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Data on the influence of different Anti-lymphocyte globulin (ATLG) doses on graft versus host disease (GVHD) incidence and
immune reconstitution in matched unrelated (MUD) allogeneic Stem cell transplantation (allo-SCT) is limited. This retrospective
study conducted at the University Medical-Center Hamburg compares GVHD and Immune reconstitution after myeloablative MUD
(HLA 10/10) PBSC allogeneic stem cell transplant between 30mg/Kg (n= 73) and 60mg/Kg (n= 216) ATLG. Detailed phenotypes of
T, B natural killer (NK), natural killer T (NKT) cells were analyzed by multicolor flow at day 30, 100, and 180 posttransplant. Neutrophil
and platelet engraftments were significantly delayed in the 60mg/kg group with a higher Cumulative incidence of Infections (67%
vs 75% p= 0.049) and EBV (21% vs 41% p= 0.049) reactivation at day 100 in this group. In the 30mg/kg group, we observed a
faster reconstitution of naïve-B cells (p < 0.0001) and γδ T cells (p= 0.045) at day+30 and a faster naïve helper T-cell (p= 0.046), NK-
cells (p= 0.035), and naïve B-cell reconstitution (p= 0.009) at day+180. There were no significant differences in aGVHD, cGVHD,
NRM, RI, PFS, and OS between the groups. The choice of ATLG dose has significant impact on IR but not on GVHD after MUD-allo-
SCT. Higher doses are associated with delayed engraftment and increased infections.
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INTRODUCTION
Due to the graft versus tumor effect, allogeneic stem cell
transplantation (allo-SCT) is a potentially curative treatment strategy
for hematological diseases [1, 2]. However its benefits may be offset
by increased non related mortality (NRM), mainly due graft-versus-
host-disease (GVHD) and infections [3]. The use of an unrelated
donor and peripheral blood stem cells (PBSC) is associated with an
increased risk of GVHD. Randomized studies have shown that
pretransplant anti-T-Lymphocyte globulin (ATLG) can prevent
severe acute and chronic GVHD [4–6]. Although lower ATLG doses
may compromise the immunosuppression effects, higher ATLG
doses may offset its benefit by decreasing antiviral and graft-versus-
malignancy effect by depletion of donor effector T cells [7]. Even
though the use of ATLG in allo-SCT is well established, however,
data on optimal ATLG dosing in the setting of MUD-PBSC is scarce,
only one study has compared different ATLG doses in this setting
[8]. In the present study, we aim to compare the IR kinetics and
transplant outcomes between recipients of 30mg/Kg vs 60mg/Kg
ATLG as TCD strategies undergoing MUD-PBSC-allo-SCT with
myeloablative conditioning (MAC).

MATERIALS AND METHODS
This retrospective study conducted at University Medical Center Hamburg-
Eppendorf (UKE) with a primary goal to compare IR between 30mg/Kg
(ATLG-30) vs. 60 mg/kg (ATLG-60) ATLG in recipients of MAC PBSC allo-SCT.

The choice of ATLG dose was according to treating physician preference.
Secondary outcomes included incidence of viral reactivations, engraft-
ment, rate of infections and Infection related mortality (IRM), aGVHD,
cGVHD, non relapse mortality (NRM), progression free survival (PFS), and
overall survival (OS). All patients signed written informed consents for
treatment and the study was approved by the institutional review board at
UKE. To have comparable groups, we selected only patients receiving MAC
with PBSC as stem cell source, and MUD (HLA 10/10).
MAC regimens were defined according to published working group

definition [9]. ATLG (Grafalon®, Neovii, Switzerland) was given at a dose of
30mg/kg or 60mg/kg. A test dose of 200mg was given at day −4 and the
remaining ATLG doses were fractionated between days −3 to −1. Similar
supportive care was used for all patients per institutional guidelines
including antimicrobial prophylaxis consisting of fluoroquinolone for
bacterial infections, trimethoprim-sulfamethoxazole or pentamidine for
Pnemocystis jiroveci, micafungin for fungal infections and acyclovir for viral
infections. Patients were screened weekly for CMV and EBV by blood PCR.
Neutrophil engraftment was defined as the first 3 consecutive days with

a measure of absolute neutrophil count >0.5 × 109/L. Platelet engraftment
was defined as the first consecutive days with a platelet count >20 × 109/L
without transfusion support. Acute GVHD was graded according to
standard criteria [10]. Chronic GVHD was graded according to National
Institute of Health (NIH) criteria routinely at every visit after transplantation
[11]. Infections were defined as any microbial testing with a positive result
and requiring therapy at any time-point after allo-SCT.
As per institution guidelines, blood samples were collected for each

patient on days +30, +100, and +180 post-allo-SCT. Routine analyses for
absolute concentrations of CD3+, CD4+, CD8+, NK, and γδ T cells were
performed by flow cytometry according to an internal protocol: (1) CD4-
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APC, CD8-PE, Multitest (CD3 FITC, CD16+ 56 PE, CD45 PerCP, CD19 APC);
(2) CD4-APC, CD45-V450, Multitest (CD45RA FITC, CD45RO PE, CD3 PerCP,
CD8 APC); (3) CD45-V450, CD3-PerCPl, anti-TCR-PE, anti-HLA DR-APC in
peripheral blood samples. All antibodies were obtained from Becton
Dickinson (BD Biosciences, New Jersey, USA). Up to 5000 events (25,000
per sample) were acquired per tube. Sample acquisition was performed
using a BDTM FACS-Canto flow cytometer with the BDTM FACSDiva
software which was also used for data analyses.Immunophenotypes were
assessed using four color cytometry using mouse anti-human antibodies
for the following cells: T-lymphocytes (CD3+), activated-T-lymphocytes
(CD3+ HLADR+), T-helper (CD3+/CD4+), T-cytotoxic (CD3+/CD8+),
B-lymphocytes (CD19+), B-lymphocytes subpopulations (CD19+CD5+
CD1d+)(CD19+ CD27+), naïve-B-cells (CD19+ CD27-CD10+), NK-cells
(CD56+CD3-), NKT-cells (CD56+CD3+), naïve-T-helper (CD4+CD45RA+),
memory-T-helper (CD4+CD45R0+), naïve-T-cytotoxic (CD8+CD45RA+),
memory-T-cytotoxic (CD8+CD45R0+ ), γδT-cells (γδTCR+, CD3+), regulatory-
T-cells (CD4+CD25+ CD127low-neg).

Statistical methods
All data was retrospectively collected and was summarized by standard
descriptive statistical methods. χ2 test was used to compare categorical
variables, whereas continuous variables were compared using student’s
t-test. We defined PFS as survival without relapse or progression of
hematological disease; we censored patients without disease or progres-
sion at the time of last follow up. We defined OS and NRM as death from
any cause, and without evidence of relapse, respectively. We used the
Kaplan-Meier method to calculate the probabilities of DFS and OS; and the
cumulative incidence functions were used to estimate incidence of GVHD,
Infections, viral reactivations, RI and NRM. All analysis was performed using
SPSS version 26.0 and R version 4.0.5.

Table 1. Patients transplant and donor characteristics.

ATLG Dose 30mg/Kg 60mg/Kg P

N (%) N (%)

Total patients 73 (100) 216 (100)

Patient age median
(range)

57 (18–71) 50 (18–74) 0.98

Disease 0.22

ALL 3 (4) 19 (9)

AML 37 (51) 108 (50)

CML 2 (3) 6 (3)

HL 1 (1) 0 (0)

NHL 16 (22) 24 (11)

MDS 6 (8) 19 (9)

MDS/MPN 1 (1) 1 (0)

MM 5 (7) 32 (15)

PMF 1 (1) 4 (2)

Others 1 (1) 3 (1)

ECOG 0.06

0 16 (25) 50 (29)

1 37 (59) 112 (65)

2 8 (13) 8 (5)

3 2 (3) 1 (1)

KI at SCT median
(range)

80(40-100) 80 (40–100) 0.38

Donor age median
(range)

26 (19–53) 32 (18–61) 0.022

Donor/recipient
CMV serology

0.17

D−/R− 32 (44) 73 (34)

D−/R+ 8 (11) 28 (13)

D+/R− 4 (5) 30 (14)

D+/R+ 29 (40) 85 (39)

Donor-recipient sex 0.55

No mismatch

M-M 42 (58) 108 (50)

F-F 12 (16) 32 (15)

Mismatch

M-F 14 (19) 54 (25)

F-M 5 (7) 22 (10)

ABO incompatibility 0.26

Isogroup 24 (33) 78 (36)

Minor 21 (29) 63 (29)

Major 22 (31) 45 (21)

Bidirectional 5 (7) 28 (13)

Year of transplant
median (range)

2015 (2005–2019) 2014 (2006–2018) 0.25

CD34 x 106/kg
median (range)

8 (4–14) 8 (3-15) 0.19

Conditioning
regimen

0.8

Bu -Based 37 (51) 111 (51)

TBI-Based 23 (32) 73 (34)

TMI+ Bu+Cy 13 (18) 32 (15)

TBI 23 (32) 75 (35) 0.2

Table 1. continued

ATLG Dose 30mg/Kg 60mg/Kg P

N (%) N (%)

TBI dose

<12 Gy 8 (35) 20 (9)

12 Gy 15 (65) 55 (73)

Immune
suppression

0.044

CNI+MMF 62 204

CNI+MTX 10 (14) 9 (4)

Other 1 (1) 3 (1)

Disease status at
SCT

0.001

CR 33 (67) 137 (85)

CR1 19 (66) 103 (80)

CR2 8 (28) 20 (16)

CR3 2 (7) 4 (3)

PR 4 (8) 14 (9)

PD 12 (24) 10 (6)

Follow up days
median (Range)

337 (32–4843) 667 (20–3961) 0.73

Bold values indicate statistical significance p < 0.05.
NS Statistically not significant p ≥ 0.05, ALL Acute Lymphocytic Leukemia,
AML Acute Myeloid Leukemia, CML Chronic myeloid Leukemia, HL
Hodgkin’s Lymphoma, NHL Non-Hodgkin’s Lymphoma, MDS Myelodysplas-
tic Syndrome, MDS/MPN Myelodysplastic syndrome-Myeloproliferative
Neoplasm overlap, MM Multiple Myeloma, PMF Primary Myelofibrosis, KI
Karnofsky Index, SCT Stem cell transplantation, D/R Donor/Recipient, M
Male, F Female, Bu Busulfan, TBI Total body irradiation, TMI Total Marrow
irradiation, Cy Cyclophosphamid, CNI Calcineurin inhibitor, MMF Mycophe-
nolate Mofetil, MTX Methotrexate, CR Complete Remission, PR Partial
Remission, PD Progressive Disease.
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RESULTS
Patients and transplant characteristics
A total of 289 consecutive patients were included in the study.
Seventy-three patients (25%) received ATLG-30 and 216 Patients
(75%) received ATLG-60with a tendency to give lower doses in
more recent years. The median age at transplant was 57 years
(range, 18–71) and 50 years (range, 18–74) in the ATLG-30 and
ATLG-60 (p= NS), respectively. All patients, donor and transplant
characteristics are listed in Table 1.

Transplant outcomes
All transplant outcomes are summarized in Table 2.

Engraftment
Platelet and neutrophil engraftment were significantly delayed in
ATLG-60 group when compared to the ATLG-30 group with a
median of 11 days (range, 8–23) to neutrophil in the ATLG-30 vs
12 days (range, 8–27) in ATLG-60 group (P= 0.009) (Fig. 1a); and a
median of 14 days (range, 9–53) to platelet engraftment in ATLG-
30 group vs. 16 days (range, 8–237) in the ATLG-60 group (p=
0.011).

Infections CMV and EBV reactivation
We observed no significant differences in incidence of CMV
reactivation before day 100 (ATLG-30 43%, ATLG-60 45%). The
overall incidence of infection before day 100 was significantly
higher in the ATLG-60 (78%) when compared to the ATLG-30
(67%), p= 0.04 (Fig. 1b). The incidence of EBV reactivation before
days 100 in the ATLG-30 group was lower than the ATLG-60 group
(21% vs. 41% p= 0.049). IRM at 1-years was 10% in the ATLG-30 vs
11% in the ATLG-60 group (p= 0.7)

Graft-versus-host disease
The cumulative incidence of aGVHD grade II-IV (47% vs 37%, P=
0.09) and III-IV (19% vs 14%, P= 0.2) were comparable in the
ATLG-30 vs ATLG-60 groups, respectively. We observed a higher
incidence of aGVHD grade IV in patients receiving ATLG-30 when
compared to the ATLG-60 group (8% vs 0.5% p= 0.0002).
On univariate analysis, we observed no difference in the

cumulative incidence of cGVHD all grade was (32% vs 37%, p=
0.47), moderate/severe (14% in both groups, p= 0.48) and grade
severe (5% vs 4%, p= 0.64) were similar between the 30mg/Kg
ATLG and the 60mg/Kg ATLG, respectively.

Overall survival
The estimated 3-year OS was 55% for patients in the ATLG-30 group
and 51% in the ATLG-60 group (p= 0.16) (Fig. 2a). On univariate
analyses patients’ age, patient and donor CMV serology, donor
gender and disease status at transplant significantly affected OS.
However, on multivariate analyses only Status at Transplant,
Recipient CMV serology and Donor Gender were significant (Table 3).

Progression free survival
The estimated 3-year PFS was 45% for patients in the ATLG-30
group and 54% in the ATLG-60 group (p= 0.18) (Fig. 2b). On
univariate analyses, older patients, negative recipient CMV
serology, female donor, SCT chronology>1 and active disease at
time of transplant were associated with decreased DFS. All the
variables except patient age retained their negative impact on
DFS in the multivariate analysis (Table 3).

Non-relapse mortality
The 2-years cumulative incidence of NRM was comparable
between the two groups, with 14% vs 12% in the ATLG-30 and
ATLG-60 (p= 0.89), respectively (Fig. 3). On Univariate analysis:
older patients, female donor, and negative recipient CMV serology
negatively affected NRM. These variables remained significant on
multivariate analyses (Table 4).

Table 2. Transplant outcomes summary.

ATLG Dose 30mg/Kg 60mg/Kg P

N (%) N (%)

Leukocytes engraftment
median (range) days

11 (8–23) 12 (8–27) 0.009

Platelets engraftment
median (range) days

14 (9–53) 16 (8–237) 0.002

OS at 3 years 55% 51% 0.16

DFS at 3 years 45% 54% 0.18

NRM at 1 year 14% 11% 0.89

aGVHD

Grade I-IV 66% 63% 0.35

Grade II-IV 47% 37% 0.09

Grade III-IV 19% 14% 0.2

cGVHD at 3 years

Mild-moderate-severe 32% 36% 0.47

Moderate-severe 14% 14% 0.88

Severe 5% 4% 0.64

Infections

Cumulative incidence of
infections

49 (67%) 161 (75%) 0.002

CMV reactivation until
day 100

31 (43%) 98 (45%) 0.06

EBV reactivation until
day 100

15 (21%) 88 (41%) 0.049

IRM at day 180 8% 10% 0.7

Bold values indicate statistical significance p < 0.05.
OS Overall survival, DFS Disease free survival, NRM Non relapse mortality,
aGVHD acute Graft versus host disease, cGVHD chronic graft versus host
disease, IRM Infection related mortality.
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of neutrophil engraftment between 30mg/kg and 60mg/kg ATLG.
b Incidence of infections after 30mg/kg and 60mg/kg ATLG.
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Immune reconstitution
At day +30, we observed a faster γδTcells reconstitution in the
ATLG-30 group (p= 0.045) (Fig. 4a), however the values at day
+100 and +180 were comparable between the two groups.
Furthermore, helper naïve T-cells (CD4+ /CD45RA+ ) (Fig. 4b) and
NK cells reconstitution was faster at day +180 in the ATLG-30
group (Fig. 4c) and reconstitution of naïve B-cells (CD19+/
CD27−/CD10+) was faster at days +30 and +180 in the ATLG-
30 group (p < 0.0001) (Fig. 2d). All our data is summarized in
Supplementary Table 1.

DISCUSSION
Although ATLG is recommended for GVHD prevention in allo-SCT
[12], data on optimal ATLG dosing in the setting of MUD-PBSC is
still lacking. Recently a consensus-based recommendation by an
international expert panel recommended the use of 30 mg/Kg and
60mg/Kg of ATLG for sibling and unrelated MAC allo-SCT,
respectively [13].
A retrospective study conducted in 2003 compared two doses

of ATLG (<60mg/Kg vs 60 mg/Kg) in CML Patients undergoing
MUD allo-SCT reports improved OS and DFS in patients receiving
>60mg/Kg ATLG. These differences were attributed to the higher
incidence of severe aGVHD in the lower ATLG dose group. A
number of 31 patients received a lower ATLG Dose with 58%
receiving 20mg/Kg ATLG and 36% receiving 40mg/Kg ATLG [14].
Our findings fall in line with the study, as we reported a higher
incidence of severe aGVHD on univariate and multivariate analysis
in the lower ATLG dosing, however this did not impact any of the
other outcomes. The discrepancy can be explained by the lower

ATLG Doses in this study and improved supportive care in our
population.
A study published from our center compared 30mg/Kg ATLG

with 60 mg/Kg ATLG in the MUD-allo-SCT setting between
1997–2005. ATLG was administered at a dose of 30mg/kg on
day –1 in the 30mg/Kg group or 20mg/kg/day on days –3 to –1 in
the 60mg/Kg group. This study reported a higher NRM in the
ATLG-60 group, mainly due to increased incidence of infections in
this group with no differences in incidences of aGVHD, cGVHD and
Relapse [8]. Our results fall in line with the present study. We
observed a higher incidence of infections in the ATLG-60 group,
however, due to improved supportive care this had no impact
on NRM.
In a multicenter, randomized, open label phase 3 Trial Locatelli

et al. assessed the impact of two doses of ATLG (15mg/Kg vs
30mg/Kg over 3 days, from day −4 to −2) in children undergoing
MUD-allo-SCT with MAC. They reported lower NRM, higher event
free survival and OS in the lower ATLG dose group. In addition,
higher doses of ATLG were associated with increased EBV and
Adenovirus reactivation and increased IRM. They observed no
significant differences in incidences of aGVHD and cGVHD
between the two groups. Our results fall in line with Locatelli
et al. In our we observed a higher incidence of EBV reactivation in
the lower ATLG dose group, however, no differences in any of the
long-term outcomes [15].
Butera et al. retrospectively evaluated the impact of two

different anti-thymocyte globulin dose (Thymoglobulin, 5 mg/Kg
vs 6.5 mg/Kg) in adults undergoing MUD-allo-SCT at three Italian
centers [16]. They report an increased Infection related mortality in
the higher ATG dose group, and no significant differences in any
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Table 3. Multivariate analysis.

Multivariate analysis OS HR [95%] CI P-value DFS HR [95%] CI P-value

Patient age: (per 1 year increase) 1.52 (0.96–2.42) 0.08 1.33 (0.89–2) 0.17

ATLG Dose: 60mg/Kg (ref) vs 30mg/Kg 1.46 (0.85–2.53) 0.17 1.25 (0.77–2.03) 0.37

SCTchronology: 2 or more (ref ) vs 1st 0.63 (0.37–1.07) 0.09 0.53 (0.34–0.85) 0.01

Status at transplant: not CR (ref) vs CR 0.52 (0.3–0.91) 0.02 0.55 (0.33–0.9) 0.02

Recipient CMV serology: Pos (ref ) vs neg 0.47 (0.29–0.76) 0.002 0.54 (0.36–0.81) 0.003

DonorSex: Male (ref ) vs Female 2.25 (1.38–3.67) 0.001 1.66 (1.05–2.62) 0.03

HR Hazard ratio, CI Confidence interval, OS Overall survival, DFS Disease free survival.
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of the other outcomes. In our study, we observed a higher
incidence of Infection, however no differences in Infection related
mortality between the two groups. The differences in our
outcomes can be explained in terms of the discrepancies in
transplant characteristics. Butera et al. included both MAC and RIC,
Bone Marrow and PBSC grafts and they reported a higher
proportion of patients with 1HLA mismatch in the higher ATG
dose group; while in our population Contrary in the present study,
patients were more homogeneous, they all received MAC, PBSC
with 10/10 HLA matched grafts. In addition, in contrast to ATLG
Thymoglobulin may contain not only antibodies specific against
mature T cell antigens but also antigens on the thymus-specific
cells, thus directly impairing Thymic T cell regeneration and
deepening the immunosuppression [17], thus explaining the
increased IRM in patients receiving ATG in contrast to ATLG.
Gooptu et al. investigated the effect of ATLG on IR in MUD-

PBSCT (n= 44 ATLG, n= 47 placebo) [18]. They reported
improved CD3+, CD4+, CD8+, and Treg Lymphocytes in the
Placebo group. They additionally reported delayed CD3+ and
CD4+ Lymphocytes reconstitution up to 6 months. Our study falls

in line with these findings, the CD3+ and CD4+ Lymphocytes did
not normalize at last follow up.
Bacigalupo et al. compared in two randomized trials two

different doses of thymoglobuline (15 mg/kg vs 7.5 mg/kg) in
patients undergoing MUD-allo-SCT with MAC conditioning and
BM grafts [19]. They reported decreased aGVHD in patients
receiving higher doses (37% vs 69%). Two additional studies have
compared different ATLG dosing, in haplo-identical and cord-
blood setting [20, 21], both studies have reported increased
infectious complications. Taking into consideration the basic
differences in transplant types, our results fall in line with these
findings, higher doses of ATLG have reduced incidence of grade IV
aGVHD however at the cost of increasing infections in our
patient’s population, without any impact on the long-term
outcomes.
It has been recently suggested that ATG/ATLG dose should be

calculated not only based on Body weight but also according to
absolute Lymphocyte count on the first day of infusion [22, 23]. In
two studies this approach has maximized the benefit by
decreasing GVHD and reduced the risks of increased infections
and relapse. This was also validated in a post hoc analysis of a RCT
where lower ALC counts on first ATLG infusion day was associated
with lower PFS and OS [24]. In our study we have not evaluated
the impact of ALC on any of the outcomes.
γδTcells and NK-cells protect against viral and bacterial infections

[25–28]. In addition administration of ATLG is associated with a
faster γδTcell recovery [29]. Moreover, a recent study on the impact
of γδTcells recovery on transplant outcomes in pediatric patients
with acute leukemia reported improved DFS and OS in Patients
with higher γδTcells [30], which was also confirmed in the adult
populations [29, 31, 32], in addition they reported a decreased
incidence of infections in patients with higher γδTcell count. The
decreased γδTcells and longer period of aplasia in the ATLG-60
group can explain the higher incidence of infections in this group.
After allo-SCT the numbers of B cells normalize within a year

[33–35]. In addition, ATLG induces apoptosis in CD20+ B cells and
has shown to induce complement dependent cell lysis in
myeloma cells [36, 37]. In our study the B cell have increased
but did not normalize at day 180. In addition, the ATLG-60 group
had a significantly lower naïve B-cell Population which supports
the hypothesis that CD19+ B cells reduction by ATLG is dose
dependent [38–41].
Early NK-cells recovery after allo-SCT has been previously

reported and it has been postulated that ATLG spares NK cells
when compared with other in vivo TCD strategies [42, 43]. In our
study NK-cells recovered at day 30 in both groups and we
observed no differences in cell count at all time points after
transplant. However, we observed a higher percentage of NK cells
in the ATLG 30 group. This can be clarified by the improved overall
lymphopoiesis observed in the ATLG-30 group.
ATLG mediates in vivo T cell depletion by complement

mediated cytolysis, Fas-receptor dependent apoptosis and anti-
body dependent cell mediated cytotoxicity [44]. In addition,
Servais et al. analyzed the impact of ATG on IR post MAC PBSC
allo-SCT [45]. It has been established that Tregs suppress GVHD
without decreasing GVL [46], and that they accelerate T-cell IR in
murine models [47]. Tregs in our study persisted after allo-SCT and
we observed no significant differences in Tregs IR between both
groups. This can be explained by previous reports of ATG
selectively sparing Tregs [45].
Two studies have associated higher NKT-cell count with

increased GVHD and relapse [48–50]. In our study, we observed
early recovery of NKT cells without significant differences in IR
between the two groups.
In both groups the CD8+ T cell compartment recovered at day

+100, while the CD4+ Tcell compartment recovery was not
achieved at day +180. This has been previously reported by Fehse
et al. where CD8+ Tcells recovered within the first year after allo-

100%

75%

50%

A
bs

ol
ut

e 
ris

k

25%

0%

0

73ATG30

ATG60

Patients

27 18 14 12 8 8 7 5 2 1
214 112 73 55 30 18 10 2 1 0 0

2 4
Time since HSTC in years

Cumulative incidence of non
relapse mortality according to

ATLG dose

6 8 10 12

Fig. 3 Comparison of two different ATLG dose for GvHD
Prevention after unrelated allogeneic stem cell transplantation.
Comparison of imnune reconstitution between 30 mg/kg and
60 mg/kg ATLG after transplantation regarding (a) gamma-delta T
cells (b) naive T cells c Natural Killer (NK) cells and d naive B-cells.

Table 4. Multivariate analyses non relapse mortality.

NRM multivariate HR [95%CI] p-value

Age (per 1 year increase) 1.042 [1.02–1.07] 0.0015

ATLG Dose: 30mg/Kg (ref) vs
60mg/Kg

0.93 [0.45–1.92] 0.84

DonorSex: Female (ref ) vs Male 0.33 [0.18–0.63] 0.0076

Recipient CMV Serology: neg (ref ) vs
pos

2.044 [1.002–4.17] 0.049

Bold values indicate statistical significance p < 0.05.
HR Hazard ratio, NRM Non relpase mortality, CI Confidence interval.
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SCT however CD4+ T cells failed to reconstitute within 2 years
after allo-SCT [51]. This can be explained by the fact that: The
reconstitution of the Tcell compartment after allo-SCT arises from
both homeostatic peripheral expansion (HPE) of donor T-cells
transferred with the graft and from novel production of naïve
T-cells in the thymus [52, 53]. In patients receiving MAC most of
the T-cells originate from HPE [54, 55]. In addition, HPE occurs
more asymmetrically between T-cells, with CD8+ T-cells having
higher proliferating potential by HPE when compared to CD4+ T-

cells [45]. Moreover, It has been hypothesized that ATLG targets
naïve T cells while sparing memory T cells [45]. Our study falls in
line with previous findings, ATLG selectively compromised the
recovery of naïve CD4+, memory CD4+, and naïve CD8+ cells,
while it spared memory CD8+ T cells. However, in our study
higher doses of ATLG had more pronounced effects on naïve T
CD4+ Tcells, which supports the theory that ATLG exerts a dose
dependent T cell effect [38, 56]. In addition, we observed a higher
incidence of EBV reactivation in the ATLG-60 group. This can
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be attributed to the more pronounced severe depletion of naïve
CD4+ Tcells and NK cells in this group.
More patients in the ATLG-30 group were not in CR at time of

transplant, however we observed no differences in relapse
incidence between the two groups which suggests a higher Graft
versus Malignancy effect in the ATLG-30 group. However, it should
be noted that more Patients in the ATLG-30 group had active
disease at time of transplant, therefore calcineurin inhibitor may
have differed between the two groups and may have influenced
immune reconstitution.
Acknowledging the retrospective nature of our study, the

choice of ATLG dose has significant impact on IR post MUD-allo-
SCT, higher doses reduce aGVHD however they delayed engraft-
ment, impair B-cell, γδTcells, NK and CD4+ T cell reconstitution
and increase the risk for infection and EBV reactivation. However,
this did not affect any of the long-term outcomes.
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