Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation

Abstract

It is now well-established that regulatory T cells (Treg) represent a heterogeneous group of CD4+ T cells. Previous studies have demonstrated that Treg homeostasis was impacted by allogeneic hematopoietic cell transplantation (allo-HCT) and particularly so in patients with chronic graft-versus-host disease (GVHD). Here, we first assessed the ability of various Treg subsets to phosphorylate STAT5 in response to IL-2 or IL-7 stimulation in vitro. We then compared the frequencies of different Treg subtypes in healthy controls as well as in allo-HCT patients with or without chronic GVHD. The highest phosphorylated STAT5 (pSTAT5) signal in response to IL-2 was observed in the CD45RO+CD26CD39+HLA-DR+ Treg fraction. In contrast, naive Treg were mostly less susceptible to IL-2 stimulation in vitro. Following IL-7 stimulation, most Treg subpopulations upregulated pSTAT5 expression but to a lesser extent than conventional T cells. Compared to healthy controls, allo-HCT patients had lower frequencies of the naive CD45RAbrightCD26+ Treg subpopulation but higher frequencies of the most differentiated memory CD45RO+CD26CD39+ Treg subpopulations. Further, unbiased analysis revealed that six Treg clusters characterized by high expression of CD25, HLA-DR, and ICOS were significantly more frequent in patients with no or with limited chronic GVHD than in those with moderate/severe chronic GVHD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Impact of IL-2 on Treg subests in vitro.
Fig. 2: Impact of IL-2 on Treg subests in vitro using T-SNE analyses.
Fig. 3: Treg subsets in healthy controls and in patients with or without moderate/severe chronic GVHD.
Fig. 4: T-SNE of Treg subpopulations in healthy controls (n = 20) and in allo-HCT patients without (n = 20) or with (n = 15) moderate/severe chronic GVHD.
Fig. 5: Citrus analyses of Treg (2000/sample) from allo-HCT recipients without (n = 20) or with (n = 15) moderate/severe chronic GVHD.
Fig. 6: Impact of injection of low-dose IL-2 in a patient with severe steroid-refractory chronic GVHD.

References

  1. 1.

    Baron F, Storb R. Allogeneic hematopoietic cell transplantation as treatment for hematological malignancies: a review. Springe Semin Immunopathol. 2004;26:71–94.

    Article  Google Scholar 

  2. 2.

    Passweg JR, Baldomero H, Chabannon C, Basak GW, Corbacioglu S, Duarte R, et al. The EBMT activity survey on hematopoietic-cell transplantation and cellular therapy 2018: CAR-T’s come into focus. Bone Marrow Transplant. 2020;55:1604–13.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4:371–80.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Baron F, Maris MB, Sandmaier BM, Storer BE, Sorror M, Diaconescu R, et al. Graft-versus-tumor effects after allogeneic hematopoietic cell transplantation with nonmyeloablative conditioning. J Clin Oncol. 2005;23:1993–2003.

    PubMed  Article  Google Scholar 

  5. 5.

    Dickinson AM, Norden J, Li S, Hromadnikova I, Schmid C, Schmetzer H, et al. Graft-versus-leukemia effect following hematopoietic stem cell transplantation for leukemia. Front Immunol. 2017;8:496.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. 6.

    Teshima T, Reddy P, Zeiser R. Acute graft-versus-host disease: novel biological insights. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2016;22:11–6.

    CAS  Article  Google Scholar 

  7. 7.

    Blazar BR, Murphy WJ, Abedi M. Advances in graft-versus-host disease biology and therapy. Nat Rev Immunol. 2012;12:443–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Socie G, Ritz J. Current issues in chronic graft-versus-host disease. Blood. 2014;124:374–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol. 2017;8:79.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Jagasia MH, Greinix HT, Arora M, Williams KM, Wolff D, Cowen EW, et al. National Institutes of Health Consensus Development Project on criteria for clinical trials in chronic graft-versus-host disease: I. the 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant: J Am Soc Blood Marrow Transplant. 2015;21:389–401.e1.

    Article  Google Scholar 

  11. 11.

    Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance (Review). Immunological Rev. 2001;182:18–32.

    CAS  Article  Google Scholar 

  12. 12.

    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med. 2002;196:401–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Hannon M, Lechanteur C, Lucas S, Somja J, Seidel L, Belle L, et al. Infusion of clinical-grade enriched regulatory T cells delays experimental xenogeneic graft-versus-host disease. Transfusion. 2014;54:353–63.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004;4:665–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol. 2014;14:154–65.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Humblet-Baron S, Franckaert D, Dooley J, Bornschein S, Cauwe B, Schonefeldt S, et al. IL-2 consumption by highly activated CD8 T cells induces regulatory T-cell dysfunction in patients with hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;138:200–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Pierson W, Cauwe B, Policheni A, Schlenner SM, Franckaert D, Berges J, et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3(+) regulatory T cells. Nat Immunol. 2013;14:959–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Koreth J, Kim HT, Jones KT, Lange PB, Reynolds CG, Chammas MJ, et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood. 2016;128:130–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Kim GY, Ligons DL, Hong C, Luckey MA, Keller HR, Tai X, et al. An in vivo IL-7 requirement for peripheral Foxp3+ regulatory T cell homeostasis. J Immunol. 2012;188:5859–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Schmaler M, Broggi MA, Lagarde N, Stocklin BF, King CG, Finke D, et al. IL-7R signaling in regulatory T cells maintains peripheral and allograft tolerance in mice. Proc Natl Acad Sci U S A. 2015;112:13330–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    De Bock M, Fillet M, Hannon M, Seidel L, Merville MP, Gothot A, et al. Kinetics of IL-7 and IL-15 Levels after allogeneic peripheral blood stem cell transplantation following nonmyeloablative conditioning. PLoS ONE. 2013;8:e55876.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24.

    Hannon M, Beguin Y, Ehx G, Servais S, Seidel L, Graux C, et al. Immune recovery after allogeneic hematopoietic stem cell transplantation following Flu-TBI versus TLI-ATG conditioning. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21:3131–9.

    CAS  Article  Google Scholar 

  25. 25.

    Matsuoka K, Koreth J, Kim HT, Bascug G, McDonough S, Kawano Y, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease. Sci Transl Med. 2013;5:179ra143.

    Article  CAS  Google Scholar 

  26. 26.

    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30:899–911.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gratz IK, Campbell DJ. Organ-specific and memory treg cells: specificity, development, function, and maintenance. Front Immunol. 2014;5:333.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Dong S, Maiella S, Xhaard A, Pang Y, Wenandy L, Larghero J, et al. Multiparameter single-cell profiling of human CD4+FOXP3+ regulatory T-cell populations in homeostatic conditions and during graft-versus-host disease. Blood. 2013;122:1802–12.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Hua J, Davis SP, Hill JA, Yamagata T. Diverse gene expression in human regulatory T cell subsets uncovers connection between regulatory T cell genes and suppressive function. J Immunol. 2015;195:3642–53.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Schiavon V, Duchez S, Branchtein M, How-Kit A, Cassius C, Daunay A, et al. Microenvironment tailors nTreg structure and function. Proc Natl Acad Sci U S A. 2019;116:6298–307.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Bruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014;111:E2770–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Hirakawa M, Matos T, Liu H, Koreth J, Kim HT, Paul NE, et al. Low-dose IL-2 selectively activates subsets of CD4+ Tregs and NK cells. JCI Insight. 2016;1:e89278.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Leonard WJ, Lin JX, O’Shea JJ. The gammac family of cytokines: basic biology to therapeutic ramifications. Immunity. 2019;50:832–50.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    McDonald-Hyman C, Flynn R, Panoskaltsis-Mortari A, Peterson N, MacDonald KP, Hill GR, et al. Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. Blood. 2016;128:1013–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Copsel S, Wolf D, Komanduri KV, Levy RB. The promise of CD4(+)FoxP3(+) regulatory T-cell manipulation in vivo: applications for allogeneic hematopoietic stem cell transplantation. Haematologica. 2019;104:1309–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Xhaard A, Moins-Teisserenc H, Busson M, Robin M, Ribaud P, Dhedin N, et al. Reconstitution of regulatory T-cell subsets after allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49:1089–92.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Matsuoka K, Kim HT, McDonough S, Bascug G, Warshauer B, Koreth J, et al. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest. 2010;120:1479–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Whangbo JS, Kim HT, Nikiforow S, Koreth J, Alho AC, Falahee B, et al. Functional analysis of clinical response to low-dose IL-2 in patients with refractory chronic graft-versus-host disease. Blood Adv. 2019;3:984–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Belizaire R, Kim HT, Poryanda SJ, Mirkovic NV, Hipolito E, Savage WJ, et al. Efficacy and immunologic effects of extracorporeal photopheresis plus interleukin-2 in chronic graft-versus-host disease. Blood Adv. 2019;3:969–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Ehx G, Hannon M, Beguin Y, Humblet-Baron S, Baron F. Validation of a multicolor staining to monitor phosphoSTAT5 levels in regulatory T-cell subsets. Oncotarget. 2015;6:43255–66.

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    McCaughtry TM, Etzensperger R, Alag A, Tai X, Kurtulus S, Park JH, et al. Conditional deletion of cytokine receptor chains reveals that IL-7 and IL-15 specify CD8 cytotoxic lineage fate in the thymus. J Exp Med. 2012;209:2263–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S, et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood. 2005;106:2903–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Wing JB, Tay C, Sakaguchi S. Control of regulatory T cells by co-signal molecules. Adv Exp Med Biol. 2019;1189:179–210.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Castermans E, Hannon M, Dutrieux J, Humblet-Baron S, Seidel L, Cheynier R, et al. Thymic recovery after allogeneic hematopoietic cell transplantation with non-myeloablative conditioning is limited to patients younger than 60 years of age. Haematologica. 2011;96:298–306.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Furlan SN, Singh K, Lopez C, Tkachev V, Hunt DJ, Hibbard J, et al. IL-2 enhances ex vivo-expanded regulatory T-cell persistence after adoptive transfer. Blood Adv. 2020;4:1594–605.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the European Union’s Horizon 2020 research and innovation programme under Grant agreement No. 643776 (TREGeneration), by the Foundation contre le Cancer (FBC), Belgium, FBC # FAF-C/2016/889 Grant and the National Fund for Scientific Research (FNRS), Belgium, research Grant PDR T006915F and PDR T.0016.20.CR is Televie PhD student and FB is Senior Research Associate at the FNRS, Belgium.

Author information

Affiliations

Authors

Contributions

CR performed the experiments, analyzed the data, and wrote the manuscript; FB wrote the manuscript, designed the study, and interpreted the data; GE performed the experiments, helped in the study design and data interpretation, and edited the manuscript; CG and CD performed the experiments and edited the manuscript; YB helped in the study design, provided clinical data, and edited the manuscript; EW and SS provided clinical data and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Frédéric Baron.

Ethics declarations

Conflict of interest

FB has received travel grants and/or speaker honoraria from Celgene, AbbVie, Novartis, Pfizer, and Sanofi. The other authors declare that they have no conflict of interest.

Ethics approval

The study was approved by the Ethics Committee of the CHU of Liège (protocol number TJB1609). All volunteers and patients provided their written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ritacco, C., Ehx, G., Grégoire, C. et al. High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant (2021). https://doi.org/10.1038/s41409-021-01221-0

Download citation

Search

Quick links