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A SAS macro for estimating direct adjusted survival functions
for time-to-event data with or without left truncation
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SERIES EDITORS INTRODUCTION
Since we published our last article on adjusted survival curves many readers wrote asking how to calculate these for left-truncated,
right-censored data and what confidence intervals and p-value should be included when comparing adjusted curves. Responding,
we developed a SAS macro to address these questions. The macro, %adjsurvlt() is available online, reduces computing time
and is easy to use. (If you are having difficulty ask any 5 year old with an iPad.) Some terms we use such as do-loops, Monte Carlo
simulations and confidence bands rather than intervals may be foreign to many readers but do not be put off. The message should
be clear and the macro useful. Many readers will want to share this article with their bio-statistician. We realize %adjsurvlt() is
not a catchy name for our macro and are hosting a competition for suggestions. The winner will receive a Keuffel and Esser slide
rule. We are standing by to announce the lucky reader.

Robert Peter Gale MD, PhD & Mei-Jie Zhang PhD.

ABSTRACT
There are several statistical programmes to compute direct adjusted survival estimates from results of the Cox proportional hazards
model. However, when used to analyze observational databases with large sample sizes or highly stratified treatment groups such
as in registry-related datasets, these programmes are inefficient or unable to generate confidence bands and simultaneous p values.
Also, these programmes do not consider potential left-truncation in retrospectively collected data. To address these deficiencies we
developed a new SAS macro %adjsurvlt() able to produce direct adjusted survival estimates based on a stratified Cox model.
The macro has improved computational performance and is able to handle left-truncated and right-censored time-to-event data.
Several mechanisms were implemented to improve computational efficiency including choosing matrix operations over do-loops
and reducing dimensions of co-variate matrices. Compared to the latest SAS macro, %adjsurvlt() used < 0.1% computational
time to process a dataset with 100 treatment cohorts and a sample size of 20,000 and showed similar computational efficiency
when analyzing left-truncated and right-censored data. We illustrate use of %adjsurvlt() to compare retrospectively collected
survival data of 2 transplant cohorts.

Bone Marrow Transplantation (2022) 57:6–10; https://doi.org/10.1038/s41409-021-01435-2

INTRODUCTION
Clinical trialists often use the Cox proportional hazards model to
estimate hazard ratios between different treatment cohorts whilst
controlling potential confounding by other co-variates from
retrospective observational datasets [1]. Several approaches
produce estimates of adjusted survival functions which consis-
tently represent results of the Cox model [2–4]. For example, the
direct adjusted survival function method relies on directly averaging
predicted survival probabilities of subjects in pooled samples
[2, 3, 5]. This approach overcomes limitations of the alternative
average covariate method and better represents the underlying
populations [4]. Estimates of direct adjusted survival functions can
be interpreted as the survival probabilities of populations with
similar prognostic co-variates [3]. Using a stratified Cox model also
allows time-varying effects between treatment groups [6].
Confidence bands for the survival estimates can be constructed
using a Monte Carlo method for pair-wise comparisons over given
time periods [7, 8]. Similarly, p values can be derived for
simultaneous hypothesis testing [8].
Lee et al. [9] developed several statistical programmes to

compute direct adjusted survival estimates and Ghali et al. [10].

Zhang et al. [6] developed a SAS macro %adjsurv() able to
produce direct adjusted survival estimates and estimates of
standard errors and point-wise confidence limits. This macro was
incorporated by the SAS Institute Inc. into SAS/STAT 12.1. More
recently, Wang and Zhang improved the Zhang/SAS macro by
adding the ability to produce confidence bands and simultaneous
p values [8].
Despite these improvements there are limitations to the latest

macro. First, it is inefficient for datasets with large sample sizes or
highly stratified treatment groups, features common in multi-center
observational studies like those of the Centre for International Blood
and Marrow Transplant Research (CIBMTR) and European Bone
Marrow Transplant Group (EBMT). Second, none of the programmes
we discuss can handle left-truncated retrospective data. (Left
truncation occurs when certain subjects from the underlying
populations are unknown to the observers when their event-time
fails to surpass certain time threshold such as subjects relapsing
before a transplant can be done.) Choosing a starting time before
the enrollment time in retrospective observational datasets
introduces left-truncation. It also occurs when age is used as the
time-scale instead of time-on-study [11, 12].
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To address these issues we developed a new SAS macro,
%adjsurvlt() which is more computationally efficient and
which handles left-truncated and right-censored data. Additional
features include capabilities to produce confidence bands for
survival differences and directly output survival curve plots in
user-defined formats. An R package using the same algorithm is
currently being developed and will be uploaded to the
Comprehensive R Archive Network (CRAN).

COMPUTATIONAL METHODS
Detailed formulae to estimate direct adjusted survival functions
and their variances are published [6]. Constructing confidence
bands and computing simultaneous p values is described by
Wang and Zhang [8]. For left-truncated data,the risk-set needs to
be appropriately adjusted at estimating time individually.

Improvements in computational performance
%adjsurvlt() has several computational enhancements.
First, instead of repeating large blocks of codes within do-loops
it mostly relies on matrix operations which greatly reduces
computing time. Second, the co-variate matrix is constructed
with only the distinct co-variate vectors of the pooled sample.
Doing so reduces the dimensions of the co-variate matrix
because numbers of distinct co-variate vectors is often less than
numbers of subjects.

Comparison of computational performance
Using %adjsurvlt() we repeated Wang and Zhang’s simula-
tion study [8]. Data sets with a sample size of 100 and two therapy
cohorts were created in the original study using constant baseline
hazard functions of three different parameter settings. Confidence
bands for the differences between the two adjusted survival
functions were constructed based on 1000 simulation processes
with a 5% significance level. A thousand replications were
performed for each setting. The rejection rate for each setting
was calculated from the percentage of replications where the
confidence bands failed to fully cover the zero reference line.
Rejection rates achieved by %adjsurvlt() were consistent with
those achieved using the Wang and Zhang macro.

Next, we compared performance of %adjsurvlt() and the
Wang and Zhang macro. The original simulation study used a
sample size of only 100 with two co-variates and a therapy-
assignment variable with two strata. To better illustrate perfor-
mance differences we increased sample sizes to 1000, 5000,
10,000 and 20,000 with 10 co-variates and 10, 25, 50 and 100
therapy strata.
Treatment assignment was based on a discrete uniform

distribution of K values where K was the total number of strata.
We constructed 10 co-variates. One-half were continuous
variables based on standard normal distributions independent
of the therapy-assignment and the other half dichotomous
categorical co-variates dependent on therapy assignment.
Baseline hazard functions were constant with a hazard rate of
0.1. Right-censoring times were generated from exponential
distributions with varying hazard rates to keep the censoring
rate close to 30%. 95% confidence bands were constructed
based on 1,000 simulations. Performance tests were conducted
on a server equipped with two Intel Xeon E5-2670 v3 CPUs at
2.30 GHz with 24 cores, 48 logic processors and 64GB of
memory. SAS 9.4 (TS1M4) with SAS/IML 14.2 was used for the
simulation.
Table 1 shows improved performance of %adjsurvlt() over

the Wang and Zhang macro. As the sample sizes and the number
of comparison strata increased, the percentage of CPU time saved
by %adjsurvlt() increased. To complete the analysis of a
simulated data set with a sample size of 10,000 and 50 strata, %
adjsurvlt() used only 0.07% of the CPU time required by
Wang and Zhang macro, 15 h less. With a sample size of 20,000
and 100 strata %adjsurvlt() required only 0.06% of the CPU
time or 120 h less.
We also evaluated the performance of %adjsurvlt() for

analyzing data with and without left-truncation. To simulate
left-truncated data initial sample sizes were increased by 50%.
Left-truncation times were generated from exponential
distributions with varying hazard rates to keep the truncation
rate near 33.3%. Left-truncated observations were dropped from
the final samples. As displayed in Table 2 performance of %
adjsurvlt() was similar for analyzing data sets with the same
sample sizes regardless of left-truncation. It took 22 s to process a
data set of 10,000 subjects which was not left-truncated versus 31
s for a left-truncated dataset. The source code of %adjsurvlt()
and the specifications of the macro are listed in the supplemental
part.

An example
A CIBMTR analysis compared outcomes of allotransplants in
persons with myeloproliferative neoplasms (MPN) in blast phase
compared with persons with de novo acute myeloid leukemia
(AML) or with myelodysplastic syndromes (MDS) transformed to
AML [13]. A significant interaction was found for survival between
the diseases and disease state pretransplant.

Table 1. Results of simulation study of CPU time between %adjsurvlt() macro and Wang and Zhang (W&Z) macro.

Time (h:m:s) % of Time

Subjects N strata Co-variates New W&Z New/W&Z

1000 10 10 0:00:01 0:02:57 0.36

5000 10 10 0:00:07 0:21:10 0.52

25 10 0:00:08 1:55:05 0.12

50 10 0:00:14 6:40:35 0.06

10,000 10 10 0:00:22 0:56:00 0.65

25 10 0:00:26 4:28:14 0.16

50 10 0:00:28 15:13:30 0.07

20,000 100 10 0:04:06 120:06:19 0.06

Table 2. Simulation study of CPU time of %adjsurvlt() to analyze
data with or without left-truncation.

Time (h:m:s)

Subjects N strata N co-
variates

Left-
truncated

Not left-
truncated

1000 10 10 0:00:01 0:00:01

5000 10 10 0:00:09 0:00:07

10,000 10 10 0:00:31 0:00:22
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We show use of %adjsurvlt() on a subset of 96 subjects with
blast phase MPN and 2825 subjects with de novo AML in remission
pretransplant with death the outcome of interest and with end of
follow-up considered right-censoring. Subject- and disease-related
co-variates associated with survival were age at transplant (40‒49
years, 50‒59 years, 60‒69 years or ≥ 70 years), recipient sex,
Karnofsky performance score (90‒100, < 90, or missing), cytoge-
netics (favorable/intermediate, poor, or missing), donor-type (HLA-
matched sibling, other HLA-matched relative, HLA-well-matched
unrelated or HLA-partially/mismatched unrelated donor), condition-
ing regimen (total body irradiation-based myeloablative,
chemotherapy-based myeloablative or reduced-intensity/non-mye-
loablative) and year of transplant (2001‒2005, 2006‒2010 or 2011‒
2015). Compared with subjects with de novo AML, subjects with
blast phase MPN were older (chi-square p < 0.01), more likely male
(p= 0.04), more likely to have a low Karnofsky performance score
(p= 0.02) and more likely to have been transplanted recently (p=
0.04). Using a Cox regression model to adjust these prognostic co-
variates showed a hazard ratio of 1.40 (95% Confidence Interval [CI],
1.11, 1.76; p < 0.01) for death in subjects with blast phase MPN
compared with subjects with de novo AML.
A SAS data set inlib.final was prepared for the example.

The data set contains these categorical variables: disgp for

disease indication, agegp for age at transplant, sex for sex,
karnofcat for Karnofsky score at transplant, cytoab for
cytogenetics, donorgp for donor type, condint for conditioning
regimen and yeartxgp for year of transplant. It also includes
death as the event indicator and intxsurv onths.
We used this statement to evoke the macro:
%adjsurvlt(indata= inlib.final, event= dead, time=

intxsurv, strata= disgp, covlst= agegp sex kpsgp cytoab

donorgp condint yeartxgp, seed= 86311, nsim= 10000, time-

list= 12 36 60, maxtime= 60, outsurvplot= 2, outdiffplot=
1, showci= 0, tickvalues= 0 12 24 36 48 60, width= 800px,

height= 450px, imagefmt= pdf);

By specifying strata= disgp and covlst= agegp sex
kpsgp cytoab donorgp condint yeartxgp, we estimated
survival differences between diseases whilst adjusting for prog-
nostic co-variates. By setting timelist= 12 36 60 and
maxtime= 60, we shortened the output results to 12, 36, and
60 months and set the upper boundary of confidence bands to
60 months. Without specifying a value for mintime, we let the
macro take its default value of the minimum observed event time
as the lower boundary of confidence bands. We also specified
outsurvplot= 2 and outdiffplot= 1 to generate the
adjusted survival plot and the survival difference plot. Using
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Fig. 1 Direct adjusted survival curves for subjects with blast phase MPN (blue solid line with 95% confidence band) and those with de novo
AML in remission pretransplant (red solid line with 95% confidence band).
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Fig. 2 Differences in direct adjusted survival curves for between subjects with blast phase MPN and those with de novo AML in remission
pretransplant (solid line with 95% confidence band).
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showci= 0 we suppressed the display of confidence limits in the
plots. We manually set the values of the tick marks on the x
axis using tickvalues= 0 12 24 36 48 60. Lastly, we used
width= 800px, height= 450px and imagefmt= pdf to set
the resolution and file format of the plots.
Table displays output results of %adjsurvlt(). Adjusted

survival estimates for the myeloproliferative neoplasms in blast
phase cohort at 1, 3 and 5 years were 52% (42, 61%), 34% (25,
44%) and 26% (18, 35%). Similar survival estimates for the de novo
AML cohort are 62% (60, 64%), 45% (43, 47%) and 40% (38, 41%).
Adjusted survival difference estimates were 10% (0, 19%), 11%
(1.4, 20%) and 13% (4, 23%) at 1, 3 and 5 years favoring the de
novo AML cohort. Adjusted survival plots and the difference plot
were saved as PDF files (Figs. 1 and 2). There was a time-varying
effect between the two cohorts before and after the first
6 months (proportionality test p= 0.10). Consequently, a simulta-
neous p value derived from the direct adjusted survival
estimates would be more appropriate than a p value of a Cox
regression. As indicated in Table 3 the difference in adjusted
survival between the cohorts was significant with a simultaneous
p value of 0.03.

DISCUSSION
We show %adjsurvlt() is computationally efficient for
estimating direct adjusted survival functions for datasets with
large sample sizes and highly stratified therapy cohorts and can
handle left-truncation in right-censored data. %adjsurvlt()
provides estimates of standard errors, confidence limits and
confidence bands for adjusted survival functions, for pair-wise
differences and p values for simultaneous hypothesis testing of
survival differences over specified time intervals.
%adjsurvlt() has some limitations. First, although it can

conduct pair-wise comparisons between therapy cohorts, further
development is needed to support comparisons across three or
more therapy cohorts. Second, the underlying Cox model only
applies when no competing risk precludes the outcome(s) of

interest. When there are competing risks we need to use
alternative multiple regression models such as the Fine-Gray
model and its corresponding direct adjusted cumulative
incidence [14, 15]. However, compared with other statistical
programmes %adjsurvlt() provides improved computational
performance and more flexibility in handling right-censored
time-to-event data with or without left-truncation. We hope
readers will find it useful.
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