Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cardiorespiratory fitness and physical performance after childhood hematopoietic stem cell transplantation: a systematic review and meta-analysis

Abstract

The effects of childhood hematopoietic stem cell transplantation (HSCT) on key organs can impair cardiorespiratory fitness, muscle strength, and physical performance. We aimed to provide an overview of childhood HSCT survivors’ status on these parameters compared with healthy controls and discuss current insights into clinical risk factors. We performed a systematic search in six scientific databases, including studies published before April 2019 and performed a meta-analysis on cardiorespiratory fitness. Muscle strength and physical performance status were presented narratively. We included ten studies embodying 517 childhood HSCT survivors (mean 17.8 years at follow-up). The meta-analysis (n = 4 studies) showed that childhood HSCT survivors have lower cardiorespiratory fitness compared with healthy controls (Standard mean difference (SMD) −1.32 [95% CI −1–58 to −1.07]; I2 2%, p < 0.00001). Collectively, the studies indicated that childhood HSCT survivors have lower muscle strength (n = 4 studies) and physical performance (n = 3 studies) compared with healthy controls. Childhood HSCT survivors have impaired cardiorespiratory fitness years after ended treatment. Muscle strength and physical performance seem to be impaired, although these measures are insufficiently investigated. Associations between HSCT-specific clinical risk factors and cardiorespiratory fitness, muscle strength, and physical performance are required.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Forrest plot of Cardiorespiratory fitness.
Fig. 3

References

  1. 1.

    Eissa HM, Lu L, Baassiri M, Bhakta N, Ehrhardt MJ, Triplett BM, et al. Chronic disease burden and frailty in survivors of childhood HSCT: a report from the St. Jude Lifetime Cohort Study. Blood Adv. 2017;1:2243–6.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Taskinen M, Saarinen-Pihkala UM, Hovi L, Lipsanen-Nyman M. Impaired glucose tolerance and dyslipidaemia as late effects after bone-marrow transplantation in childhood. Lancet. 2000;356:993–7.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Baker KS, Bresters D, Sande JE. The burden of cure: long-term side effects following hematopoietic stem cell transplantation (HSCT) in children. Pediatr Clin North Am. 2010;57:323–42.

    PubMed  Article  Google Scholar 

  4. 4.

    Oudin C, Simeoni MC, Sirvent N, Contet A, Begu-Le Coroller A, Bordigoni P, et al. Prevalence and risk factors of the metabolic syndrome in adult survivors of childhood leukemia. Blood. 2011;117:4442–8.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Paiman EHM, Louwerens M, Bresters D, Westenberg JJM, Tao Q, van der Geest RJ, et al. Late effects of pediatric hematopoietic stem cell transplantation on left ventricular function, aortic stiffness and myocardial tissue characteristics. J Cardiovasc Magn Reson. 2019;21:6.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Jurca R, Lamonte MJ, Barlow CE, Kampert JB, Church TS, Blair SN. Association of muscular strength with incidence of metabolic syndrome in men. Med Sci Sports Exerc. 2005;37:1849–55.

    PubMed  Article  Google Scholar 

  7. 7.

    Guseman EH, Cauffman SP, Tucker JM, Smith L, Eisenmann JC, Stratbucker W. The association between measures of fitness and metabolic health in treatment-seeking youth with obesity. Metab Syndr Relat Disord. 2017;15:107–11.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Carnethon MR, Gulati M, Greenland P. Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. JAMA. 2005;294:2981–8.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab. 2002;282:E419–27.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Kwankaew J, Saetung S, Chanprasertyothin S, Leelawattana R, Rattarasarn C. Lean mass inversely predicts plasma glucose levels after oral glucose load independent of insulin secretion or insulin sensitivity in glucose intolerance subjects. Endocr J. 2014;61:77–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Terada T, Boule NG, Forhan M, Prado CM, Kenny GP, Prud’homme D, et al. Cardiometabolic risk factors in type 2 diabetes with high fat and low muscle mass: At baseline and in response to exercise. Obesity. 2017;25:881–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Fornari R, Francomano D, Greco EA, Marocco C, Lubrano C, Wannenes F, et al. Lean mass in obese adult subjects correlates with higher levels of vitamin D, insulin sensitivity and lower inflammation. J Endocrinol Investig. 2015;38:367–72.

    CAS  Article  Google Scholar 

  13. 13.

    Armenian SH, Sun CL, Francisco L, Steinberger J, Kurian S, Wong FL, et al. Late congestive heart failure after hematopoietic cell transplantation. J Clin Oncol. 2008;26:5537–43.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Sakata-Yanagimoto M, Kanda Y, Nakagawa M, Asano-Mori Y, Kandabashi K, Izutsu K, et al. Predictors for severe cardiac complications after hematopoietic stem cell transplantation. Bone Marrow Transpl. 2004;33:1043–7.

    CAS  Article  Google Scholar 

  15. 15.

    Donnellan E, Jellis CL, Griffin BP. Radiation-associated cardiac disease: from molecular mechanisms to clinical management. Curr Treat Options Cardiovasc Med. 2019;21:22.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Braverman AC, Antin JH, Plappert MT, Cook EF, Lee RT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9:1215–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Gilliam LA, St Clair DK. Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxid Redox Signal. 2011;15:2543–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Bachman JF, Blanc RS, Paris ND, Kallenbach JG, Johnston CJ, Hernady E, et al. Radiation-induced damage to prepubertal Pax7+ skeletal muscle stem cells drives lifelong deficits in myofiber size and nuclear number. iScience. 2020:23;101760.

  19. 19.

    Chow EJ, Anderson L, Baker KS, Bhatia S, Guilcher GM, Huang JT, et al. Late effects surveillance recommendations among survivors of childhood hematopoietic cell transplantation: A Children’s Oncology Group Report. Biol Blood Marrow Transplant. 2016;22:782–95.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Mathiesen S, Sorensen K, Nielsen MM, Suominen A, Ifversen M, Grell K, et al. Male gonadal function after allogeneic hematopoietic stem cell transplantation in childhood: a cross-sectional. Popul-Based Study Biol Blood Marrow Transplant 2020;26:1635–45.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Mejdahl Nielsen M, Mathiesen S, Suominen A, Sorensen K, Ifversen M, Molgaard C, et al. Altered body composition in male long-term survivors of paediatric allogeneic haematopoietic stem cell transplantation: impact of conditioning regimen, chronic graft-versus-host disease and hypogonadism. Bone Marrow Transplant. 2021;56:457–60.

  22. 22.

    Ebbesen M, Enevold C, Juul A, Heilmann C, Sengelov H, Muller K. Insulin-like growth factor gene polymorphisms predict clinical course in allogeneic hematopoietic stem cell transplantation. Front Immunol. 2020;11:1646.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kaya Z, Weiner DJ, Yilmaz D, Rowan J, Goyal RK. Lung function, pulmonary complications, and mortality after allogeneic blood and marrow transplantation in children. Biol Blood Marrow Transplant. 2009;15:817–26.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Marras TK, Szalai JP, Chan CK, Lipton JH, Messner HA, Laupacis A. Pulmonary function abnormalities after allogeneic marrow transplantation: a systematic review and assessment of an existing predictive instrument. Bone Marrow Transpl. 2002;30:599–607.

    CAS  Article  Google Scholar 

  25. 25.

    Bruno B, Souillet G, Bertrand Y, Werck-Gallois MC, So Satta A, Bellon G. Effects of allogeneic bone marrow transplantation on pulmonary function in 80 children in a single paediatric centre. Bone Marrow Transpl. 2004;34:143–7.

    CAS  Article  Google Scholar 

  26. 26.

    Uhlving HH, Bang CL, Christensen IJ, Buchvald F, Nielsen KG, Heilmann CJ, et al. Lung function after allogeneic hematopoietic stem cell transplantation in children: a longitudinal study in a population-based cohort. Biol Blood Marrow Transplant. 2013;19:1348–54.

    PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Hoffmeister PA, Madtes DK, Storer BE, Sanders JE. Pulmonary function in long-term survivors of pediatric hematopoietic cell transplantation. Pediatr Blood Cancer. 2006;47:594–606.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Leung W, Ahn H, Rose SR, Phipps S, Smith T, Gan K, et al. A prospective cohort study of late sequelae of pediatric allogeneic hematopoietic stem cell transplantation. Medicine. 2007;86:215–24.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Inaba H, Yang J, Pan J, Stokes DC, Krasin MJ, Srinivasan A, et al. Pulmonary dysfunction in survivors of childhood hematologic malignancies after allogeneic hematopoietic stem cell transplantation. Cancer. 2010;116:2020–30.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Teuffel O, Kuster SP, Hunger SP, Conter V, Hitzler J, Ethier MC, et al. Dexamethasone versus prednisone for induction therapy in childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Leukemia. 2011;25:1232–8.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Natsui K, Tanaka K, Suda M, Yasoda A, Sakuma Y, Ozasa A, et al. High-dose glucocorticoid treatment induces rapid loss of trabecular bone mineral density and lean body mass. Osteoporos Int. 2006;17:105–8.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    McNeer JL, Nachman JB. The optimal use of steroids in paediatric acute lymphoblastic leukaemia: no easy answers. Br J Haematol. 2010;149:638–52.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Arpe ML, Rorvig S, Kok K, Molgaard C, Frandsen TL. The association between glucocorticoid therapy and BMI z-score changes in children with acute lymphoblastic leukemia. Support Care Cancer. 2015;23:3573–80.

    PubMed  Article  Google Scholar 

  34. 34.

    Balaguer-Rosello A, Bataller L, Pinana JL, Montoro J, Lorenzo I, Villalba A, et al. Noninfectious neurologic complications after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25:1818–24.

    PubMed  Article  Google Scholar 

  35. 35.

    Sheikh MA, Toledano M, Ahmed S, Gul Z, Hashmi SK. Noninfectious neurologic complications of hematopoietic cell transplantation: a systematic review. Hematol Oncol Stem Cell Ther. 2020;14:87–94.

  36. 36.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Herzog R, Alvarez-Pasquin MJ, Diaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. BMC Public Health. 2013;13:154.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa scale (NOS) for assessing the quailty of nonrandomised studies in meta-analyses. http://www.ohrica/programs/clinical_epidemiology/oxford.htm 2009.

  39. 39.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Hogarty AN, Leahey A, Zhao H, Hogarty MD, Bunin N, Cnaan A, et al. Longitudinal evaluation of cardiopulmonary performance during exercise after bone marrow transplantation in children. J Pediatr. 2000;136:311–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Mathiesen S, Uhlving HH, Buchvald F, Hanel B, Nielsen KG, Muller K. Aerobic exercise capacity at long-term follow-up after paediatric allogeneic haematopoietic SCT. Bone Marrow Transpl. 2014;49:1393–9.

    CAS  Article  Google Scholar 

  42. 42.

    Bianco A, Patti A, Thomas E, Palma R, Maggio MC, Paoli A, et al. Evaluation of fitness levels of children with a diagnosis of acute leukemia and lymphoma after completion of chemotherapy and autologous hematopoietic stem cell transplantation. Cancer Med. 2014;3:385–9.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Eames GM, Crosson J, Steinberger J, Steinbuch M, Krabill K, Bass J, et al. Cardiovascular function in children following bone marrow transplant: a cross-sectional study. Bone Marrow Transpl. 1997;19:61–6.

    CAS  Article  Google Scholar 

  44. 44.

    Hovi L, Kurimo M, Taskinen M, Vettenranta J, Vettenranta K, Saarinen-Pihkala UM. Suboptimal long-term physical performance in children and young adults after pediatric allo-SCT. Bone Marrow Transpl. 2010;45:738–45.

    CAS  Article  Google Scholar 

  45. 45.

    Larsen RL, Barber G, Heise CT, August CS. Exercise assessment of cardiac function in children and young adults before and after bone marrow transplantation. Pediatrics. 1992;89:722–9.

    CAS  PubMed  Google Scholar 

  46. 46.

    Oberg A, Genberg M, Malinovschi A, Hedenstrom H, Frisk P. Exercise capacity in young adults after hematopoietic cell transplantation in childhood. Am J Transplant. 2018;18:417–23.

  47. 47.

    Slater ME, Steinberger J, Ross JA, Kelly AS, Chow EJ, Koves IH, et al. Physical activity, fitness, and cardiometabolic risk factors in adult survivors of childhood cancer with a history of hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21:1278–83.

    PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Vandekerckhove K, De Waele K, Minne A, Coomans I, De Groote K, Panzer J, et al. Evaluation of cardiopulmonary exercise testing, heart function, and quality of life in children after allogenic hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2019;66:e27499.

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Bouma S, Peterson M, Gatza E, Choi SW. Nutritional status and weakness following pediatric hematopoietic cell transplantation. Pediatr Transpl. 2016;20:1125–31.

    Article  Google Scholar 

  50. 50.

    Mizrahi D, Fardell JE, Cohn RJ, Partin RE, Howell CR, Hudson MM, et al. The 6-minute walk test is a good predictor of cardiorespiratory fitness in childhood cancer survivors when access to comprehensive testing is limited. Int J Cancer. 2020;147:847–55.

  51. 51.

    Milani RV, Lavie CJ, Mehra MR, Ventura HO. Understanding the basics of cardiopulmonary exercise testing. Mayo Clin Proc. 2006;81:1603–11.

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Abid SH, Malhotra V, Perry MC. Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol. 2001;13:242–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Lazarus NR, Lord JM, Harridge SDR. The relationships and interactions between age, exercise and physiological function. J Physiol. 2019;597:1299–309.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Nielsen MKF, Larsen HB, Schmiegelow K, Christensen JF. Muscle dysfunction in childhood cancer: Biological mechanisms and implications for long-term survivorship. Eur Med J. 2016;4.1:78–85.

    Google Scholar 

  55. 55.

    Ness KK, Plana JC, Joshi VM, Luepker RV, Durand JB, Green DM, et al. Exercise intolerance, mortality, and organ system impairment in adult survivors of childhood cancer. J Clin Oncol. 2020;38:29–42.

  56. 56.

    Wilson CL, Howell CR, Partin RE, Lu L, Kaste SC, Mulrooney DA, et al. Influence of fitness on health status among survivors of acute lymphoblastic leukemia. Pediatr Blood Cancer. 2018;65:e27286.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Steene-Johannessen J, Kolle E, Anderssen SA, Andersen LB. Cardiovascular disease risk factors in a population-based sample of Norwegian children and adolescents. Scand J Clin Lab Investig. 2009;69:380–6.

    Article  Google Scholar 

  58. 58.

    Andersen LB, Bugge A, Dencker M, Eiberg S, El-Naaman B. The association between physical activity, physical fitness and development of metabolic disorders. Int J Pediatr Obes. 2011;6:29–34.

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Anderssen SA, Cooper AR, Riddoch C, Sardinha LB, Harro M, Brage S, et al. Low cardiorespiratory fitness is a strong predictor for clustering of cardiovascular disease risk factors in children independent of country, age and sex. Eur J Cardiovasc Prev Rehabil. 2007;14:526–31.

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Ekelund U, Anderssen SA, Froberg K, Sardinha LB, Andersen LB, Brage S, et al. Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study. Diabetologia. 2007;50:1832–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Pedersen BK, Saltin B. Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25:1–72.

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Morales JS, Gonzalez Vicent M, Valenzuela PL, Castillo-Garcia A, Santana-Sosa E, Lassaletta A, et al. Tailored exercise during hematopoietic stem cell transplantation hospitalization in children with cancer: A Prospective Cohort Study. Cancers (Basel). 2020;12.

  63. 63.

    San Juan AF, Chamorro-Vina C, Moral S, Fernandez del Valle M, Madero L, Ramirez M, et al. Benefits of intrahospital exercise training after pediatric bone marrow transplantation. Int J Sports Med. 2008;29:439–46.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Chamorro-Vina C, Ruiz JR, Santana-Sosa E, Gonzalez Vicent M, Madero L, Perez M, et al. Exercise during hematopoietic stem cell transplant hospitalization in children. Med Sci Sports Exerc. 2010;42:1045–53.

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Morales JS, Santana-Sosa E, Santos-Lozano A, Bano-Rodrigo A, Valenzuela PL, Rincon-Castanedo C, et al. Inhospital exercise benefits in childhood cancer: a prospective cohort study. Scand J Med Sci Sports. 2020;30;126–34.

  66. 66.

    Davis NL, Tolfrey K, Jenney M, Elson R, Stewart C, Moss AD, et al. Combined resistance and aerobic exercise intervention improves fitness, insulin resistance and quality of life in survivors of childhood haemopoietic stem cell transplantation with total body irradiation. Pediatr Blood Cancer. 2020;67:e28687.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

This study is funded by the Danish Childhood Cancer Foundation (Børnecancerfonden) (reg:2013-44 and 2019-1).

Author information

Affiliations

Authors

Contributions

Conceptualization, MKF, HBL, JFC, and KM; Methodology, MKF, CS, PSA, AAN, LA, and ALM; Validation, PSA and AAN; Formal analysis; MKF, CS, and PSA; Resources; HBL and KM; Writing—original draft, MKF; Writing—review and editing, HBL, ALM, JFC, and KM; Supervision, HBL and KM; Project administration, HBL and KM.

Corresponding author

Correspondence to Martin Kaj Fridh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fridh, M.K., Simonsen, C., Schmidt-Andersen, P. et al. Cardiorespiratory fitness and physical performance after childhood hematopoietic stem cell transplantation: a systematic review and meta-analysis. Bone Marrow Transplant 56, 2063–2078 (2021). https://doi.org/10.1038/s41409-021-01370-2

Download citation

Further reading

Search

Quick links