsk) in R [26] and greys test p
values are provided. Data analyses were carried out using the
statistical software R version 3·6.2 with Rcmdr package version
2·6.1 and the survival with cmprsk2 packages.

RESULTS
Baseline characteristics
A total of 70 patients were randomized and took part in the initial
randomized study and 60 had available DNA and PK samples; of
them 30 received CyBu and 30 received BuCy. A total of 36 (60%)
patients were male, with a median age of 47.2 years-old at allo-
HCT. 45 (75%) patients were treated for AML, 12 (20%) for MDS/
MPN and 3 (5%) for CML. This was the second (or more) HCT for
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9 patients. At time of transplant, most patients were in early stage
(38 patients, 63%), 19 were in intermediate stage and 3 in
advanced stage. All but 2 patients received transplant from
peripheral blood as stem cell source. Donors were HLA identical
siblings in 48.3 % of the cases and 10/10 matched unrelated in
51.7%. GvHD prophylaxis consisted of CsA in 56/60, MTX in 57/60
and MMF in 2/60 patients. ATG or T-cell depletion was given in a
total of 42 (70%) patients. A total of 21 (35%) patients were
GSTA1*A*A, 28 (47%) were GSTA1*A*B and 11 (18%) were
GSTA1*B*B. Distribution of all patients’ characteristics according
to PG groups is displayed in Table 1.

Pharmacokinetics
Median AUC was 4.45 ± 1.4 mg*h/L in our population, there was
no significant difference according to treatment arm, but CyBu

tends to show lower AUC value (median 4.57 ± 1.12 mg*h/L) in
BuCy versus 4.34 ± 1.63 mg*h/L in CyBu (Supplementary Fig. 1).
Median clearance was 3.21ml/min/kg. Patients in lower AUC (i.e
AUC < 3.65 mg*h/L) showed a trend of lower NRM, with a
cumulative incidence of 0%, as compared to 17.2% (95% CI:
5–35.3%) in target (AUC from 3.65 to 5.48mg*h/L) and 10%
(5–37.4%) in high AUC (>5.48 mg*h/L) (p= 0.08, Fig. 1). In ROC
analysis for NRM time to event analyses indicated an AUC of 4.34
mg*h/L had a 62% specificity and 100% sensitivity for NRM
(p= 0.001).

Pharmacogenomics
GSTA1*A*A patients had a median Bu-AUC of 3.6 mg*h/L,
GSTA1*A*B of 4.3 and GSTA1*B*B of 4.9 (Table 1; Fig. 2;
p= 0.03). Median ± SD clearance was 3.6 ± 1.3 ml/min/kg,

Table 1. Patient, disease and transplant characteristics according to PG.

Patient’s characteristics GSTA1*A*A (n= 21) GSTA1*A*B (n= 28) GSTA1*B*B (n= 11)

Age (median, years; range) 48.0 (25.4–65.1) 45.4 (20.7–64.6) 52.9 (32.6–62.0)

Gender male (n, %) 13 (61.9) 16 (57.1) 7 (63.6)

Weight (median, kg; range) 68.4 (50.6–96.9) 74.5 (52.9–106.1) 79.7 (54.2–100.5)

Disease

AML (n, %) 17 (81.0) 23 (82.1) 5 (45.5)

MDS/MPN (n, %) 3 (14.3) 5 (17.9) 4 (36.4)

CML (n, %) 1 (4.7) 0 2 (18.2)

Disease status

Early disease (n, %) 15 (71.4) 16 (57.2) 7 (63.6)

Intermediate disease (n, %) 6 (28.6) 9 (32.1) 4 (36.4)

Advanced disease (n, %) 0 3 (10.7) 0

Donor characteristics

Donor age (median, years; range)a 28.4 (19.7–58.0) 41.7 (24.1–58.9) 44.0 (24.1–58.9)

Donor female/ recipient male (n, %) 3 (14.2) 6 (21.4) 4 (36.3)

HLA-identical sibling (n, %) 8 (38.1) 16 (57.1) 5 (45.5)

HLA matched unrelated (n, %) 13 (61.9) 12 (42.9) 6 (54.5)

Stem cell source peripheral blood (n, %) 21 (100) 27 (96.4) 10 (96.4)

CMV status

Donor neg / patient pos (n, %) 7 (33.3) 13 (46.4) 4 (36.4)

Treatment arm

BuCy (n, %) 10 (47.6) 15 (53.6) 5 (45.5)

CyBu (n, %) 11 (52.4) 13 (46.4) 6 (54.5)

GvHD prophylaxis

ATG or t-cell depletion (n, %) 19 (90.5) 14 (50) 9 (81.8)

MTX (n, %) 18 (85.7) 28 (100) 11 (100)

CSA (n, %) 17 (81.0) 28 (100) 11 (100)

MMF (n, %) 0 1 (3.6) 1 (9.1)

KPS score

90–100 % (n, %) 19 (90.5) 24 (76.7) 10 (90.9)

<80% (n, %) 2 (9.5) 4 (14.3) 1 (9.1)

Pharmacokinetics

Bu AUC 1st dose (median; mg*h/l, SD) 3.6 (0.8) 4.3 (1.6) 4.9 (1.3)

Bu AUC < 3.65 mg*h/L (n, %) 13 (62) 8 (29) 4 (36)

Bu AUC 3.65–5.48 mg*h/L (n, %) 8 (38) 12 (43) 5 (46)

Bu AUC > 5.48 mg*h/L (n, %) 0 8 (29) 2 (18)

allo-HCT allogeneic cell transplantation, CMV cytomegalovirus, AML acute myeloid leukemia, MDS myelodysplastic syndrome, MPN myeloproliferative
neoplasm, CML chronic lymphocytic leukemia, KPS Karnovsky Performance Score, GvHD graft-versus-host-disease, ATG anti-thymocyte globulin, CyA
cyclosporine A, MTX methotrexate, MMF mycophenolate mofetil, SD standard deviation.
aThree missing values.

C. Seydoux et al.

813

Bone Marrow Transplantation (2023) 58:811 – 816



2.7 ± 1.6 ml/min/kg and 2.7 ± 1.1 ml/min/kg in GSTA1*A*A,
GSTA1*A*B and GSTA1*B*B, respectively (p= 0.04). After multi-
variate linear regression, carrying a GSTA1*B allele (either
GSTA1*A*B or *B*B) remained a positive predictor for AUC,
associated with an AUC reduction of 20% (p= 0.02). There was a
higher aGvHD grade >2 incidence in GSTA1*B*B (45%: 13–73.3%)
as compared to GSTA1*A*A (16.4%: 4–36.5%) or GSTA1*A*B
(29.4%: 13.9–46.8%) with a HR of 1.6 (0.6–2.4, p= 0.2), shown in
Fig. 3. There were no significant differences in overall survival,
NRM, GRFS and relapse by GSTA1 polymorphisms (p values: 0.4,
0.7, 0.8 and 0.7; Supplementary Figs. 2, 3, 4 and 5).

DISCUSSION
This is a translational project of a randomized clinical trial,
comparing the impact of the order of application of busulfan and
cyclophosphamide used as conditioning regimen for allo-HSCT in
adult patients, suggesting a small clinical benefit of CyBu over

BuCy. In this project analyzing pharmacogenomics and pharma-
cokinetics, we show an association between GSTA1 variants and
PK, with low AUC in GSTA1*A*A, and high AUC in GSTA1*A*B and
GSTA1*B*B, as well as a trend of higher aGvHD incidence in
GSTA1*B*B variants, irrespective of treatment arm.
Incidence of organ toxicity, specifically SOS, has been reduced

with the introduction of TDM in the early 2000’s, but still remains
at 2–5% [8, 27]. In patients with low Bu metabolism, organ toxicity
may be induced even after the first dose of Bu and further dose
adjustment may not be efficient, as the subsequent Bu-AUC values
remain high [15, 28]. This has led to search for predictors for Bu-PK
and therefore NRM. Most studies investigating the relation
between Bu-PK and PG are from pediatric populations, only some
have been done in adults [14, 29, 30].
Epidemiology of GSTA1 variants varies in different ethnicities.

European GSTA1*A prevalence is about 60% and GSTA1*B 40%,
depending on studies [17]. Lately, additional SNPs (other than −52
and −69) have been discovered, influencing the promoter of
GSTA1 and hence enzyme function. Ansari and al. have used four
additional SNPs (rs11964968, rs4715332, rs4715333, rs58912740 in
GSTA1 promoter) in a multicenter pediatric population, where some
normal metabolizers were re-classified into intermediate metabo-
lizers or ultra-rapid metabolizers creating refined GSTA1 metabolic
groups [15]. Loci −631 and −1142 (rs4715333 and rs58912740)
showed highest enzyme activity among GSTA1*A and loci −513
(rs11964968) showed the lowest enzyme activity among GSTA1*B.
This refined and more detailed grouping might be interesting for
further exploration in adults with a larger patient group (data with
four additional SNPs not shown). Our Bu-PK values were slightly
higher than described in a meta-analysis by Kim et al., where
median AUC in GSTA1*A*B* and B*B pooled individuals was
999 µmol/l*min (4.10 mg*h/L) versus 956 µmol/l*min (3.92 mg*h/L)
in GSTA1*A*A individuals, though this meta-analysis comprised
children and adults with different conditioning regimens [13]. In
our study, one allele GSTA1*B could actually be sufficient to
increase AUC by 16%, which may be clinically meaningful in
patients with AUC at the extremes of the therapeutic window.
Regarding clinical outcome and GST polymorphism, most

studies are again done in pediatric populations and results are
controversial. Most of them show better long-term outcome in
GSTA1*A*A carriers, with better event-free survival and lower
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mortality without impact on the relapse rate [15, 28, 29]. Better
outcome in rapid metabolizers (GSTA1*A*A) is described even if
they have a Bu-AUC below the target range [15]. Rapid
metabolizing might therefore be an overall protective factor
independently of low PK, but our population was too small to
show such a correlation at long-term. In fact, PG might play a role
in NRM, but the most important predictor factor still remains PK.
Better outcome in low-AUC as shown here has also been found in
a recent retrospective study, in which lower NRM was seen in
patients with AUC < 900 µmol/l*min (i.e 3.65 mg*h/L) and a
theoretical ideal cut-off range of 962 µmol/l*min [31]. This
questions the rationale for dose increase when patients are below
the AUC target range.
Results concerning the association between GSTA1 polymorph-

isms and aGvHD are more questionable, as it was proposed earlier
that GSTA1*A*A may be an independent protective factor against
aGvHD [15, 30], but these results were not replicated in other
studies [28, 32]. GSTA1 may have direct impact on the cell
protection as demonstrated in earlier reports where GSTA1*B*B
individuals were at higher risk of developing treatment related
toxicities even within the AUC target window [15, 21]. Actually, PG
and PK may inform in a complementary way, with an overall
higher toxicity in poor metabolizers and with influence on aGvHD
incidence. Other genetic variants of GST, such as Glutathione-S-
Transferase Mu1 (GSTM1), Pi1 (GSTP1) and Theta (GSTT1) also
participate in the conjugation of Bu with GST [13, 22, 23], e.g.
GSTM1 absence of protein due to gene deletion have a stronger
association with relapse than PK [13, 20, 22].
Last regarding Cyclophosphamide, Ekhart et al. did not find an

association between GSTA1 and the metabolism of the drug,
though the conditioning regimen given comprised Cy, thiotepa
and carboplatin [33]. Although Cy metabolism involves GSTs
especially in eliminating active Cy metabolites, the accumulation
of Cy toxic metabolites could be only triggered when associated
with Bu [28] increased in GSTA1*B*B diplotype carriers. A 24h hour
interval between the 2 drugs is therefore recommended to limit
NRM [6]. An association between GSTA1 and Cy-PK was also
described in patients with lupus nephritis, with poorer response
rate in GSTA1*A*A [34]. Our study was limited by the initial sample
size set by the RCT and derived by a previous retrospective study
[35]. Another limit is the heterogeneity of our population, with
different hematological neoplasms, disease stages, order of
application and aGvHD prophylaxis. Larger clinical studies are
warranted.

CONCLUSIONS
In conclusion, we demonstrate a positive association between
pharmacokinetics and pharmacogenomics, with higher AUC and
lower clearance in GSTA1*B*B as compared to GSTA1*A*A.
Regarding clinical outcomes, we see a trend of higher aGvHD
incidence in GSTA1*B*B patients. These genetic variants, among
others, could be future predictive factors of outcome in patients
with allo-HCT, but larger studies are needed. This suggests that PG
added to TDM may optimize Bu safety and efficacy profile when
used in intensive chemotherapy regimens.
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