Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Iron overload in the HCT patient: a review

Abstract

Iron overload (IO) is common in hematologic malignancies and hemoglobinopathies, largely due to red cell transfusion burden. End-organ damage from IO occurs via reactive oxygen species-mediated pathways. The impact of pretransplant IO on hematopoietic cell transplant (HCT) morbidity and mortality remains contentious; studies have shown mixed results, possibly due to variability in study population and design, as well as markers of IO. Ferritin has served as a traditional circulating marker of total body IO, but liver iron content by MRI appears to be a better marker of end-organ involvement. Novel surrogate markers including hepcidin, marrow Prussian blue staining, and labile plasma iron levels may prove to be more specific for HCT complications. Posttransplant phlebotomy, chelation, or both in combination remains the mainstays of treatment, though may ultimately be supplanted by pretransplant or peri-transplant use of bone marrow maturation agents or targeted chelation at time of highest IO risk. This review discusses the pathophysiology of IO in hematologic disease, the evidence supporting and refuting its negative impact on HCT outcomes, as well as current and future therapies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of iron overload and its impact on human body.
Fig. 2: Multifactorial regulation of hepcidin production in hepatocytes.

Similar content being viewed by others

References

  1. MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:997–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24:981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Porter JB. Practical management of iron overload. Br J Haematol. 2001;115:239–52.

    Article  CAS  PubMed  Google Scholar 

  4. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823:1434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pullarkat V, Blanchard S, Tegtmeier B, Dagis A, Patane K, Ito J, et al. Iron overload adversely affects outcome of allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2008;42:799–805.

    Article  CAS  PubMed  Google Scholar 

  6. Armand P, Kim HT, Cutler CS, Ho VT, Koreth J, Alyea EP, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem cell transplantation. Blood. 2007;109:4586–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Armand P, Kim HT, Virtanen JM, Parkkola RK, Itälä-Remes MA, Majhail NS, et al. Iron overload in allogeneic hematopoietic cell transplantation outcome: a meta-analysis. Biol Blood Marrow Transplant. 2014;20:1248–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Majhail NS, DeFor TE, Lazarus HM, Burns LJ. Iron-overload after autologous hematopoietic cell transplantation. Leuk Res. 2009;33:578–9.

  9. Majhail NS, DeFor T, Lazarus HM, Burns LJ. High prevalence of iron overload in adult allogeneic hematopoietic cell transplant survivors. Biol Blood Marrow Transplant. 2008;14:790–4.

    Article  CAS  PubMed  Google Scholar 

  10. Armand P, Kim HT, Rhodes J, Sainvil MM, Cutler C, Ho VT, et al. Iron overload in patients with acute leukemia or MDS undergoing myeloablative stem cell transplantation. Biol Blood Marrow Transplant. 2011;17:852–60.

    Article  CAS  PubMed  Google Scholar 

  11. Sucak GT, Yegin ZA, Ozkurt ZN, Aki SZ, Karakan T, Akyol G. The role of liver biopsy in the workup of liver dysfunction late after SCT: is the role of iron overload underestimated? Bone Marrow Transplant. 2008;42:461–7.

    Article  CAS  PubMed  Google Scholar 

  12. Andrews NC. Intestinal iron absorption: current concepts circa 2000. Dig Liver Dis. 2000;32:56–61.

    Article  CAS  PubMed  Google Scholar 

  13. Napolitano M, Dolce A, Celenza G, Grandone E, Perilli MG, Siragusa S, et al. Iron-dependent erythropoiesis in women with excessive menstrual blood losses and women with normal menses. Ann Hematol. 2014;93:557–63.

    Article  CAS  PubMed  Google Scholar 

  14. Saito H. Storage iron turnover from a new perspective. Acta Haematol. 2019;141:201–8.

    Article  CAS  PubMed  Google Scholar 

  15. Adams P. Management of elevated serum ferritin levels. Gastroenterol Hepatol. 2008;4:333–4.

    Google Scholar 

  16. Andrews NC. Forging a field: the golden age of iron biology. Blood. 2008;112:219–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106 Suppl 6:1559s–66s.

    Article  PubMed  PubMed Central  Google Scholar 

  18. St Pierre TG, Clark PR, Chua-anusorn W, Fleming AJ, Jeffrey GP, Olynyk JK, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;105:855–61.

    Article  CAS  Google Scholar 

  19. Trottier BJ, Burns LJ, DeFor TE, Cooley S, Majhail NS. Association of iron overload with allogeneic hematopoietic cell transplantation outcomes: a prospective cohort study using R2-MRI-measured liver iron content. Blood. 2013;122:1678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coates TD. Iron overload in transfusion-dependent patients. Hematol Am Soc Hematol Educ Progr. 2019;2019:337–44.

    Article  Google Scholar 

  21. Nielsen P, Engelhardt R, Düllmann J, Fischer R. Non-invasive liver iron quantification by SQUID-biosusceptometry and serum ferritin iron as new diagnostic parameters in hereditary hemochromatosis. Blood Cells Mol Dis. 2002;29:451–8.

    Article  CAS  PubMed  Google Scholar 

  22. de Swart L, Hendriks JC, van der Vorm LN, Cabantchik ZI, Evans PJ, Hod EA, et al. Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica. 2016;101:38–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sahlstedt L, von Bonsdorff L, Ebeling F, Parkkinen J, Juvonen E, Ruutu T. Non-transferrin-bound iron in haematological patients during chemotherapy and conditioning for autologous stem cell transplantation. Eur J Haematol. 2009;83:455–9.

    Article  PubMed  Google Scholar 

  24. Piga A, Longo F, Duca L, Roggero S, Vinciguerra T, Calabrese R, et al. High nontransferrin bound iron levels and heart disease in thalassemia major. Am J Hematol. 2009;84:29–33.

    Article  CAS  PubMed  Google Scholar 

  25. Jensen PD. Iron overload in patients with myelodysplastic syndromes. Curr Hematol Malig Rep. 2007;2:13–21.

    Article  PubMed  Google Scholar 

  26. Coates TD, Carson S, Wood JC, Berdoukas V. Management of iron overload in hemoglobinopathies: what is the appropriate target iron level? Ann NY Acad Sci. 2016;1368:95–106.

    Article  CAS  PubMed  Google Scholar 

  27. Puliyel M, Mainous AG 3rd, Berdoukas V, Coates TD. Iron toxicity and its possible association with treatment of cancer: lessons from hemoglobinopathies and rare, transfusion-dependent anemias. Free Radic Biol Med. 2015;79:343–51.

    Article  CAS  PubMed  Google Scholar 

  28. Jin X, He X, Cao X, Xu P, Xing Y, Sui S, et al. Iron overload impairs normal hematopoietic stem and progenitor cells through reactive oxygen species and shortens survival in myelodysplastic syndrome mice. Haematologica. 2018;103:1627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sivgin S, Karamustafaoglu MF, Yildizhan E, Zararsiz G, Kaynar L, Eser B, et al. The prognostic significance of elevated serum ferritin levels prior to transplantation in patients with lymphoma who underwent autologous hematopoietic stem cell transplantation (autoHSCT): role of iron overload. Clin Lymphoma Myeloma Leuk. 2016;16 Suppl:S152–8.

    Article  PubMed  Google Scholar 

  30. Mahindra A, Bolwell B, Sobecks R, Rybicki L, Pohlman B, Dean R, et al. Elevated ferritin is associated with relapse after autologous hematopoietic stem cell transplantation for lymphoma. Biol Blood Marrow Transplant. 2008;14:1239–44.

    Article  PubMed  Google Scholar 

  31. Mahindra A, Sobecks R, Rybicki L, Pohlman B, Dean R, Andresen S, et al. Elevated pretransplant serum ferritin is associated with inferior survival following nonmyeloablative allogeneic transplantation. Bone Marrow Transplant. 2009;44:767–8.

  32. Konuma T, Kato S, Oiwa-Monna M, Tojo A, Takahashi S. Pretransplant hyperferritinemia has no effect on the outcome of myeloablative cord blood transplantation for acute leukemia and myelodysplastic syndrome. Ann Hematol. 2014;93:1071–2.

    Article  PubMed  Google Scholar 

  33. Malki MMA, Song JY, Yang D, Cao T, Aldoss I, Mokhtari S, et al. Iron overload is associated with delayed engraftment and increased nonrelapse mortality in recipients of umbilical cord blood hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26:1697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dadwal SS, Tegtmeier B, Liu X, Frankel P, Ito J, Forman SJ, et al. Impact of pretransplant serum ferritin level on risk of invasive mold infection after allogeneic hematopoietic stem cell transplantation. Eur J Haematol. 2015;94:235–42.

    Article  CAS  PubMed  Google Scholar 

  35. Sivgin S, Baldane S, Kaynar L, Kurnaz F, Pala C, Sivgin H, et al. Pretransplant iron overload may be associated with increased risk of invasive fungal pneumonia (IFP) in patients that underwent allogeneic hematopoietic stem cell transplantation (alloHSCT). Transfus Apher Sci. 2013;48:103–8.

    Article  PubMed  Google Scholar 

  36. Cullis JO, Fitzsimons EJ, Griffiths WJ, Tsochatzis E, Thomas DW. Investigation and management of a raised serum ferritin. Br J Haematol. 2018;181:331–40.

    Article  PubMed  Google Scholar 

  37. Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: an updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev. 2013;29:308–18.

    Article  CAS  PubMed  Google Scholar 

  38. Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease? Clin J Am Soc Nephrol. 2006;1 Suppl 1:S9–18.

    Article  CAS  PubMed  Google Scholar 

  39. Wermke M, Schmidt A, Middeke JM, Sockel K, von Bonin M, Schönefeldt C, et al. MRI-based liver iron content predicts for nonrelapse mortality in MDS and AML patients undergoing allogeneic stem cell transplantation. Clin Cancer Res. 2012;18:6460–8.

    Article  CAS  PubMed  Google Scholar 

  40. Sakamoto S, Kawabata H, Kanda J, Uchiyama T, Mizumoto C, Kitano T, et al. High pretransplant hepcidin levels are associated with poor overall survival and delayed platelet engraftment after allogeneic hematopoietic stem cell transplantation. Cancer Med. 2017;6:120–8.

    Article  CAS  PubMed  Google Scholar 

  41. Ohmoto A, Fuji S, Miyagi-Maeshima A, Kim SW, Tajima K, Tanaka T, et al. Association between pretransplant iron overload determined by bone marrow pathological analysis and bacterial infection. Bone Marrow Transplant. 2017;52:1201–3.

    Article  CAS  PubMed  Google Scholar 

  42. Wermke M, Eckoldt J, Gotze KS, Klein SA, Bug G, de Wreede LC, et al. Enhanced labile plasma iron and outcome in acute myeloid leukaemia and myelodysplastic syndrome after allogeneic haemopoietic cell transplantation (ALLIVE): a prospective, multicentre, observational trial. Lancet Haematol. 2018;5:e201–10.

    Article  PubMed  Google Scholar 

  43. Majhail NS, Rizzo JD, Lee SJ, Aljurf M, Atsuta Y, Bonfim C, et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47:337–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarigianni M, Liakos A, Vlachaki E, Paschos P, Athanasiadou E, Montori VM, et al. Accuracy of magnetic resonance imaging in diagnosis of liver iron overload: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2015;13:55–63.e5.

    Article  PubMed  Google Scholar 

  45. Porter JB, El-Alfy M, Viprakasit V, Giraudier S, Chan LL, Lai Y, et al. Utility of labile plasma iron and transferrin saturation in addition to serum ferritin as iron overload markers in different underlying anemias before and after deferasirox treatment. Eur J Haematol. 2016;96:19–26.

    Article  CAS  PubMed  Google Scholar 

  46. Busca A, Falda M, Manzini P, D’Antico S, Valfre A, Locatelli F, et al. Iron overload in patients receiving allogeneic hematopoietic stem cell transplantation: quantification of iron burden by a superconducting quantum interference device (SQUID) and therapeutic effectiveness of phlebotomy. Biol Blood Marrow Transplant. 2010;16:115–22.

    Article  CAS  PubMed  Google Scholar 

  47. Majhail NS, Lazarus HM, Burns LJ. A prospective study of iron overload management in allogeneic hematopoietic cell transplantation survivors. Biol Blood Marrow Transplant. 2010;16:832–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kew AK, Clarke S, Ridler A, Burrell S, Edwards JA, Doucette S, et al. A prospective cohort study of the feasibility and efficacy of iron reduction by phlebotomy in recipients of hematopoietic SCT. Bone Marrow Transplant. 2015;50:457–8.

    Article  CAS  PubMed  Google Scholar 

  49. Sivgin S, Eser B, Bahcebasi S, Kaynar L, Kurnaz F, Uzer E, et al. Efficacy and safety of oral deferasirox treatment in the posttransplant period for patients who have undergone allogeneic hematopoietic stem cell transplantation (alloHSCT). Ann Hematol. 2012;91:743–9.

    Article  CAS  PubMed  Google Scholar 

  50. Sivgin S, Baldane S, Akyol G, Keklik M, Kaynar L, Kurnaz F, et al. The oral iron chelator deferasirox might improve survival in allogeneic hematopoietic cell transplant (alloHSCT) recipients with transfusional iron overload. Transfus Apher Sci. 2013;49:295–301.

    Article  PubMed  Google Scholar 

  51. Inati A, Kahale M, Sbeiti N, Cappellini MD, Taher AT, Koussa S, et al. One-year results from a prospective randomized trial comparing phlebotomy with deferasirox for the treatment of iron overload in pediatric patients with thalassemia major following curative stem cell transplantation. Pediatr Blood Cancer. 2017;64:188–96.

    Article  CAS  PubMed  Google Scholar 

  52. Shimizu R, Takeuchi M, Sakaida E, Ohwada C, Toyosaki M, Machida S, et al. Efficacy and safety of oral deferasirox treatment for transfusional iron overload in pure red cell aplasia patients after allogeneic stem cell transplantation. Ann Hematol. 2019;98:1781–3.

    Article  PubMed  Google Scholar 

  53. Vallejo C, Batlle M, Vazquez L, Solano C, Sampol A, Duarte R, et al. Phase IV open-label study of the efficacy and safety of deferasirox after allogeneic stem cell transplantation. Haematologica. 2014;99:1632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yesilipek MA, Karasu G, Kaya Z, Kuskonmaz BB, Uygun V, Dag I, et al. A phase II, multicenter, single-arm study to evaluate the safety and efficacy of deferasirox after hematopoietic stem cell transplantation in children with beta-thalassemia major. Biol Blood Marrow Transplant. 2018;24:613–8.

    Article  CAS  PubMed  Google Scholar 

  55. Tachibana T, Kanda J, Machida S, Saito T, Tanaka M, Najima Y, et al. Deferasirox for the treatment of iron overload after allogeneic hematopoietic cell transplantation: multicenter phase I study (KSGCT1302). Int J Hematol. 2018;107:578–85.

    Article  CAS  PubMed  Google Scholar 

  56. Armand P, Sainvil MM, Kim HT, Rhodes J, Cutler C, Ho VT, et al. Pre-transplantation iron chelation in patients with MDS or acute leukemia and iron overload undergoing myeloablative allo-SCT. Bone Marrow Transplant. 2013;48:146–7.

    Article  CAS  PubMed  Google Scholar 

  57. FDA. FDA approves luspatercept-aamt for anemia in patients with beta thalassemia. 2019 [updated 2019 Nov 8]. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-luspatercept-aamt-anemia-patients-beta-thalassemia.

  58. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382:140–51.

    Article  CAS  PubMed  Google Scholar 

  59. Wonke B, Wright C, Hoffbrand AV. Combined therapy with deferiprone and desferrioxamine. Br J Haematol. 1998;103:361–4.

    Article  CAS  PubMed  Google Scholar 

  60. Grady RW, Galanello R, Randolph RE, Kleinert DA, Dessi C, Giardina PJ. Toward optimizing the use of deferasirox: potential benefits of combined use with deferoxamine. Haematologica. 2013;98:129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Voskaridou E, Christoulas D, Terpos E. Successful chelation therapy with the combination of deferasirox and deferiprone in a patient with thalassaemia major and persisting severe iron overload after single-agent chelation therapies. Br J Haematol. 2011;154:654–6.

    Article  PubMed  Google Scholar 

  62. Taher AT, Saliba AN, Kuo KH, Giardina PJ, Cohen AR, Neufeld EJ, et al. Safety and pharmacokinetics of the oral iron chelator SP-420 in beta-thalassemia. Am J Hematol. 2017;92:1356–61.

    Article  CAS  PubMed  Google Scholar 

  63. SP-420 in subjects with transfusion-dependent beta-thalassemia or other rare anemias [NCT03801889]. Available from: https://clinicaltrials.gov/ct2/show/NCT03801889.

  64. Zhao JC, Arnall JR, Martin AL, Atrash S, Bhutani M, Voorhees P, et al. A review of growth factor support in bloodless autologous hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2019;25:e305–9.

    Article  CAS  PubMed  Google Scholar 

  65. da Silva RL, da Silva LAM, Geraldo B, Simoes AA, Almeida MSS, Fernandes PA, et al. Hematopoietic stem cell transplantation without the use of blood components by the patient’s choice: experience of 2 Brazilian Centers. Biol Blood Marrow Transplant. 2020;26:458–62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavan Tenneti.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenneti, P., Chojecki, A. & Knovich, M.A. Iron overload in the HCT patient: a review. Bone Marrow Transplant 56, 1794–1804 (2021). https://doi.org/10.1038/s41409-021-01244-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41409-021-01244-7

This article is cited by

Search

Quick links